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Abstract

Due to their involvement in numerous biochemical pathways, neuropeptides have been the focus 

of many recent research studies. Unfortunately, classic analytical methods, such as Western 

blots and enzyme-linked immunosorbent assays, are extremely limited in terms of global 

investigations, leading researchers to search for more advanced techniques capable of probing 

the entire neuropeptidome of an organism. With recent technological advances, mass spectrometry 

(MS) has provided methodology to gain global knowledge of a neuropeptidome on a spatial, 

temporal, and quantitative level. This review will cover key considerations for the analysis 

of neuropeptides by MS, including sample preparation strategies, instrumental advances for 

identification, structural characterization, and imaging; insightful functional studies; and newly 

developed absolute and relative quantitation strategies. While many discoveries have been made 

with MS, the methodology is still in its infancy. Many of the current challenges and areas that need 

development will also be highlighted in this review.
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Introduction

The nervous system is one of the most highly regulated parts of the human body, 

and signaling molecules are well known for their roles in behavior, controlling bodily 

homeostasis, and processing incoming information (Herlenius & Lagercrantz, 2004; Hokfelt 

et al., 2000; Li & Sweedler, 2008; Xie, Romanova & Sweedler, 2011). Any perturbation 

of this system can have detrimental effects on an organism, leading to temporary or long-
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term biochemical changes. Neuropeptides, one of the largest classes of neuronal signaling 

molecules, are well known for playing prominent roles in the nervous system (Herlenius & 

Lagercrantz, 2004; Hokfelt et al., 2000; Li & Sweedler, 2008; Xie, Romanova & Sweedler, 

2011). However, the comprehensive analyses of the neuropeptidome, the entire range of 

neuropeptides able to be expressed, remain to be challenging due to global diversity of their 

size, sequence, and function.

The diversity of neuropeptides can be first observed at the biological synthesis level. 

This review only focuses on the typical neuropeptide biosynthesis pathway and not on 

alternative ways of endogenous peptide production. A typical neuropeptide biosynthesis 

starts with the translation of a prepropeptide RNA chains. A prepropeptide may contains 

several neuropeptide copies, which are revealed after multiple processing steps. Initially, a 

propeptide is produced from the prepropeptide via proteolytic cleavages, splicing events, or 

introduction of post-translational modifications (PTMs) (Li & Sweedler, 2008). The result 

is a propeptide which is packaged into vesicles where they are stored prior to release. A 

strong stimulation, such as high frequency firing, elicits site-specific enzymes to produce the 

final, biologically active peptides that are released from the neuron. Mature neuropeptides 

released in the extracellular space 'travel' through the body to reach (distant) organs/tissues/

cells which contain receptors where they bind. The latter are sometimes referred to as 

neuropeptide targets. The final neuropeptides generally range in length from 3 to 70 amino 

acids long (Buchberger, Yu & Li, 2015). The signaling targets can be within the same neuron 

produced, within the same organ, or in an entirely different tissue. In addition, neuropeptide 

anabolism, catabolism, and thus function may even vary depending on the destination of the 

signaling target (von Bohlen und Halbach, 2005). To further increase the chemical diversity, 

neuropeptides can have isoforms that may only vary by one residue but have widely different 

functions within the body. All these factors lead to a high, natural complexity that is difficult 

to characterize even with complete genetic coverage.

The development of sophisticated analytical tools or simplified networks are required for 

deep neuropeptidomic analysis. To decrease the complexities of neuropeptide analysis, many 

researchers have adopted different, similar animal models, such as crustaceans or mice, to 

characterize neuropeptidomic changes (Che et al., 2005; Chen et al., 2014; OuYang, Liang 

& Li, 2015; Yin et al., 2011; Zhang et al., 2015). Due to homology between neuropeptides 

from different species, many of the results and insights obtained from these simpler systems 

can be readily transferred to more complex organisms, such as humans (Bruzzone et al., 

2006; Schmerberg & Li, 2013; Yew et al., 2005; Yu et al., 2014). As the full complement of 

neuropeptides has yet to be fully discovered, even with the aid of these model organisms, it 

is important to develop and implement more advanced technology.

To fully characterize neuropeptides, we require methodology that is selective, sensitive, 

and swift, all while being cost-effective and capable of providing dynamic temporal and 

spatial information. In the past, researchers have focused on the use of antibody-based, 

electrochemical, bioluminescent, or other biological assays to characterize neuropeptides 

(Li & Sweedler, 2008). For example, radioimmunoassays (RIAs) were very popular at one 

time due to being highly sensitive and selective (Li & Sweedler, 2008), even to familial 

isoforms (Jarecki et al., 2013), but their high cost and inability to simultaneously study 
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multiple analytes, spatially and quantitatively, limits their global use. Unlike these classical 

methods, mass spectrometry (MS) has begun to meet all the necessary requirements for 

scientists to fully study neuropeptides. In general, MS measures the mass-to-charge ratio 

(m/z) of an analyte of interest. These instruments are capable of analyzing neuropeptides 

down to low attomole ranges while providing mass accuracy down to a few ppm and 

resolution to differentiate between not only different neuropeptides but also familial 

isoforms (Andren, Emmett & Caprioli, 1994; Dowell, Heyden & Li, 2006; Hui et al., 

2012). While the development of high-resolution, accurate mass (HRAM) instrumentation 

allows for identification at the single stage MS (MS1) level, masses can also be selected 

for tandem MS (MS/MS). Peptide precursor ions are fragmented, producing characteristic 

fragments. As such, both known and novel analytes can be characterized and/or confidently 

identified. In conjunction with online or offline separations, MS is claimed to be capable 

of analyzing “entire proteomes” in a short amount of time (Hebert et al., 2014), making it 

an excellent tool to study the full complement of neuropeptides in a system (Castro et al., 

2014; Hui et al., 2013; Predel et al., 2018; Predel et al., 2010; Xie, Romanova & Sweedler, 

2011). Furthermore, the development of MS imaging has allowed to obtain highly accurate 

spatial information of several hundred analytes in one experiment. In addition, several 

strategies have been also developed (label-free and label-based) to quantitatively study 

neuropeptide changes, such as due to a biochemical or environmental stressor (Buchberger, 

Yu & Li, 2015; Southey et al., 2014; Yin et al., 2011). It should be noted that proper 

handling and separation of the samples are key to acquiring quality data, especially in the 

case of specialized MS techniques such as in vivo sampling methods and MS imaging 

(Buchberger, Yu & Li, 2015; Gemperline, Chen & Li, 2014; Li, Zubieta & Kennedy, 2009; 

OuYang, Liang & Li, 2015). Overall, MS provides an attractive ability to examine the full 

complement of neuropeptides qualitatively and quantitatively.

While it seems that MS provides all the necessary qualities to study neuropeptides, many of 

the techniques used are still far from perfect. Figure 1 provides a pictorial representation of 

the possible workflows taken when studying neuropeptides with a mouse used as a model 

organism. This review will focus on the technological advancements and discoveries made, 

along with the challenging areas that still need development.

Sample Preparation

Sample handling is the first step where researchers need to be cautious to be accurate and 

consistent. Neuropeptides are often present at low abundance in a background containing 

all sorts of contaminants (e.g. salts, lipids). They are prone to proteolytic degradation, so 

sample handling is crucial. Yet it is often the least optimized step compared to down-stream 

well-established instrumental MS methodologies (Buchberger, Yu & Li, 2015; De Haes et 

al., 2015; Romanova & Sweedler, 2015; Yu et al., 2014). While salts and lipids compete 

with neuropeptides for ionization and suppress peptide signals, proteolytic degradation or 

other protein-modifying enzymes can rapidly change composition of the neuropeptidome, 

leading to inconsistent and sometimes confounding results.
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A. Prevention of Neuropeptide Degradation

Neuropeptides are subject to rapid proteolysis at room temperature. To preserve 

neuropeptide integrity, flash-freezing of the tissue is convenient to use and widely applied 

(Han et al., 2015; Sterkel et al., 2011). Other options do exist, including boiling (Altelaar 

et al., 2009; Sturm, Dowell & Li, 2010; Zhang et al., 2018b) and microwave irradiation 

(Wardman et al., 2010). Heat denaturation, which was introduced to eliminate post-mortem 

degradation, can be adapted for a wide range of tissues (Svensson et al., 2009) and has 

been proven effective. Colgrave et al. have shown that hypothalamic tissue treated with a 

stabilization device yielded twice the number of mature neuropeptides than those detected 

in the untreated samples (Colgrave et al., 2011). The Stabilizer T1 (Denator, Gothenburg 

Sweden), heat stabilization system has been shown to successfully increase neuropeptide 

identifications compared to other tissue preservation methods. It is worth noting that a 

high number of identifications may not indicate successful prevention of neuropeptide 

degradation, but rather abundant peptide signal may be due to high levels of post-mortem 

degradation (Fridjonsdottir et al., 2018; Yang et al., 2017). Protease inhibitors also serve a 

similar purpose; for example, Onorato et al. recently showed that recovery of neuropeptide 

(Pyr)1 apelin-13 from blood samples was only observed when samples were treated with a 

stabilization cocktail consisting of HALT® protease inhibitor (ThermoFisher Scientific), 

0.25 mM phenylmethanesulfonyl fluoride and 25% guanidine HCl (v/v) (Onorato et 

al., 2019). Protease inhibitors are also added to biological liquids, such as crustacean 

hemolymph (Chen et al., 2009b).

B. Extraction Strategies

Several workflows exist depending on the type of information sought from the sample 

(Buchberger, Yu & Li, 2015; Dallas et al., 2015; Yu et al., 2014). Tissue homogenization 

and peptide extraction are procedures that affects identification rate in neuropeptidomics. 

Homogenization typically employs manual tissue grinding (i.e., using a pestle on snap-

frozen tissue), sonication, or cell disrupter devices. Homogenization and extraction are 

performed in the presence of solvents or buffers which can dissolve peptides and 

simultaneously deactivate proteases in the sample. One of the most generally utilized 

buffers in such application is acidified methanol (Adamson et al., 2016; Budamgunta et 

al., 2018; Chen et al., 2010c; Hui et al., 2013; Lavore et al., 2018; Sterkel et al., 2011; 

Van Bael et al., 2018b; Ye et al., 2015) which contains 90% methanol (MeOH), 9% glacial 

acetic acid, and 1% water. It is reported to be able to extract neuropeptides from single 

neurons (Zhang et al., 2018a). This buffer system is further optimized by Zhang et al. 

for a ‘mixing on column’ protocol, an approach that includes four steps with varying 

aqueous and methanol compositions. This hybrid protocol was able to capture hydrophobic 

peptides as well as hydrophilic peptides simultaneously and create up to five-fold more 

neuropeptide identifications (Petruzziello et al., 2012; Yu et al., 2015b; Zhang et al., 2012a). 

Chen et al. also demonstrated that the use of acidified methanol with a protease inhibitor 

additive is efficient for trace-level neuropeptide analysis in hemolymph samples (Chen et 

al., 2009b). However, C-terminal methylation, an enzyme-assisted extraction artifact, might 

happen to some neuropeptides (Stemmler et al., 2013). Although use of acidified methanol 

is prevalent, a 0.25% acetic acid solution (DeAtley et al., 2018; Fridjonsdottir et al., 2018) 

has been shown to produce higher quality neuropeptide signal than acidified methanol 
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(Dowell, Heyden & Li, 2006). Therefore, examples of effective strategies are to perform 

either multiple peptide extractions on the same tissue homogenate (Petruzziello et al., 2013), 

collect, and combine the supernatant fraction from each extraction (Yang et al., 2017; Yang 

et al., 2018). Alternatively, a peptide extraction can be followed by the addition of salt to the 

peptide extract supernatant to further precipitate remaining proteins (Gomez-Ramos et al., 

2018).

A wide variety of organic buffers have been used in the recent years to extract neuropeptides 

from several biological matrices using acids such as formic acid (FA), trifluoroacetic acid 

(TFA), and ethylenediaminetetraacetic acid (EDTA), summarized in Table 1. For tissues that 

are difficult to homogenize, like bone tissue, more corrosive extraction buffers such as 1.2 

molarity (M) hydrochloric acid (HCl) and 20% acetonitrile (ACN) are necessary (Gatenholm 

et al., 2019). Additionally, delipidation strategies using n-hexane (Van Bael et al., 2018a) 

or methyl-tert-butyl ether (MTBE) in MeOH (Li et al., 2020b) can also be applied during 

neuropeptide extraction. In lieu of organic solvent extraction buffers, molecular weight 

cut-off (MWCO) filters have also been used for neuropeptide purification and isolation of 

a particular size of neuropeptides. For example, neuropeptides from sea cucumber radial 

nerves can be extracted using either artificial sea water (Chieu et al., 2019a) or simple urea-

based cell lysis buffers (Chen et al., 2019) followed by MWCO filters. However, extra care 

must be taken using these methods to avoid peptide degradation by catabolic enzymes. For 

biological samples containing abundant high molecular weight proteins, such as hemolymph 

(Fredrick & Ravichandran, 2012), a combination of extraction using acidified methanol and 

ultracentrifugation through MWCO filters are necessary for neuropeptide analysis (Liu et 

al., 2019).

C. Enrichment and Sample Clean-Up

Generally, crude neuropeptide extract still contain soluble contaminants, such as salt, 

which can degrade mass spectral quality and result in decreased peptide signal in MS 

measurements (Constantopoulos, Jackson & Enke, 1999), and desalting neuropeptide 

extract is especially important for biological samples that are suspended in proteomics/

peptidomics buffers. Examples of popular commercial methods for desalting neuropeptide 

extract typically involves solid phase extraction utilizing reversed phase resin (i.e., C4, 

C8, or C18), such as Millipore ZipTip pipette tips (Sigma Aldrich) and Pierce Desalting 

Columns or Tips (Thermo Fisher), or a hydrophilic polymer sorbent, such as Oasis HLB 

(Hydrophilic-Lipophilic-Balanced) cartridges (Waters). These types of tools are critical for 

peptidomics workflows because they not only desalt, but also concentrate neuropeptide 

samples. Additionally, pooling several tissues, organs, and neurons into one sample is 

often necessary when concentrated neuropeptidomic content is desired for comprehensive 

neuropeptide identifications. Other methods of concentrating neuropeptides are by utilizing 

monoclonal antibodies immobilized on magnetic beads (Vocat et al., 2020), automated solid-

phase extraction (Bardsen et al., 2019), and large volume sample stacking using capillary 

electrophoresis (CE) (DeLaney & Li, 2019a). A recently developed technique to quickly 

concentrate and desalt neuropeptides involve dispensing a droplet of tissue extract onto a 

sample target consisting of a hydrophobic circle surrounded by a hydrophilic ring, which 
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allows separation between salts and neuropeptides to occur directly on the MS sampling 

plate (Wang et al., 2017; Yoon et al., 2018).

D. MS Imaging

Unlike tissue homogenization, direct analysis of intact tissue is a simpler way that enables 

comparing localization from individual samples or animals which is usually important to 

determine its biological relevance. For example, intact somata were analyzed after aspiration 

by a pipette and transfer onto an MS sampling plate for neuropeptide profiling (Diesner, 

Predel & Neupert, 2018; Neupert et al., 2018). Liquid extraction surface analysis (LESA) 

is a direct tissue sampling technique that has recently been commercialized by HTX 

Technologies as the SepQuant droplet probe and has been used successfully for neuropeptide 

analysis (Kertesz et al., 2015). Pioneered by Caprioli and co-workers, MS imaging has also 

emerged as an attractive technology for localizing neuropeptides (Caprioli, Farmer & Gile, 

1997). Neuropeptide MS imaging experiments require sectioning tissue into 10–20 μm thick 

slices. Tissues have to be embedded into scaffold materials, such as gelatin (Chen et al., 

2010a; OuYang, Chen & Li, 2015; Ye et al., 2015), sucrose (Verhaert et al., 2010), gelatin 

containing sodium salts of carboxymethyl cellulose (CMC) (Resetar Maslov et al., 2019), 

at the time of snap-freezing to facilitate sectioning and preserving tissue integrity. Once 

sectioned, the tissue can be directly mounted onto a glass slide or sample plate for matrix 

application with an airbrush or automatic matrix sprayer (Andersson et al., 2008; Ye, Greer 

& Li, 2012). Spectral quality can be improved by washing the tissue sections with organic 

solvents (e.g. ethanol, methanol, acetone, water, or different mixtures of these solvents) 

prior to matrix application to remove salts and lipids which negatively influence the matrix 

crystallization process and signal quality (Buchberger et al., 2020c; Kaletaş et al., 2009; 

Meriaux et al., 2011; Seeley et al., 2008). The most common matrices for neuropeptide 

imaging include α-cyano-4-hydroxy-cinnamic acid (CHCA) (Chen et al., 2009b; Pratavieira 

et al., 2014) and 2,5-dihydroxybenzoic acid (DHB) (Chen et al., 2010a; Ye et al., 2015; 

Zimmerman et al., 2009). More details on MS imaging are described in a separate section 

below.

E. Microdialysis

Though tissue homogenization and direct tissue analysis are complementary in gaining 

insight into sample composition and localization, they all require sacrificing animals. This 

makes it impossible to track real-time change in vivo and brings in unwanted variations 

among animals if following time course changes is the real objective. As an emerging 

as well as underdeveloped technique, microdialysis offers the capability to monitor spatio-

temporal dynamics of neuropeptides over a certain time period upon external stimulus via 

a probe implanted into the tissues of interest that allows continuous sampling from the 

extracellular space (Kushikata & Hirota, 2011). When sampling from extracellular space, the 

concentration gradient drives the analytes to diffuse across the dialysis membrane, which 

has a certain MWCO filter depending on the substances of interest (OuYang, Liang & Li, 

2015). Due to the small probe size, animals endure minimal physical damage and associated 

neurological disturbance. Long-term sampling can be accomplished while animals are still 

alive and freely moving. It has found its applications in a wide variety of tissues and organs, 

including skin (Baumann et al., 2019), hypothalamus (Guzman-Ruiz et al., 2015; Kurian et 
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al., 2015), hippocampus (Takeda et al., 2011), spinal cord (Wu et al., 2015b) and kidney 

(Wesson, Jo & Simoni, 2015) in vertebrates as well as neuronal organs in crustaceans 

(Behrens, Chen & Li, 2008; Jiang et al., 2016; Liang, Schmerberg & Li, 2015; Schmerberg, 

Liang & Li, 2015).

Despite its attractiveness, challenges still exist for microdialysis sample preparation. High 

temporal resolution (shorter intervals for collection of individual samples) is desired for 

microdialysis measurements, but this must be considered with MS sensitivity factor by 

selecting an appropriate sampling volume. Balancing low neuropeptide concentration in vivo 
(1–100 pM), small sample volumes generated by microdialysis (1–10 μL) (Zhou et al., 2015) 

and low recovery rate (20-30%) (Schmerberg & Li, 2013) makes the choice of instrument 

even more important. It has been demonstrated that adding organic solvents, especially 

ACN, to dialysate is able to prevent adsorptive loss of low-abundance neuropeptides 

by hydrophobic interactions with membrane surfaces (Maes et al., 2014; Zhou et al., 

2015). By treating the dialysis membrane and fused silica tubing with polyethylenimine 

(PEI), recovery was improved by 1.2- to 80-fold (Zhou et al., 2015). This only benefited 

the detection of peptides that carried a net positive charge, though, probably due to 

reduced electrostatic interaction between peptides and the microdialysis probe. An array 

of affinity-enhanced microdialysis approaches have been tested by Schmerberg et al., and 

they observed antibody-coated magnetic nanoparticles to provide the greatest enhancement 

in neuropeptide recovery (Schmerberg & Li, 2013). Other efforts to increase peptide 

recovery include a study by Wanseele et al., who tested several liquid chromatography (LC) 

columns and mobile phases to find the combination for optimal recovery of neuropeptides 

(Cortecs®C18+ column with a mobile phase containing methanol as organic modifier and 

acetic acid as additive) from microdialysate of a solution containing peptide standards 

(Van Wanseele et al., 2017). Another advancement in microdialysis probe sampling include 

non-specific perturbing of the tissue of interest to elicit a biochemical response. Al-Hasani et 

al. developed a microdialysis probe containing optical fibers for the purpose of stimulating 

neuronal peptide release which is subsequently collected in the probe perfusate (Al-Hasani 

et al., 2018). The peptide profile resulting from non-specific techniques such as this can 

be used to generate additional research questions that can be answered by more specific 

techniques, such as expression knock-out experiments. Although microdialysis is useful for 

performing in vivo experiments, the recovery rate of neuropeptides is relatively low.

Overall, each sample handling step strives to increase neuropeptide signal by decreasing 

interfering signal while minimizing sources of neuropeptide loss. However, the variety 

of chemicals and solvents used by different research groups (even for similar tissue 

types) illustrates the need for continued evaluation and comparison between these different 

extraction and sampling systems. Ideally, there would be a workflow that is unanimously 

agreed upon to produce optimal neuropeptide signal, but it is our opinion that there would 

likely exist multiple workflows tailored for individual sub-classes of neuropeptides and 

specific underlying questions to address.
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Discovery/Sequence Identification

A. MS in General Peptide Structural Elucidation Strategies

Prior to the introduction of MS, neuropeptides were identified during searches for 

endogenous molecules that produced a physiological effect, and Edman degradation was 

used as a standard method to determine the primary sequences (Yu et al., 2015a). This 

strategy requires a substantial amount of sample, especially from tissue types with scarce 

neuropeptide content, and a priori knowledge of the analyte of interest since it is a 

“function first” approach. With its high-throughput capability, MS, especially when coupled 

with electrospray ionization (ESI) sources, allows thousands of peptides to be measured 

simultaneously. One of the pioneers in the field, Dominic Desiderio, demonstrated the utility 

of MS for endogenous (neuro)peptide structural analysis early on (Desiderio et al., 1993; 

Desiderio & Yamada, 1982; Kusmierz & Desiderio, 1992; Mahajan & Desiderio, 1978; 

Yamada & Desiderio, 1982). By alternating between MS and MS/MS, records of both intact 

mass and fragment information (to determine the sequence) can be obtained. Matching these 

two pieces of information to the respective genome reveals exact neuropeptide sequences, 

their origins, as well as functions. However, not all organisms have their genome fully 

characterized, which sometimes makes genomic-based database searching unfeasible. This 

is overcome by de novo peptide sequencing, a technique that can provide neuropeptide 

sequences solely based on tandem MS data, without the need for a complete genome. MS 

has greatly shifted discovery of neuropeptides from the identification of a single peptide to 

the characterization of multiple peptides representing entire peptidomes.

Various fragmentation techniques have been developed, see Table 2. Collision-induced 

dissociation (CID), the conventional vibrational activation, has been widely used (Ye et 

al., 2013; Zhou, Mabrouk & Kennedy, 2013). However, CID has been criticized for 

preferentially cleaving the weakest bonds, no matter of location in the peptide backbone 

or side chains, such as with PTMs. Once a bond is cleaved, the internal energy is 

released and the product will not be further activated, which sometimes leaves spectra 

with few dominating peaks to interpret (Medzihradszky & Chalkley, 2015; Seidler et al., 

2010). Furthermore, the loss of PTMs can be detrimental to some studies. To generate 

a better-quality spectrum, an alternative fragmentation approach is the beam-type CID or 

high-energy collision dissociation (HCD). It accelerates all ions across the chamber instead 

of the ion trap, permitting multiple collisions, and therefore fragments might break up 

further to create products equally distributed along the backbone (Jedrychowski et al., 

2011; Medzihradszky & Chalkley, 2015). Fragmentation by CID in a triple quadrupole 

and HCD in an Orbitrap mass analyzer for the structural characterization of neuropeptide 

receptor antagonists were compared (Silva et al., 2018). Similar qualitative and structural 

information was seen between the two mass analyzers, though higher confidence structural 

assignments were seen from the HCD-obtained data (Silva et al., 2018). Another comparison 

was performed by Tu et al. between HCD in an orbitrap, HCD in an ion trap, and CID in 

an ion trap using an Orbitrap Fusion Lumos where they achieved the highest number of 

identifications using HCD in the orbitrap, then using HCD in the ion trap, and the lowest 

amount from CID in the ion trap (Tu et al., 2016). Despite being less sensitive than CID due 

to the higher ion volume requirement to generate a spectrum, HCD has become more and 
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more popular due to its better data quality and ability to record all products across a wide 

mass range (Silva et al., 2018).

Two MS/MS methods complementary to collision-based activation that have been developed 

are electron-capture dissociation (ECD) (Zubarev et al., 2000) and electron-transfer 

dissociation (ETD) (Syka et al., 2004), where a radical ion is formed and undergoes 

fragmentation to yield almost exclusively peptide backbone fragmentation, thus preserving 

labile PTMs. Following their introduction, both electron-based methods, particularly ETD, 

have been gaining popularity among researchers studying PTMs in proteomics (Sobott et 

al., 2009). While still relatively new, ECD and ETD have the potential to be a critical 

component of neuropeptide sequencing. Unlike the digested protein fragments observed 

in bottom-up proteomics with predictable C-termini and similar lengths, neuropeptides 

tend to have varying sizes from a few to several dozens of residues. For example, some 

FMRFamides in invertebrates have only four amino acids whereas CCK-58, as indicated by 

its name, has 58. Furthermore, endogenous proteolytic processing leads to the production 

of peptides containing multiple internal basic residues (histidine, lysine, and arginine) 

which hold higher charges states in the gas phase, for which CID and HCD show limited 

performance. Fortunately, that is where ETD outperforms the former two (Hui et al., 2011). 

Combining CID or HCD with ETD provided complementary spectra for Sasaki et al. in their 

study on endogenous peptides from a human endocrine cell line, and ETD helped identify a 

previously unknown large peptide, VGF[554–577]-NH2 (Sasaki, Osaki & Minamino, 2013). 

Rathore et al. developed a strategy to perform two dissociation techniques, CID and ETD, in 

one analysis without a decrease in duty cycle. Facilitated by the temporal separation gained 

through ion mobility MS (IM-MS) (see Isobaric PTMs section), a single packet of precursor 

ions can give rise to b- and y-type ions containing spectra and c- and z-type ions containing 

spectra (Rathore, Aboufazeli & Dodds, 2015). A hybrid strategy was further developed by 

Hui et al. and Jia et al. where a bottom-up approach using CID and HCD fragmentation was 

coupled with a top-down strategy employing ETD fragmentation to reveal more structural 

details of large neuropeptides (Hui et al., 2011; Jia et al., 2012). This represents a new route 

to discovery and characterization of large neuropeptides since neither of these fragmentation 

techniques could manage to provide a complete picture of a large neuropeptide alone. Rather 

than using CID, HCD, or electron activated dissociation (ExD), Vrkoslav and colleagues 

have shown that in-source decay fragmentation can be used to produce fragment ions for 

peptide structure characterization in single-stage matrix-assisted laser desorption/ionization 

(MALDI) instruments lacking precursor ion-selection capabilities (Vrkoslav et al., 2018). To 

improve the coverage and quality of neuropeptide sequencing by in-source decay, Neupert 

reports a method for N-terminal derivatization using 4-sulfophenyl isothiocyanate (Neupert, 

2018). This radical based dissociation technique enables the fragmentation of intact peptide 

ions, where traditional dissociation techniques are inefficient.

Chemically-derivatized peptides can carry some distinct fragmentation patterns and/or 

improve fragmentation, and some of them can be utilized for sequencing. Dimethyl labeling 

is one of the well-established methods that has been employed in neuropeptide identification 

studies (Fu & Li, 2005; Hsu et al., 2005; Ma et al., 2009), as it features enhanced a1-

ion signal for N-terminal determination and simplified MS/MS interpretation. Dimethyl 

labeling is also effective for analyzing dipeptides and tripeptides (Tang et al., 2014). Short 
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neuropeptides (2-3 residues) are difficult to characterize. They have low molecular weights, 

complicating the desalting process, and can be hydrophilic, decreasing compatibility with 

conventional C18 columns. However, these short peptides are still bioactive and potentially 

important; their MS analysis benefits from derivatization with Marfey’s reagent (Bobba, 

Resch & Gutheil, 2012). Acetylation is another example of methods that target primary 

amines (Yew et al., 2009). A nanosecond timescale photochemical click-chemistry based 

enhancement for neuropeptide detection was developed by Li et al. to remove matrix 

components to decrease matrix effects and spectral complexity (Li et al., 2019). A few other 

chemical derivatization schemes have been developed in recent years but have yet applied 

to neuropeptide studies. Kim et al. reported an oxazolone chemistry for incorporation of 

Br signature to the C-terminus, which populates MS/MS spectra with a series of y-ions 

bearing a Br signature for easier interpretation (Kim et al., 2011a). Isothiocyanate analogues 

with basic moieties have been demonstrated to derivatize peptides and significantly improve 

the MS sensitivity, while promoting Edman-type cleavage and maintaining other sequence 

fragments for easy sequencing (Wang, Fang & Wohlhueter, 2009). Cationization by alkali 

metals have also been shown to improve de novo sequence coverage of small peptides 

(<15-20 residues) (Logerot & Enjalbal, 2020). The peptide derivatization strategy reported 

by Frey et al. appends tertiary or quaternary amines to the peptide’s carboxyl groups present 

at the C-terminus and in aspartic and glutamic acid side chains. As the amine appended, 

the charge state of that peptide increases, improving its ETD fragmentation efficiency (Frey 

et al., 2013). Charge state manipulation and distribution of neuropeptides were further 

studied by Nielsen and Abaye where it was found that the use of electrolyte additives or 

supercharging reagents was sufficient to alter the observed charge states and total ion signal 

(Nielsen & Abaye, 2013). Bongaerts et al. recently studied the use of several supercharging 

agents on neuropeptide ionization and concluded the effects to be highly dependent on 

the peptide (Bongaerts et al., 2020). While supercharging agents can alter charge state 

distributions to something more desirable, care must be taken to choose the appropriate one 

for each analyte.

B. Data Independent Analysis

While improvements in fragmentation techniques have paved the way for the 

increased identification and characterization of neuropeptides, traditional discovery/shotgun 

proteomics strategy using data-dependent acquisition (DDA) is still limited by the number of 

MS/MS spectra abled to be collected. This is problematic for the analysis of more complex 

samples because only a small fraction of analytes can be selected and fragmented. As 

the most abundant precursor ions are selected for fragmentation, DDA biases detection to 

higher abundance or more readily ionizable species. Data-independent acquisition (DIA) 

can address some shortcomings of DDA, expanding proteome and peptidome coverage 

through its increased MS acquisition abilities (Chapman, Goodlett & Masselon, 2014). 

DIA methods involve the isolation and fragmentation of multiple precursor ions within 

a window simultaneously, with windows spanning the whole m/z range of interest, 

followed by the use of software to deconvolute the more complicated MS/MS spectra 

containing fragments from several precursors. This approach generates fragment ions of 

all precursors in a sample instead of solely the highest abundance ones. The information 

gathered from every sample component can thus be accessed later as well with the 
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evolution of better software, increasing the capabilities for untargeted analysis. While the 

additional information enables a wider coverage and increases reproducibility of analysis, 

the subsequent data deconvolution becomes exponentially more complex. An up-to-date 

and comprehensive review was written by Zhang et al. addressing several different DIA 

schemes, as well as software tools for analysis and library building so this will not be 

addressed again in this review (Zhang et al., 2020a).

While DIA is increasingly being incorporated into proteomics analysis workflows, it 

is slow to be applied to neuropeptidomics, a field that would benefit greatly from a 

decrease in high-abundance bias. This is made evident by the work by Kwok et al., 

where they developed a sensitive method for the detection of 42 bioactive peptides and 

hormones using DIA (Kwok et al., 2020). A side-by-side comparison performed by Delaney 

and Li demonstrated the utility and benefits of incorporating DIA over DDA into the 

neuropeptidomics workflow (DeLaney & Li, 2019b). An impressive improvement was 

seen in the number of neuropeptide identifications, sequence coverage, and technical and 

biological reproducibility, further demonstrating the utility of applying a DIA workflow to 

neuropeptidomics analysis. While it has been demonstrated that a DIA approach can provide 

benefits over DDA analysis, Saidi et al. also saw an advantage to using parallel reaction 

monitoring (PRM) to perform targeted peptide quantitation of neuropeptides (Saidi, Kamali 

& Beaudry, 2019). The authors compared the use of DIA with PRM analysis and observed 

an increase in variability and decrease in performance associated with DIA, indicating DIA 

has larger advantages in an untargeted capacity, rather than in targeted analyses. These 

few explorations into DIA for neuropeptide analyses demonstrate promise for utilizing the 

advantages of DIA for analysis, though it seems to be slow to be incorporated into the 

neuropeptidomics workflow, potentially due to a lack of tailored software tools and spectral 

libraries.

C. Peptide Bioinformatics: Database Search Software/De Novo Sequencing Advances

1. Peptide Sequence Prediction and Databases—Traditional proteomics 

workflows compare MS-generated fragmentation data to genome-generated databases to 

determine which proteins are found in a sample. Unfortunately, this workflow does not 

transfer directly to neuropeptides; a comprehensive specific endogenous (neuro)peptide 

database does not exist. Several independent initiatives have been initiated in the past. 

If a species does not have its genome fully sequenced, there is not an easily obtained 

database to compare against. Furthermore, the fact that neuropeptides go through a series 

of modifications involving several endopeptidases before final maturation/neuronal release 

introduces some degree of unpredictability of their final active sequences, meaning that 

these genomic-generated databases may not be accurate. Therefore, not much can be learned 

about neuropeptides without robust bioinformatics tools even with a complete genome 

database. To predict neuropeptide sequences in silico from a genome and construct a 

reliable database, multiple algorithms have been developed and tested, which has been 

well-reviewed in several publications (Boonen et al., 2008; Hayakawa et al., 2019; Yu et al., 

2014). We have compiled a list of tools and resources, including sequence prediction tools, 

database compilations, and tools to search MS spectra, specifically developed to benefit the 

MS identification of neuropeptides in Table 3. Generally, when studying a new organism, the 
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genome of which is available, the online BLAST program allows extraction of all potential 

neuropeptide prohormones (NPPs) with known NPPs from related species (Christie, 2015; 

Conzelmann et al., 2013). The deduced NPPs are processed to remove signal peptides 

using the online program SignalP 5.0 (Almagro Armenteros et al., 2019; Christie, 2015; 

Petersen et al., 2011), after which they are ready to be submitted to neuropeptide prediction 

tools such as NeuroPred (Han et al., 2015; Hummon et al., 2003; Tegge et al., 2008), 

ENPG (Hayakawa et al., 2019), NeuroPred-FRL (Hasan et al., 2021), and specific for 

insect neuropeptide prediction, NeuroPIpred (Agrawal et al., 2019). Another resource for 

insect research is DINeR, a database for neuropeptide sequences and functionality (Yeoh 

et al., 2017). In another homology-based search, Ofer et al. reported a machine learning 

scheme, Neuropeptide Precursor Identifier (NeuroPID), that can be trained on hundreds 

of identified NPPs and used to predict metazoan NPPs (Ofer & Linial, 2014). NeuroPP, 

another tool for neuropeptide precursor prediction has also been developed for improved 

screening (Kang et al., 2019). Burbach presented an inventory of known neuropeptides, 

classified in families according to shared structural properties (http://www.neuropeptides.nl) 

(Burbach, 2010), which is included in another database additionally compiled of genes and 

precursors called NeuroPep (Wang et al., 2015b). SwePep, while not currently active, was 

also an endogenous peptide specific database that improved MS analysis (Falth et al., 2006). 

However useful, these databases are not searchable directly with MS/MS data. NeuroPedia, 

a specialized neuropeptide database and spectral library that is directly searchable using 

MS/MS data was constructed, improving identification efficiency, sensitivity, and reliability 

(Kim et al., 2011b). Instead of using homology-based or de novo sequencing database 

filtration-based searches, Menschaert et al. developed a genome-wide database searching 

method combined with de novo sequencing, IggyPep. Compared to using limited-sized 

database searches, a 30% increase was seen in identification rate when searching the sea 

urchin neuropeptidome (Menschaert et al., 2010). This approach was later adapted to include 

enhanced homology-based gene discovery to discover new prohormones and neuropeptides, 

previously unidentified by the original IggyPep method (Monroe et al., 2018). Also using 

genomic information, Jarecki et al. discovered novel neuropeptides through searching 

Ascaris suum libraries of expressed sequence tags and preliminary genome survey sequences 

(Jarecki et al., 2011). The field of neuropeptidomics faces challenges as many of the 

model organisms for analysis do not have a fully sequenced genome. To address these 

informatics challenges, as well as others with endogenous peptide specific concerns in 

mind, like technical difficulties arising from a lack of enzymatic digestion, a streamlined 

analytic framework was developed for large-scale peptidomics (Jarecki et al., 2011). By 

incorporating database mining and predicting fragmentation patterns, many neuropeptides 

could be identified and 21 putative novel neuropeptides were discovered (Jarecki et al., 

2011). Also with the goal of improving endogenous neuropeptide analysis, Secher et al. 

developed a full workflow, from sample extraction to bioinformatic analysis, for increased 

identification and insight into function through a prioritization scheme for biologically 

relevant peptides (Secher et al., 2016).

While not developed specifically for neuropeptide analysis, PEP Search (http://

www.mycompoundid.org/mycompoundid_IsoMS/searchSmallPeptide.jsp) (Tang et al., 

2014) can be used for the identification of small neuropeptides, such as dipeptides 
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and tripeptides. Besides specialized endogenous (neuro)peptide search engines, common 

proteomics database search programs can be used to identify neuropeptides, though the 

translation may not be that straightforward. To provide a reference for people who want 

to use a common database search program, Akhtar et al. elaborated on the strengths 

and weaknesses of several of these programs (OMSSA, X!Tandem and Crux) to identify 

neuropeptides (Akhtar et al., 2012).

2. De novo Sequencing—If genomic information is too scarce to create a thorough 

NP database, de novo sequencing can be used to derive amino acid sequences of peptides 

solely based on MS/MS fragmentation spectra. Since the late 1990s, a handful of de novo 
sequencing tools have been developed (e.g. PEAKS, PepNovo). A more comprehensive 

review of de novo sequencing tools can be found in other reviews (Allmer, 2011; 

Ma & Johnson, 2012). As high resolving power and accuracy are extremely important 

when deriving a peptide sequence, modern mass spectrometers will continue to make 

de novo sequencing easier with instrumental advances, which in turn requires new de 
novo sequencing software tools to be developed accordingly to work with certain type of 

instruments. For example, pNovo was designed for use with HCD fragmentation (Chi et al., 

2010). UniNovo was introduced two years later, claiming to be able to work well for spectra 

from various types of fragmentation methods (CID, ETD, HCD and CID/ETD) (Jeong, Kim 

& Pevzner, 2013). Later, Ma et al. presented a novel de novo sequencing program, Novor, 

offering improvements in both the speed and accuracy for peptide de novo sequencing 

analyses (Ma, 2015), compare to PEAKS (Mazurais et al., 2015). Most recently, DeepNovo 

was introduced by Tran et al., an innovative deep learning-based approach for de novo 
sequencing, outperforming PEAKS, PepNovo, and Novor (Tran et al., 2017). This method 

was later adapted to create DeepNovo-DIA for analyzing DIA data (Tran et al., 2019). While 

not created for endogenous peptide analysis, the field of neuropeptidomics benefits from 

incorporation of these tools into the neuropeptide analysis workflow.

Neuropeptide identification has been facilitated by these various advances and can be 

further improved through preliminary processing prior to database searching. PRESnovo 

was developed to take advantage of the common conserved sequence motifs found in many 

neuropeptides as a prescreening method to improve the subsequent de novo sequencing 

(DeLaney et al., 2020). By searching through a predefined motif database, probable 

motifs can be assigned to each precursor from a MS/MS spectrum, which increases 

correct identifications seen through PEAKS, compared to without PRESnovo prescreening 

(DeLaney et al., 2020). Preprocessing was also shown to be beneficial for the detection of 

neuropeptides, using a MATLAB-based workflow and statistical analysis (Salisbury et al., 

2013).

After receiving the results from a database search, the confidences of identifications 

must be evaluated, commonly using statistical false discovery rates (FDRs) and dummy 

databases (Jeong, Kim & Bandeira, 2012). This is important for measuring the integrity and 

confidence in identification assignments. Using a mixed species database, the assignment 

fidelity and false positive percentages were compared after the acquisition of single 

species neuropeptidomic data using Orbitrap, ion trap, and quadrupole time-of-flight (TOF) 

instruments (Anapindi et al., 2018). While all platforms saw a decrease in identifications 
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during the use of the mixed database, the Orbitrap data was least negatively affected 

(Anapindi et al., 2018). Overall, the quantity, quality, and reliability of neuropeptide 

identifications depends on the careful consideration of neuropeptide sequence prediction, 

database selection method, as well as the search method and fidelity evaluation parameters. 

While there are various tools available for identification (and possibly support quantitative 

analysis), these software are not created for the characterization of endogenous peptides 

specifically; instead, modern day software requires researchers to state that no enzyme 

digestion is performed. The field of neuropeptidomics could benefit from development 

of effective bioinformatic tools able to perform identification without specification of an 

enzyme or able to interpret results at the endogenous peptide level, rather than having to 

compromise and use the “digested peptides” function at the software-designated protein 

level.

Structural Analysis

A. Post-Translational Modifications

As described above, neuropeptide synthesis begins with a large precursor protein that 

undergoes cleavage by proprotein convertases. These processed peptides are subject to 

various PTMs, all of which can affect neuropeptide binding affinity, lifetime, and function 

(Hokfelt et al., 2000). PTMs along with proteolytic processing leads to the generation of 

distinct structures of bioactive peptides. Such PTMs, such as phosphorylation, sulfation, and 

glycosylation, may be introduced prior to or after proteolytic processing. While studies 

to determine the presence of PTMs are important, it is also of interest to understand 

the mechanisms for modification of neuropeptides (Hook et al., 2018). Location of a 

PTM, whether on the precursor peptide or on the bioactive peptide, may also be of 

importance. Multiple prolactin variants were recently identified and their regulation patterns 

were found to differ (Qian et al., 2018). Glycosylation of the mature natriuretic peptide 

hormone family alters processing, whereas the O-glycosylation of the propeptide decreases 

cleavage frequency and leads to fewer bioactive peptides in circulation (Hansen et al., 

2019). In addition to the effects from propeptide modifications, altered receptor activation 

and increased stability of the bioactive peptides were also observed when glycosylation 

was located on the receptor binding region of the mature peptide (Madsen et al., 2020). 

Whereas formerly, bioactive neuropeptide PTMs were thought to be conserved to terminal 

amino acids (for protective effects against degradation) as well as the precursor proteins (for 

cleavage purposes), though PTMs at other positions along the neuropeptide backbone are 

likewise observed (Baggerman et al., 2004; Busby et al., 1987; Hummon et al., 2003).

The most common PTMs on neuropeptide termini include pyroglutamate modification of the 

N-terminus (Gade & Marco, 2015; Lee et al., 2010; Monroe et al., 2018; Salisbury et al., 

2013), which is thought to protect the peptide from enzymatic degradation (Hayakawa et 

al., 2019), and C-terminal amidation, which is required for the biological activity of many 

neuropeptides (Anapindi et al., 2018; Salisbury et al., 2013; Secher et al., 2016). To evaluate 

the importance of neuropeptide amidation, Van Bael et al. designed a gene knockout 

experiment targeting three putative neuropeptide amidation enzymes in Caenorhabditis 
elegans, an organism able to survive without neuropeptide biosynthesis enzymes. Their 
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findings indicated the dependence on C-terminal amidation for reproduction, drastically 

interfering with the quantity and success of egg-laying, further highlighting the importance 

of such PTMs (Van Bael et al., 2018b).

Another common peptide hormone PTM is acetylation. Biological roles of acetylation 

include to increase peptide stability, by protecting the peptide from enzymatic degradation, 

and to regulate receptor affinity (Van Dijck et al., 2011; Zhang et al., 2012a). During the 

characterization of pro-opiomelanocrtin related hormones, Yasuda et al. identified novel tri-

acetylation of α-melanocyte-stimulating hormone (MSH) (Yasuda et al., 2011). Acetylation 

has also been found to exist as a tissue specific modification of mouse hemokinin-1, detected 

only in the brain and not in peripheral tissue, indicating a brain specific functional role for 

this PTM (Deliconstantinos et al., 2017).

Cysteine disulfide crosslinking of peptides is an important PTM observed in neuropeptides 

(Jia et al., 2012). It provides structural rigidity and contributes to a peptide’s three-

dimensional structure, essential for receptor recognition and peptide function. Challenges 

in MS analysis of disulfide crosslinked molecules include its low abundance and low 

fragmentation efficiency, owing to the stability of the disulfide bond. Yu et al. developed 

a targeted ETD-based method and data mining scheme to improve the recognition and 

localization of endogenous disulfide bonds in rat neuropeptides, enabling future studies to 

target this PTM in a more high throughput manner (Yu et al., 2015b). To improve disulfide 

bond characterization, Bhattacharyya et al. developed DisConnect, an open source software, 

to determine disulfide connectivity of peptide hormones, peptide toxins, and proteins, and to 

characterize disulfide foldamers (Bhattacharyya et al., 2013). In-source reduction methods 

have also been shown to successfully map disulfide bond linkages in peptides (Cramer et 

al., 2017; Stocks & Melanson, 2018; Stocks & Melanson, 2019; Ye et al., 2015). A vendor 

neutral software tool, DiSulFinder, was designed to identify peptide backbone fragments 

with both intact or cleaved sulfur-sulfur or sulfur-carbon bonds (Liang et al., 2018). Liang 

et al. were able to quickly provide identifications for disulfide linkage determination in 

the inter-chain disulfide-linked crustacean cardioactive peptide and insulin fragment peptide 

(Liang et al., 2018).

Glycation, a PTM associated with age, altering protein structure and function, has also 

been shown to modify neuropeptides. The different types and binding sites of glycation 

for the neuropeptide substance P (SP) were investigated by Lopez-Clavijo et al. Using a 

multimodal MS approach, the authors were able to confidently assign binding sites and 

identify intermediate products to understand glycation and its different types, paving way for 

studies of glycation on other neuropeptides (Lopez-Clavijo et al., 2012).

Acidic modifications such as phosphorylation of serine, threonine, or tyrosine and sulfation 

of tyrosine can benefit from the use of negative ion mode MS analysis and are commonly 

analyzed through such methods (DeLaney, Phetsanthad & Li, 2020). With only a mass 

difference of 0.0095 Da between the phosphorylation and sulfation modifications, and both 

capable of modifying tyrosine residues, HRAM instruments must be used to resolve these 

small differences (for more Isobaric PTMs see the Isobaric PTMs section). Using a high-

resolution Fourier-transform ion cyclotron resonance MS (FTICR-MS), tyrosine sulfation 
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was identified and localized during the top-down analysis of a sex ganglia-specific peptide 

in Hirudo medicinalis. Sulfation was confirmed through high mass accuracy measurements 

as well as characteristic isotopic abundance shifts consistent with sulfur isotopes (Hsu et al., 

2017). In another study, during a multi-MS platform neuropeptidomic characterization of the 

rat habenular nuclei, novel sulfation sites were discovered on secretogranin I prohormone 

and confirmed through an additional targeted MS analysis (Yang et al., 2018). In summary, 

although it is difficult to differentiate between the two PTMs, it can be achieved using the 

proper MS tools. In addition, enzymatic tools may help conclusively establish sulfation (de 

Vries et al., 2005). Neuropeptidomics can benefit from the increased characterization of 

these two PTMs, as there are many sulfated neuropeptides with unknown function (Seibert 

& Sakmar, 2008).

Furthermore, phosphorylation is known to induce dynamic modifications of neuropeptides 

and is of great interest for characterization as potential biomarkers because of its common 

occurrence (Yasuda et al., 2011). Over 50 novel neuropeptide phosphorylation sites were 

discovered by Secher et al. by a newly developed bioinformatics tool. Functional studies 

show that phosphorylation of α-MSH reduces its binding to melanocortin receptors. Serine 

phosphorylation of neuropeptides were of much higher abundance compared to intracellular 

proteins in the rat brain (Secher et al., 2016). While insect phosphorylated neuropeptides 

are rare, Sturm and Predel were able to identify phosphorylation of CAPA pyrokinin in 

Lamproblatte albipalpus that is interestingly taxon specific. Phosphorylation has not been 

observed in the closely related species Periplaneta americana even though both cockroach 

share identical neuropeptides sequences. This suggests some specific development within 

the peptidergic system of L. alibipalpus requiring phosphorylation for function (Sturm 

& Predel, 2014). As phosphorylation is known to differentially modify neuropeptides in 

diverse ways due to the dynamic nature of neuropeptides, Lietz et al. did a study to 

determine a global status of the phosphorylated neuropeptidome of bovine dense core 

secretory vesicles through characterizing phosphorylation stoichiometry and site motifs of 

phosphopeptides. Among a wide range of phosphosites detected, SxE was found to be 

the most prevalent motif (Lietz et al., 2018). They also found differential regulation of 

neuropeptides, as expected, on many neuropeptides with both known and unknown function, 

confirming that there is ample room for future studies into the roles of neuropeptide 

phosphorylation.

B. Glycosylation

Glycosylation is among the most ubiquitous and complex PTMs in biology, with a 

diverse range of structural possibilities leading to a variety of functional effects. These 

include an improved metabolic stability to increase peptide hormone circulatory half-

life (Flintegaard et al., 2010). There are several types of glycosylation, primarily N-

linked and O-linked. Glycosylation micro- and macro-heterogeneity has been observed 

on hormones and peptide hormones as well, demonstrating the high degree of diversity 

of glycans able to modify neuropeptides (Bousfield et al., 2015). Glycosylation is also 

shown to affect neuropeptide receptors (Quistgaard et al., 2014). Cao et al. analyzed the 

biosynthesis pathway of calcitonin, a peptide hormone implicated in cancer, and discovered 

O-glycosylated calcitonin. They observed that both hormone forms responded similarly 
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when the cells were challenged with biosynthetic enzyme inhibitors (Cao et al., 2017). 

This observation demonstrates the diverse range of glycosylation effects, as it has also been 

shown to alter response to enzymatic activity (Goettig, 2016).

The characterization of glycosylation is important because unlike other simpler PTMs with 

a static mass shift, glycan composition, as well as the connectivity and configuration of 

their glycosidic bond, can vary. To increase detection sensitivity and specificity as well as 

provide improved sequence coverage, Yu et al. used a targeted analytical method employing 

oxonium ion-triggered electron-transfer/higher-energy collision dissociation (EThcD) (Yu et 

al., 2017). Demonstrating its utility for neuropeptides modified by glycosylation, several 

glycosylated signaling peptides were analyzed and several glycoforms were identified. 

Additionally, novel glycosylated insulin-B chain, insulin-C peptide, and BigLEN, a potential 

body weight regulating neuropeptide, from mouse and human tissue were reported (Yu et 

al., 2017). They could distinguish two isobaric monosaccharides, GalNAc and GlcNAc (Yu 

et al., 2017) through their distinct diagnostic oxonium ion fragmentation profiles (Halim 

et al., 2014). This targeted method enables higher quality fragmentation spectra to be 

obtained, along with reducing instrument time required for glycopeptide analysis. Cao et al. 

also employed oxonium ion-triggered EThcD to characterize both N-linked and O-linked 

glycosylated neuropeptides in crustaceans (Figure 2) (Cao et al., 2020). In a pursuit to 

improve the characterization of glycopeptides, Riley et al. systematically compared several 

fragmentation methods and dissociation energies. The authors found the optimal dissociation 

methods to differ between N- and O- linked glycans (Riley et al., 2020). While these 

results were obtained through enzymatically digested peptides, the differences in optimal 

fragmentation methods likely hold true for endogenous peptides. Thus, the characterization 

of each type of glycosylated neuropeptides, whether N- or O-linked, should include 

considerations for each fragmentation method before use.

Advances in glycoinformatics to aid in glycopeptide characterization include the 

compilation of several glycomics databases, such as GlyTouCan (Tiemeyer et al., 2017) 

and glypy (Klein & Zaia, 2019), for glycan identification (Campbell et al., 2014; Ranzinger 

et al., 2015). There has also been the development of many software programs such as 

MSFragger (Kong et al., 2017), GlycReSoft (Klein, Carvalho & Zaia, 2018), and O-pair 

search with MetaMorpheus for O-glycopeptides (Lu et al., 2020). Byonic, a glycoproteomics 

search program recently added the capability for a glycan “wildcard search” to improve 

detection of glycans without a priori knowledge of their mass (Roushan et al., 2020). This 

is beneficial in the neuropeptidomic studies of organisms with incompletely sequenced 

genomes and lack of knowledge of potential glycans. More detailed information on the 

glycomics databases and bioinformatics tools available can be found in various platforms 

(Aoki-Kinoshita, 2017; Dallas et al., 2012; Tsai & Chen, 2017; Woodin, Maxon & Desaire, 

2013). A table of useful information for recent MS-based strategies and software tools for 

glycopeptides is included within a recent review article (Cao et al., 2021).

In a large-scale effort to map O-linked glycosylation on peptide hormones, Madsen et 

al. found almost a third of the 279 identified peptide hormones to be O-glycosylated, 

serving as a basis for global O-glyconeuropeptide discovery (Madsen et al., 2020). While 

peptide hormone glycosylation seems common, it is still of low abundance and is still 
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difficult to detect, let alone characterize and quantify. Thus, several strategies involving 

enrichment and derivatization schemes were developed. Interested readers are encouraged 

to examine the reported by Liu et al. for more information on different strategies for 

the isolation and characterization of glycosylated neuropeptides (Liu, Cao & Li, 2019). 

Additionally, a comprehensive review about glycopeptide quantitation was published very 

recently (Delafield & Li, 2020).

C. Ion Mobility MS

Isobaric species are challenging to study with MS due to their identical nominal masses, 

especially in a discovery-based mode. Nonetheless, differentiation between different isobaric 

peptides is important as different isobaric neuropeptides may have different properties 

and bioactivity. Ion mobility mass spectrometry (IM-MS) is an analytical technique that 

separates gas-phase ions based on their differences in collisional cross section (mobility) 

through the buffer gas, which originate from differences in size and shape. The separation 

mechanism of ion mobility is demonstrated in Figure 3. IM-MS for structure elucidation 

of isobaric peptides when mass spectrometry measurements is reviewed by Li et al. 

(Li, Delafield & Li, 2020). Lamont et al. utilized IM-MS and detected two coeluting 

isobaric peptides, which they identified as the opioid neuropeptides, leucine enkephalin, 

and N-acetylated alpha-melanocyte stimulating hormone (Lamont et al., 2017). Aspartic 

acid isomerization to isoaspartic acid is suggested to play a role in apoptosis and protein 

stability, but the crucial differentiation via MS remains to be challenging. Sargaeve et al. 

demonstrated the ability to distinguish between these isomers using diagnostic fragment ions 

produced by ExD fragmentation methods (Sargaeva, Lin & O'Connor, 2011).

Naturally occurring amino acids in peptides and proteins are typically of the L-isoform, 

with the D-isoform being rare. Even so, D-amino acid containing peptides (DAACPs) can 

be found in nature and are the focus of many studies as this “unnatural” stereoisomer can 

have implications for 3D conformation, bioactivity, and degradation. While many studies 

have been performed on DAACPs, little of this has been applied to the neuropeptidome. 

DAACPs can differentially regulate neuropeptide activity by altering affinity to its receptors. 

Using a combination of IM-MS, computer modeling, cell-based assays and results from 

prior functional studies (Bai et al., 2013), the Sweedler group discovered and evaluated 

several analogues of the D-amino acid containing neuropeptides GFFD and GTFD in 

the sea slug, Aplysia californica (Do et al., 2018a). Careful modeling led to correctly 

predicting activities with a feeding circuit related receptor, showing the change from L-Ala 

to D-Ala to alter peptide activity (Do et al., 2018a). The Sweedler group has led many 

recent efforts in understanding bioactive DAACPs through studying Aplysia californica. 

One of their workflows analyzes the relative abundances of key chirality-reporting fragment 

ions to distinguish between neuropeptide L- and D- epimers (Bai, Romanova & Sweedler, 

2011). Analyzing single neurons with MALDI tandem MS, identification of D-isoforms 

of endogenous peptides was demonstrated directly from cells and tissue (Bai, Romanova 

& Sweedler, 2011). In addition, they evaluated several protocols for untargeted DAACP 

discovery, again using sea slug neurons (Livnat et al., 2016). Their validated approach 

involves screening for resistance to aminopeptidase M digestion, inducing a retention time 

shift between epimers, and comparing the endogenous peptide with synthetic standards 
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leading to the discovery of two peptides with D-isomers. Only one of these peptides 

appeared to be bioactive (Livnat et al., 2016). For a neuropeptide natively present as both 

L- and D-residue containing forms, both were found to activate their newly identified 

receptor, with the D-epimer being the more stable (Checco et al., 2018). The same group 

also discovered ten new DAACPs in the central nervous system (CNS), two of which were 

found to be the first animal DAACPs with more than one D-amino acid residue (Mast, 

Checco & Sweedler, 2020). This demonstrates the dynamic nature of D-isomerization to 

alter neuropeptides, highlighting the importance of D-epimer localization.

Benefits of DAACPs include enhanced metabolic stability; they are protected from many 

endogenous enzymes that only recognize the L-amino acid variant. Demonstrating the utility 

of modified neuromodulators in their exploration for improved pharmacological peptides, 

Magafa et al. created a variety of neurotensin analogues. Using various combinations 

of D-amino acids and an unnatural amino acid, they discovered several modified 

neurotransmitters with improved enzymatic stability, establishing a basis for the rational 

design of novel pharmaceutical neuromodulators (Magafa et al., 2019). While there have 

been several method developments for endogenous DAACP detection and identification, 

specific D-residue peptide localization tends to be complex or expensive (Soyez et al., 

2011). Jia et al. demonstrated the utility of a MS fragmentation-based IM-MS method to 

localize D-amino acid residues in bioactive peptides in a single MS analysis (Jia et al., 

2014; Jia et al., 2016). As peptide epimers are chromatographically separated, each can be 

fragmented by CID prior to ion mobility separation to indicate the presence and location of 

a D-amino acid. The increasingly known variability and complexities of the effects of this 

PTM are why DAACPs will retain interest in the future.

D. Conformational Analysis by Ion Mobility MS

While neuropeptides are often considered as 2D entities, it is important to note that 

these analytes have 3D structures that can widely vary. When combined with molecular 

dynamics (MD) simulations, IM-MS is able to provide gas-phase peptide ion structural 

insights at the atomic level. With IM-MS, analyte structure is determined from experimental 

values measuring temperature-dependent rotationally averaged collision cross sections 

(CCS). It is hypothesized that these reflect the gas-phase ion conformations originating 

from solution-phase after desolvation (Jurneczko & Barran, 2011). Compared to other 

biophysical techniques, such as X-ray crystallography or nuclear magnetic resonance 

(NMR) spectroscopy, IM-MS is sufficiently specific and sensitive to ascertain structural 

information using impure, trace amount of sample (Scarff et al., 2008). Moreover, whereas 

X-ray crystallography and NMR provide an averaged structure, IM-MS obtains snapshots 

of short-lived intermediates and conformational transitional states and thus can be used to 

interrogate dynamic heterogeneity (Gidden & Bowers, 2002; Gidden, Bushnell & Bowers, 

2001). In fact, quite a few studies (Bereszczak et al., 2012; Jenner et al., 2011; Shi et al., 

2012; Shi et al., 2014; Wyttenbach et al., 2009) report analyte ion gas phase structure and 

conformational dynamics, which provides important insights into what occurs in solution.

The conformation of neuropeptides is a very relevant aspect with respect to their biological 

function. Bradykinin (BK), a nine residue neuropeptide, has been a model peptide both for 
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conformational dynamics studies (Papadopoulos et al., 2012; Pierson et al., 2013; Pierson 

et al., 2011; Pierson & Clemmer, 2015; Pierson, Valentine & Clemmer, 2010; Voronina 

& Rizzo, 2015) and the development of systemic IM-MS strategies for structural studies 

in general. IM-MS assisted by MD revealed 10 independent populations of structures in 

solution and 3 gas-phase quasi-equilibrium conformations due to combinations of three 

cis and trans prolines (Pierson et al., 2013; Pierson et al., 2011; Pierson & Clemmer, 

2015; Pierson, Valentine & Clemmer, 2010). The Clemmer group investigated penultimate 

prolines in Substance P (SP). In a detailed and step-by step manner to elucidate the 

spontaneous peptide cleavage pathway, they showed trans to cis configurational changes 

to be key in initiating non-enzymatic degradation (Conant et al., 2019). Inspired by the 

fact that penultimate proline residues are frequently found in neuropeptides, Clemmer and 

co-workers (Glover et al., 2015) utilized IM-MS to probe the effect of penultimate proline 

on neuropeptide conformations. Besides protecting peptides from enzymatic degradation, 

penultimate Pro also plays a key role in increasing the conformational heterogeneity of 

neuropeptides, which may be important for receptor affinities and thus function.

IM-MS is able to distinguish between cis and trans isomers of Pro-containing peptides (Shi 

et al., 2016; Warnke, von Helden & Pagel, 2015). While different observed conformations 

are attributed to the isomerization of proline using specific criteria, they do not always 

indicate cis/trans conformers; IM-MS has limitations for structure elucidation. To this 

end, the non-proline containing neuropeptide Y wild type and naturally occurring proline 

containing mutant were investigated by Lietz et al. Though typical cis/trans isomerization 

hallmarks were present, the presence of these isomers were excluded (Lietz et al., 2016). 

IM-MS and MD analyses have their limits and require other methods for validation. 

While Konig et al. were originally unable to prove DAACP in cicada hypertrehalosemic 

neuropeptides using IM-MS (Konig, Marco & Gade, 2017), they later showed that other 

techniques, such as NMR, may be required to confirm the proposed 3D structure (Konig et 

al., 2019).

Some neuropeptides are active through self-oligomerization (Cowley et al., 1992; Smith 

& Griffin, 1978) and IM-MS has proven instrumental to study this process. For instance, 

important insights have been obtained on the amyloid fibril formation that is a central 

implication in neurodegeneration, including Alzheimer’s or Parkinson’s diseases (Bernstein 

et al., 2009; Bleiholder et al., 2011). Subsequently, IM-MS studies of various Leu-

enkephalin mutants highlighted the importance of characterizing dimer and higher oligomers 

in determining possible protofibril structures that a peptide system can access (i.e., single 

β-sheet or doublesheet steric zipper) (Bleiholder, Dupuis & Bowers, 2013; Do et al., 2014).

A number of studies (Heck, 2008; Kaddis & Loo, 2007; Kondrat et al., 2013; Konijnenberg, 

Butterer & Sobott, 2013; McAllister et al., 2015) demonstrated that certain peptide and 

protein ions in the gas phase retain a memory of their solution structures upon ionization 

(e.g., ESI). How exactly the structure in the gas-phase mimics the solution phase remains to 

be clarified. The Russell group (Fort et al., 2014; Servage et al., 2015; Silveira et al., 2013a; 

Silveira et al., 2013b) used cryogenic IM-MS (cryo-IM-MS) to reveal that intramolecular 

interactions can stabilize the kinetically trapped SP dehydrated conformer in a time scale 
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of several milliseconds. The use of cryo-IM-MS for the study of analyte structure and is 

reviewed by Servage et al. (Servage et al., 2016).

Besides peptide inherent secondary structure, external environmental factors also affect 

peptide conformational preference in the gas phase. IM-MS studies have investigated 

temperature (Berezovskaya, Porrini & Barran, 2013; Zilch et al., 2007), activation voltage 

(Pierson, Valentine & Clemmer, 2010), solvent composition (Pierson et al., 2011), and metal 

binding (Chen, Gao & Russell, 2011).

MS Imaging

Until recently, the most popular way to obtain spatial information of molecules was 

immunohistochemistry and RIA, However, due to the selectivity of the antibodies used, 

immunoassays are unable to acquire information from more than one analyte. This is a 

disadvantage when working with limited amount of sample. Within the last years, MS 

imaging (MSI) has emerged as an alternative method to circumvent this disadvantage. 

Through MSI, molecular ion images are generated of a surface (e.g., tissue or tissue slice). 

By rastering a laser along a predefined (x, y) grid, a mass spectrum is acquired at each 

grid square (i.e., pixel). Ion specific images are then generated by bioinformatic tools. 

As such, MS imaging has the capability to generate hundreds of images from a single 

experiment. The investigation of neuropeptides and their spatial distribution patterns has 

been accomplished by MS imaging throughout several organisms for several applications 

(Altelaar et al., 2005; Berisha et al., 2014; Buchberger et al., 2020c; Chen et al., 2010b; 

Chen & Li, 2010; Chen et al., 2010d; De Haes et al., 2015; Hanrieder, Ljungdahl & 

Andersson, 2012; Herbert et al., 2010; Jia et al., 2012; Mark, Maasz & Pirger, 2012; Monroe 

et al., 2008; OuYang, Liang & Li, 2015; Pratavieira et al., 2014; Romanova et al., 2009; 

Shariatgorji, Svenningsson & Andren, 2014; Ye et al., 2013; Ye et al., 2015). While the 

general workflow has become very well defined (Figure 1), several modifications have been 

explored and implemented to improve the quality and depth of MSI data. Several reviews 

discuss these in the context of neurobiology (Buchberger et al., 2018; Gemperline, Chen & 

Li, 2014; Hanrieder, Malmberg & Ewing, 2015; OuYang, Liang & Li, 2015).

A. Ionization, Identification, and Instrumentation

While several ionization techniques exist, only a small subset has been used for MS imaging 

in biological relevant experiments. MALDI MS imaging (MSI) was first developed by the 

Caprioli group, who successfully imaged proteins and peptides in thin tissue slices of the 

rat pituitary and pancreas (Caprioli, Farmer & Gile, 1997). MALDI still remains the most 

utilized ionization methods for MSI of biomolecules, including metabolites, lipids, and 

proteins (Eriksson et al., 2013). Alternative ionization methods employed include desorption 

electrospray ionization (DESI) (Wiseman et al., 2008), nanostructure initiator MS (NIMS) 

(Sturm et al., 2013a; Yanes et al., 2009), and secondary ion MS (SIMS)(Altelaar et al., 2005; 

Jiang et al., 2014; Lanni et al., 2014; Monroe et al., 2008; Ogrinc Potocnik et al., 2017), 

but MALDI MSI has been a predominant technique utilized in neuropeptide-related studies 

(Buchberger et al., 2020c; Chen et al., 2010b; Chen et al., 2010d; Herbert et al., 2010; Jia 

et al., 2012; Lanni et al., 2014; Pratavieira et al., 2014; Verhaert et al., 2007; Verhaert et al., 
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2010; Ye et al., 2013; Ye et al., 2015). Crustacean neuronal tissues have been studied under 

various MSI conditions to understand the functional roles of neuropeptides through mapping 

their localization (Buchberger et al., 2020c; Chen et al., 2010b; Chen & Li, 2010; Chen et 

al., 2010d; Jia et al., 2012; OuYang, Liang & Li, 2015; Ye et al., 2013; Ye et al., 2015). 

The alternative ionization methods suggest various advantages over MALDI, such as being 

matrix-free, preventing analyte diffusion (see sample preparation below). They also have 

distinct disadvantages. For example, while NIMS is excellent for metabolites, lipids, etc., it 

has been shown to not ionize neuropeptides efficiently when compared to MALDI (Sturm 

et al., 2013a). For additional information on MS imaging, we refer the reader to an in-depth 

review on developments in high resolution MALDI MS relevant for neurobiology (DeLaney, 

Phetsanthad & Li, 2020). For a summary of the advantages and disadvantages of different 

MS imaging ionization sources (i.e., MALDI, SIMS, NIMS, DESI, and LAESI, and LESA), 

we refer the reader to Table 1 in a recent review (Rocha, Ruiz-Romero & Blanco, 2017).

With only minor amino acid differences between neuropeptides in the same family, methods 

for confident identification need to be in place. Classically, MS/MS of singly charged ions, 

which are primarily produced during MALDI ionization, is inefficient, leading to poor 

fragmentation and thus inconclusive identifications. Also, due to the varying distribution 

of analytes across a tissue, the motion of constantly rastering across the tissue makes it 

difficult to be able to fragment a mass that was originally detected in a previous raster step. 

Thus, accurate mass matching followed by subsequent tissue extract ESI MS/MS analysis 

(Ly et al., 2019) have been common ways to identify analytes. With the development of 

modern instrumentation, such as the HRAM Orbitrap, identification of analytes with similar 

masses has become more reliable (Verhaert et al., 2010). Yet, tandem MS is still difficult on 

singly-charged ions. Significant effort has been put in developing hybrid methods of MS and 

MS/MS occurring in a single square form in order to facilitate the isolation of ions identified 

in first pass MSI spectra (OuYang, Chen & Li, 2015). These hybrid methods also increase 

the image quality, as shown in Figure 5 (OuYang, Chen & Li, 2015).

Singly-charged ions produce the simplest spectra, which means that MALDI-TOF analyses 

allow for the widest mass range that can be analyzed. Tandem TOF (TOF/TOF) mass 

analyzers have a theoretically infinite mass range, with analytes larger than 50 kDa 

being imaged with high signal (Leinweber et al., 2009; van Remoortere et al., 2010). 

Unfortunately, most TOF/TOF mass spectrometers lack the mass accuracy and resolution 

that allow for differentiation between closely massed neuropeptides of interest (Verhaert et 

al., 2010)). On the other hand, Orbitraps and FTICR instruments have a limited mass range, 

leading to several larger neuropeptides of interest not being imageable as singly-charged 

ions. Several methods to handle these larger mass analytes have been developed, such as in 
situ digestion and generating multiply-charged ions by MALDI (Cillero-Pastor & Heeren, 

2014; Dreisewerd, 2014; Groseclose et al., 2007). Dependent on the sample preparation 

conditions, multiply charged ions are usually produced by using laserspray ionization (LSI) 

at atmospheric, intermediate, or high vacuum (Chen, Lietz & Li, 2014; Hale et al., 2021; 

Inutan, Wang & Trimpin, 2011; Trimpin et al., 2011). Trimpin and coworkers have analyzed 

a 12+ charge state cytochrome c by atmospheric pressure (AP) - MALDI on a Thermo 

Fisher Q Exactive mass spectrometer (Trimpin et al., 2010).
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Data processing represents challenges as well, particularly in high-throughput data 

collection. Pipelines for automated identification of unique peptides were developed (e.g. 

MSI-Query) (Bruand et al., 2011). Software packages developed to view MS images 

are vendor-specific (e.g. Thermo Fisher ImageQuest and TissueView, Waters HDImaging, 

Bruker SCiLS lab etc.) or more generic/open source (e.g., MSiReader, Cardinal, msIQuant) 

(Bemis et al., 2015; Källback et al., 2016; Robichaud et al., 2013). Many packages are 

utilized to identify masses unique to the tissue (which may be known or unknown), such 

as the program written to perform accurate mass matching with an intensity threshold 

(Buchberger et al., 2020b). A particular program has been published for normalization and 

quantitation-based studies (Kallback et al., 2012). This software enables the quantitation of 

SP in mouse brain structures, which correlated well with previous studies (Kallback et al., 

2012).

One area that has gained a lot of attention is spatial resolution, defined as how small the 

pixels can get in MSI. Higher spatial resolution allows MSI of smaller biological tissues 

down to even single cells (Boggio et al., 2011; Xie & Fidler, 1998; Zimmerman, Rubakhin 

& Sweedler, 2011). Two factors play major roles in the maximum resolution achievable 

in MALDI MS imaging: matrix crystal size and focusing of the laser. The crystal size 

is dependent on the matrix and application method used (see Sample Considerations). It 

is especially instrumental advancements which have provided most improvements in this 

context. Commercial instruments allow for small pixels with oversampling, but this can lead 

to poor signal in tissues with already low analyte concentrations. However, with home-built 

instruments, some groups have achieved 5-micrometer resolution without oversampling 

(Guenther et al., 2011; Kompauer, Heiles & Spengler, 2017; Mark, Maasz & Pirger, 2012; 

Rompp & Spengler, 2013), which allows imaging discrete cellular structures (Boggio et al., 

2011; Dueñas, Essner & Lee, 2017; Xie & Fidler, 1998; Zimmerman, Rubakhin & Sweedler, 

2011). It should be noted that this typically lowers the throughput of the instrument due 

to the longer acquisition time, but some companies have developed scanning laser beams 

to lessen this time (Ogrinc Potocnik et al., 2015). Alternatively, Zimmerman et al. have 

achieved this by placing individually stretched cells on an ITO-coated slide and analyzing 

them with a Bruker Ultraflex II MALDI-TOF/TOF (laser beam diameter is between 5 to 30 

μm), which allowed them to acquire MS and MS/MS images of neuropeptides throughout 

the cell body (>0.5 mm diameter) (Zimmerman et al., 2009). The Bruker rapifleX MALDI 

TOF/TOF mass spectrometer has become a popular choice for peptidomics (Vu, DeLaney & 

Li, 2020) due to its high spatial resolution (<20 μm) and the fast laser repetition rate, and its 

ability to scan the full area of a pixel while the sample stage moves continuously, allowing 

rapid acquisition of MSI data. Continued instrumental development allows researchers to do 

more single cell studies, and quality reviews discuss the next challenges that need to be met 

in order to advance the field (Berman, Fortson & Kulp, 2010; Boggio et al., 2011; Xie & 

Fidler, 1998; Zimmerman, Rubakhin & Sweedler, 2011).

B. Sample Considerations

Proper sample handling is crucial for maintaining the spatial distribution and abundance 

of biomolecules in a sample, allowing for maximum spatial resolution, sensitivity, and 

reproducibility of an MSI experiment (Goodwin, 2012). Studies of post-mortem changes 
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in peptide and protein abundance in brain tissue demonstrate the necessity for sample 

collection protocols that limit sample degradation (Goodwin et al., 2008; Skold et al., 2007). 

To preserve sample integrity, samples are typically flash frozen either using liquid nitrogen 

or dry ice. Alternatively heat stabilization, often using e.g. a Stabilizor T1, (Goodwin et 

al., 2010; Sturm et al., 2013b). Fixation methods, such as formaldehyde-fixed paraffin 

embedding (FFPE), are commonly used to preserve samples in biomedical research, but 

this procedure is reported not be compatible with MS imaging FFPE is known to result in 

crosslinking between peptides and proteins, which is predicted to have a negative impact 

on MSI. Optimized protocols for MSI on FFPE material involve deparaffination, antigen 

retrieval, and trypsin digestion before analysis (Casadonte & Caprioli, 2011; De Sio et 

al., 2015). MS imaging of proteins and neuropeptides has been performed in rat brain 

FFPE samples, after deparaffination and tryptic digestion, and in Penaeus monodon shrimp 

(Chansela et al., 2012; Lemaire et al., 2007; Stauber et al., 2008). A protocol for performing 

MS imaging of neuropeptides from FFPE tissue without antigen retrieval and enzymatic 

digestion has also recently been developed (Paine et al., 2018). Alternatively, alcohol 

fixation methods have been used to fix samples without any of the complications of FFPE 

(Chaurand et al., 2008). The PAXgene system is an alcohol fixation system commercially 

available that can be used to fix samples prior to MS imaging, although use of this system 

is not as widespread as FFPE (Ergin et al., 2010). Interestingly, DHB matrix can also be 

used as a one-step tissue preservation and peptide extraction solvent (Alim et al., 2019; 

Romanova, Rubakhin & Sweedler, 2008). Multiple reviews discuss sample preparation in 

more depth (Buchberger et al., 2018; DeLaney, Phetsanthad & Li, 2020; Gemperline, Chen 

& Li, 2014; Goodwin, 2012; OuYang, Liang & Li, 2015).

Traditionally, prior to MSI analysis, the typical (frozen) tissue samples are sectioned 

into 10-20 μm thick slices, which is roughly the thickness of a single mammalian cell 

(Crossman et al., 2006). Before sectioning, samples are usually embedded in a support 

substance to aid in sectioning. These can be water and gelatin that do not interfere with 

the MSI analyses of neuropeptides. Other polymer-based support substances such as optimal 

cutting temperature (OCT) medium is known to contaminate the sample and suppress 

ion formation (Buchberger et al., 2018; OuYang, Liang & Li, 2015). A novel embedding 

material, poly[N-(2-hydroxypropyl)methacrylamide] (pHPMA), was tested on mouse lung 

and bumblebee samples and it was found to be suitable for MALDI MS imaging with 

low background signal and ion suppression effects (Strohalm et al., 2011). Also egg 

yolk seems to be an appropriate embedding material for MSI of neuropeptides in rat 

pituitary, preventing OCT contamination (Sosnowski et al., 2015). The sectioned samples 

are transferred to a simple glass or a metal coated glass slide, depending on instrumentation, 

using either a thaw-mount method or with double-sided tape (Goodwin et al., 2012). Certain 

intact tissues are thin enough to bypass the sectioning step and can be directly analyzed 

by MALDI MS. Examples of this are crustacean pericardial organs and cardiac ganglion 

(Buchberger et al., 2020c; DeLaney & Li, 2020; Zhang et al., 2018c), and the insect corpus 

cardiacum (Verhaert et al., 2007; Verhaert et al., 2010). It is important to note that fragile 

samples, such as pericardial organs, benefit from immediate MS analysis after dissection to 

prevent tissue degradation.
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There are multiple treatment steps that can be taken before matrix application. For 

protein analysis, washing tissue sections with organic solvents such as xylene, chloroform, 

or alcohols has been shown to increase detection through removal of contaminating 

compounds, such as lipids and salts (Lemaire et al., 2006; Seeley et al., 2008). However, 

washing steps risk to cause delocalization or loss of low molecular weight or hydrophilic 

neuropeptides if not optimized (OuYang, Liang & Li, 2015; Yu et al., 2014). Nonetheless, 

proper optimization of tissue washes has been shown to be effective at enhancing 

neuropeptide signal (Vu, DeLaney & Li, 2020). Reduction of salt adducts has also been 

shown using a condensation/matrix recrystallization procedure after matrix deposition 

(Monroe et al., 2007). An aqueous MS imaging tissue wash containing sodium phosphate 

salts resulted in detection of a complementary cohort of neuropeptides compared to control, 

unwashed tissue (Vu et al., 2021). MSI of neuropeptides in Aplysia nervous tissue utilized 

a tissue stretching method to fragment the tissue into small pieces, which minimizes 

analyte diffusion and salt adduct formation (Zimmerman et al., 2009). Another option is the 

application of trypsin to the sample to digest larger proteins or certain large neuropeptides to 

the mass range ideal for higher resolution instrumentation (Cillero-Pastor & Heeren, 2014; 

Groseclose et al., 2007). Optimization of digestion times, proteases, and matrix application 

has been performed in brain tissue to improve the repeatability of trypsin digestion (Diehl 

et al., 2015; Heijs et al., 2015). Other protocols look to improve trypsin digestion reliability 

and reproducibility utilizing graphene oxide-immobilized enzyme reaction (Jiao et al., 2013) 

or microwave irradiation and hydrogel discs (Taverna, Norris & Caprioli, 2015).

The choice of matrix and matrix application method is critical for ionization of the target 

analytes while limiting diffusion in MALDI MS analysis (Kaletaş et al., 2009). Common 

matrices include CHCA and DHB for the analysis of peptides and sinapinic acid and 

DHB for the analysis of larger proteins. Matrix concentration, solvent composition, and 

deposition temperature are factors that impact matrix crystal size and therefore spatial 

resolution. Hulme et al. observed that a higher concentration of matrix and higher deposition 

temperature (i.e. drier deposition) resulted in high spatial resolution (15-25 μm), but 

using a lower concentration and temperature resulted in more neuropeptide identifications 

but at lower spatial resolution (50 μm) (Hulme et al., 2020). Many new matrices are 

being investigated for application in MS imaging experiments of all analyte types, from 

metabolites up to proteins (Buchberger et al., 2018; Dreisewerd, 2014).The derivatization 

of chemical compounds with amines, including catecholamine neurotransmitters and 

neuropeptides, by reacting primary amines with pyrylium salts have been proposed as a 

novel matrix for MSI of primary amine compounds, which are usually challenging to 

detect (Shariatgorji et al., 2015). Additionally, graphene has been used as matrix on brain 

tissue to detect lipids and small peptides (Friesen et al., 2015). The choice of matrix is 

important for studies using LSI to produce multiply-charged ions. For example, when using 

2-nitrophologlucinol as a matrix, multiply-charged ions are produced at both vacuum and 

atmospheric conditions, but some matrices, like CHCA, only produce singly charged ions at 

all conditions (Chen et al., 2018; Inutan et al., 2011; Inutan et al., 2012). To apply matrix for 

MS imaging experiments, several different options are available, including robotic spotters, 

airbrush, and automated spraying devices. Robotic spotters, such as acoustic droplet ejectors 

(Aerni, Cornett & Caprioli, 2006) and inject printers (Baluya, Garrett & Yost, 2007; Franck 
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et al., 2009) apply small amounts of matrix in spots of approximately 150-200 um diameter 

in an ordered array across the tissue. Automated spraying systems, such as the TM-Sprayer 

or M5 Sprayer (HTX Imaging, NC, US), pneumatic spraying devices, and the ImagePrep 

(Bruker Daltonics, Bremen, Germany) vibrational sprayer, allow more control compared to 

manual airbrush. Use of these automated methods has been shown to produce higher quality 

data compared to other methods (Gemperline, Rawson & Li, 2014). Our group has reviewed 

recent advances (from years 2017-2020) in MS imaging washes, matrices, and other sample 

preparation considerations for neuropeptide analysis (Buchberger et al., 2018; Vu, DeLaney 

& Li, 2020).

C. Special Applications of MS Imaging

While the application of MSI to directly answer biological questions has boomed, MSI 

has also been utilized for new applications. For example, the 3D analysis of structures 

in a heterogeneous tissue (Chen et al., 2009a; Dueñas, Essner & Lee, 2017; Jones et al., 

2012; Trede et al., 2012). For example, consecutive sections have been analyzed in 3D to 

demonstrate the spatial variability of several crustacean neuropeptides (Chen et al., 2009a). 

MSI has been used in 3D cell culture studies (Fernandes, 2004; Li & Hummon, 2011), e.g. 

to understand the depth of drug penetration or the production of different metabolite due to 

changing environments (e.g. normoxia vs. hypoxia). Another analytical technique that has 

been combined with MSI is microfluidics, to study neuropeptide secretion from a cell (Jo 

et al., 2007; Zhong et al., 2012). Finally, unlike spot analysis, analyte traces analyzed by 

MSI has become a way to add temporal information to this spatial technique (DeLaney & 

Li, 2019a; Wang et al., 2011; Zhang, Jia & Li, 2012; Zhang, Kuang & Li, 2013; Zhang et 

al., 2012b). Initially, this was used to analyze CE or LC traces of tissue extracts, but MSI of 

traces has evolved to direct analysis of microdialysates (OuYang, Liang & Li, 2015). This 

combination has also proven to be remarkably accurate for quantitative analysis, allowing 

both relative and absolute concentrations of neuropeptides to be obtained (Zhang, Kuang & 

Li, 2013; Zhang et al., 2012b).

Advances in Quantitation

To analyze a system for biological relevance, quantitative tools are necessary. Most 

techniques are compatible with both ESI and MALDI sources, but special considerations 

should be made for either ionization method. ESI is well known for consistency, but often 

ESI is done in conjunction with LC separation. Any run-to-run variation will need to be 

corrected for by bioinformatic tools. MALDI, on the other hand, is notorious for inconsistent 

ionization (such as due to variability in matrix crystallization). This makes MALDI, without 

further methodological developments, inherently semi-quantitative. With that in mind, we 

will focus below on the development of relative (i.e., comparative) vs. absolute (i.e. actual) 

quantitation with both label vs. label-free methodology for the study of neuropeptides 

(Figure 6). Many recent quality reviews exist, and only the major contributions will be 

highlighted below (Buchberger, Yu & Li, 2015; Fricker, 2018; Fricker et al., 2006; Li & 

Sweedler, 2008; Romanova, Dowd & Sweedler, 2013; Yin et al., 2011).
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A. Labeling-Based Methods

The incorporation of standard isotopes has revolutionized MS for quantitative analysis. 

The more variations of isotopes we have, the more samples we will be able to compare, 

which will thus increase analysis throughput. There are several different ways to incorporate 

isotopes into an analyte of interest, including in vivo metabolic labeling. This is done 

usually by culturing cells with a heavy isotope, for example in the form of an amino 

acid, allowing it to be incorporated during the synthesis of other cells (Ong et al., 2002; 

Potts et al., 2016). Heavy amino acids have also been added into the diets of animals 

(Kruger et al., 2008; Zanivan, Krueger & Mann, 2011) and plants (Lewandowska et al., 

2013). A simplified protocol has been created to quantify fruit fly neuropeptides by growing 

differential isotopically labeled yeast that can be fed to different groups of flies (Kunz et 

al., 2018). Isotopic neuropeptides can also be administered intranasally or intravenously 

into animals (Lee et al., 2018). While decreasing variability in the population analyzed, full 

incorporation of the isotopes can take a long time depending on cell turn over, especially in 

animals, leading to a high cost. The number of samples that can be compared is limited by 

the number of isotopes of an element. This methodology has been mainly used in protein 

quantification (Geiger et al., 2010; Kruger et al., 2008; Lewandowska et al., 2013; Ong et 

al., 2002; Potts et al., 2016; Zanivan, Krueger & Mann, 2011), although it could be adapted 

for neurochemical cell culture studies.

Another variation of this MS labeling method is in vitro chemical tags. Generally, the 

analytes of interest are derivatized with a chemical tag that includes stable isotopes, which 

produce well-defined mass differences between the samples at either the MS1 or MS2 

level. For neuropeptidomic studies, MS1-based quantitation is becoming more and more 

common. In particular, duplex dimethyl labeling has been used thanks to its simplistic and 

quick labeling on all primary amines (e.g., N-terminus and ε-lysine). For example, the Li 

lab has utilized this method for studying the dynamic changes in neuropeptides due to 

environmental stress (Buchberger et al., 2020a; Buchberger et al., 2020b; Chen et al., 2010b; 

Chen et al., 2014; Liu et al., 2019; Zhang et al., 2015). Wilson et al. achieved in vivo 
quantitation of Leu-enkephalin and Met-enkephalin after on-column dimethyl labeling of 

microdialysis perfusate from rat brain (Wilson, Jaquins-Gerstl & Weber, 2018). Dimethyl 

labeling was expanded from 2 to 5 plex (Boersema et al., 2008; Buchberger et al., 2020b; 

Hsu, Huang & Chen, 2006; Tashima & Fricker, 2018). Isotopic dimethyl N,N-leucine 

(iDiLeu) and mass defect-based N,N-dimethyl leucine (mdDiLeu) also contains five spaced 

channels, which allows for relative or absolute quantitation (Greer et al., 2015; Zhong, Frost 

& Li, 2019). By labeling 4 channels with neuropeptide standards to construct a calibration 

curve, the fifth channel can be used to calculate the absolute concentration of an unknown 

sample. Care should be taken that, when all 5 channels are in use and ESI is chosen 

as the ionization technique, isotopic impurities and charge state differences may lead to 

overlapping peaks and thus inaccurate quantitation (Greer et al., 2015). In terms of MS1-

based quantitation, other options exist to label the N-terminus, such as succinic anhydride 

(Bark, Lu & Hook, 2009; Fricker, 2006; Hou, Xie & Sweedler, 2012; Rubakhin & Sweedler, 

2008), acetic anhydride (Che & Fricker, 2002), and 4-trimethylammoniumbutyryl (Che, 

Biswas & Fricker, 2005). Amino acid specific labels, including isotopic-coded affinity tag 

(ICAT), metal-coded affinity tag (MeCAT), and tyrosine-specific cysteine labeling (Ahrends 
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et al., 2007; Choi, Pennington & Wood, 2010), are also accessible to study neuropeptides. 

All these labeling schemes come with similar considerations to dimethyl labeling, iDiLeu, 

and mdDiLeu. While a balance between multiplexing and spectral complexity is a major 

concern, the development of tags with smaller spaces alleviates some of this burden. 

Unfortunately, these small spacing usually requires high-resolution instrumentation, which 

may not be readily available for many labs. For example, neutron-encoded (Hebert et 

al., 2013b), mdDiLeu (Hao et al., 2017), and dimethyl pyrimidinyl ornithine (DiPyro) 

(Frost, Buchberger & Li, 2017) tags all take advantage of isotopic mass defect, but high 

multiplexing requires resolution only achievable by top tier instrumentation.

The use of chemical tags that quantitate at the MS/MS level can also decrease the MS1 

spectral complexity occurring above. Instead of producing mass shifts at the MS1 level, 

all the differentially labeled peptides occur at the same mass in the initial MS1 scan. If 

the associated peak is selected for fragmentation, characteristic reporter ions are created, 

usually in the low mass range where no interference occurs. Unlike at MS1 level, where 

theoretically every analyte can be quantified, one is limited by the peptides which get 

selected for fragmentation. Thus the duty cycle of an instrument can play a major role in the 

depth of quantitation achieved. Many commercial tags, such as isobaric tags for relative and 

absolute quantitation (iTRAQ) and tandem mass tags (TMT), have been used (McAlister et 

al., 2012; Rubakhin & Sweedler, 2008). iTRAQ has even been used for single cell analysis, 

allowing the relative quantities of peptides to be obtained by MALDI MS (Rubakhin & 

Sweedler, 2008). Unfortunately, the cost of these commercially available labels limits their 

use. N, N-dimethyl leucine (DiLeu) is one, low cost example for MS2 level quantitation, and 

it has been expanded from 4-plex to 21-plex quantitation (Frost, Feng & Li, 2020; Frost, 

Greer & Li, 2015; Frost et al., 2015; Liu et al., 2020; Xiang et al., 2010). Recently, DiLeu 

and iDiLeu have been combined to form a strategy called hybrid offset-triggered multiplex 

absolute quantification (HOTMAQ) which enables the formation of an internal standard 

curve at the MS1 level, peptide sequencing and identification at the MS2 level, and peptide 

quantification at the MS3 level (Zhong et al., 2019). With the multitude of channels all these 

tags contribute, both absolute and relative quantitation is possible. Most of these tags have 

not been applied to neuropeptide quantitation, but they would provide a practical way to 

compare several samples in one instrumental run.

B. Label-Free Methodology

Label-free quantitation techniques are more frequently used in the study of neuropeptides. 

Unlike labeling strategies, label-free methods allow one to compare an infinite number 

of samples. The simplest label-free method is based on signal intensity, meaning that 

the signal intensity in the spectra, or more accurately the area under the curve in the 

LC chromatogram, correlates with the analyte concentration. Relative quantities are easily 

found by just comparing samples at either the MS1 or MS2 (i.e., MS/MS) level, although 

peak alignment and other post-processing aspects need to be considered due to run-to-run 

variability (Jiang et al., 2012; Johansson et al., 2006; Ranc et al., 2012). For example, 

Ranc et al. utilized the extracted ion chromatograms to obtain relative quantities of different 

endogenous peptides in the tree shrew visual system (Ranc et al., 2012). It should be noted 

that at the MS/MS level, multiple reaction monitoring, or monitoring of only specific, 
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characteristic fragments, and parallel reaction monitoring, or monitoring of all fragments, 

can lead to lowering the limit of detection by 100-fold (Bobba, Resch & Gutheil, 2012; 

DeAtley et al., 2018; Pailleux & Beaudry, 2014; Saidi, Kamali & Beaudry, 2019; Song & 

Liu, 2008; Wang, Chung-Davidson & Li, 2014; Yang et al., 2017).

In order to acquire the absolute concentration of neuropeptides, (a) a calibration curve 

is required (Chung-Davidson et al., 2020; Schmerberg, Liang & Li, 2015; Song & Liu, 

2008; Wang, Chung-Davidson & Li, 2014); (b) a synthetic, isotopic internal standard, also 

known as an AQUA peptide is added (Bozzacco et al., 2011; Ozalp et al., 2018; Salem, 

Nkambeu & Beaudry, 2018); or (c) a peptide standard similar to the peptide of interest 

(Dong et al., 2018) to be used as a proxy. Several software packages assist in processing 

these large datasets, including commercial software packages (SIEVE, PEAKS, Proteome 

Discoverer…) or open access platform (e.g., Skyline). Several groups have developed their 

own pipelines, such as using accurate mass time (AMT) (Wu et al., 2015a), informed 

quantitation (IQ) (Wu et al., 2015a), and DeCyder MS (Johansson et al., 2006; Kaplan et al., 

2007).

Many of the above informatics tools also assist in another label-free quantitation (LFQ) 

method: spectral counting. Unlike peak area/signal intensity measurements, spectral 

counting is dependent upon the number of times an analyte is selected for fragmentation. 

Similar to MS/MS label-based quantitation, only high concentration molecules are analyzed 

due to the limited duty cycle of an instrument. Also, care should be taken on instrumental 

parameters, such as scan and exclusion parameters in order to increase sampling depth 

(Zhou, Liotta & Petricoin, 2012). Relative comparisons are easily done by comparing the 

number of MS/MS spectra collected between analytes, although validation of the smaller 

differences will be particularly important. Furthermore, only estimates can be made based 

upon total protein concentration (Neilson et al., 2011). When comparing SIEVE peak area 

analysis and spectral counting on peptides in the rat suprachiasmatic nucleus, it was revealed 

that spectral counting provided a richer characterization of differences in differential peptide 

abundance when rats were analyzed at different circadian rhythm points (Southey et al., 

2014). Furthermore, when compared to SILAC and spectral counting for quantifying 

proteins, spectral counting was found to be able to quantitate ~50% more proteins prior 

to a limit being set (Collier et al., 2010). This shows the power of spectral counting and 

label-free quantitation for neuropeptidomic analysis, and it is likely that these approaches 

will be increasingly used.

C. DIA Quantitation

DIA strategies can be applied to improve quantitative studies, however the use of label-based 

quantitation adds additional complexity to the MS or MS/MS spectra collected. This makes 

spectral deconvolution and accurate quantitation difficult to achieve. Therefore, LFQ is 

commonly used in conjunction with DIA. In fact, a recent comparison study between 

LFQ DIA and isobaric tag labeling with DDA demonstrated similar performance between 

workflows (Muntel et al., 2019). Performing 10 LFQ DIA analyses demonstrated better 

quantitative accuracy while a single multiplex TMT labeled DDA analysis resulted in 

an increase in identified proteins and quantitative precision (Muntel et al., 2019). This 
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demonstrates the capability of LFQ DIA for quantitation; although, to fully leverage the 

benefits of DIA, specific DIA labeling strategies need to be developed. mdDiLeu (Zhong 

et al., 2020), NeuCode SILAC (Hebert et al., 2013a; Hebert et al., 2013b), and MdFDIA 

(Di et al., 2017), are labeling strategies that have been successful for DIA quantitation. The 

latter two rely on metabolic labeling and are thus restricted to cell culture applications, and 

none of these techniques have been applied to neuropeptidomics. Developments in the DIA 

quantitative analysis to more broadly study the brain proteome are summarized by Li et al. 

(Li et al., 2020a).

Parker and colleagues applied a LFQ DIA strategy in a targeted phosphoproteomics analysis 

to understand signaling of the peptide hormone insulin (Parker et al., 2015). The increased 

throughput and reproducibility, enabled by DIA analysis, led to the quantitation of 86 

protein targets affected by insulin (Parker et al., 2015). In a new Skyline software application 

(MacLean et al., 2010), Schmerberg et al. performed quantitation of LFQ DIA MS/MS data 

in a pseudo-multiple reaction monitoring analysis of crustacean neuropeptides (Schmerberg, 

Liang & Li, 2015). They were able to identify and quantify several neuropeptides from 

microdialysate and their changes across the feeding study illustrating the sensitivity of the 

method (Schmerberg, Liang & Li, 2015). Saidi et al. evaluated the utility of label-free 

and isotopic dilution DIA methods for targeted quantitation of neuropeptides and found 

an increase in variance when compared to PRM methods (Saidi, Kamali & Beaudry, 

2019). This could be attributed to the increase in cycle time for the DIA method, which 

decreases the points per chromatographic peak acquired. DeLaney and Li optimized the 

DIA duty cycle for crustacean neuropeptides by considering various isolation windows and 

m/z ranges. They also evaluated the quantitative accuracy and observed experimental errors 

between 18.0% and 32.8% (DeLaney & Li, 2019b). Potential improvements to this method 

could include the use of label-based quantitation. While the capabilities and applications for 

DIA has expanded over the years, it will benefit from additional improvements and new 

labeling strategies for accurate and reproducible quantitation.

D. Special Considerations: MS Imaging

High throughput data collection is key in developing new analytical techniques. Thus, the 

application of quantitative methods to imaging was a natural transition to acquire both 

spatial and quantitative information in a single instrumental run. Some applications have 

been discussed briefly above (see MS Imaging: Special Applications) (Zhang, Kuang & 

Li, 2013; Zhang et al., 2012b; Zhong et al., 2012), but the streamlining of methods has 

obtained a lot of attention recently for drugs and metabolites (Pirman, 2015; Sun & Walch, 

2013). While this has not been fully developed for neuropeptidomics, it could be easily 

implemented in the future. It should be noted that these techniques still require further 

development to become more common practice in the scientific community (Cillero-Pastor 

& Heeren, 2014).

As stated above, there are label-free and label-based techniques for acquiring quantitative 

information from samples. LFQ is the most commonly used in MSI, including the use 

of a calibration curve or an internal standard (Clemis et al., 2012; Goodwin et al., 2012; 

Groseclose & Castellino, 2013; Hamm et al., 2012; Lanekoff & Laskin, 2017; Nakanishi, 
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Nirasawa & Takubo, 2014; Rodrigues et al., 2014; Shariatgorji et al., 2014). In these 

cases, usually the standard(s) are either spotted onto the tissue or added to the MALDI 

matrix solution prior to its application. Alternatively, the use of multiple isotopically labeled 

standards can be sprayed onto the tissue section for use as internal standards (Dewez et al., 

2021). Koeniger and others have taken a more unique approach by taking nearby, separate 

sections for MS imaging and LC-MS quantitation, since serial sections have similar analyte 

concentrations (Koeniger et al., 2011). This approach requires homogenous tissues. MSI, 

label-based quantitation applications are still novel. The only published example utilizes a 

duplex-isotopic immunohistochemical staining azo dye which, after laser energy absorption, 

produces signature reporter ions separated by 5 Da (Wang et al., 2015a). While all these 

methods seem promising, without the ability to process this data quickly, the throughput of 

quantitative MSI is limited. Some groups have produced software for on-tissue calibration 

curve quantitation, both open source (e.g. MSiReader) or commercial (e.g. SCiLS or 

Quantinetix) (Kallback et al., 2012; Robichaud et al., 2013). More effort needs to be applied 

to developing additional bioinformatics tools in this area.

The generation of a calibration curve using a peptide standard to absolutely quantify 

neuropeptides is considered the gold standard. This can be performed on a variety of 

instruments and does not require many biological replicates to produce confident results. 

However, peptide standard synthesis is expensive. Additionally, if the neuropeptides selected 

for quantification exclude other co-modulating neuropeptides involved in a particular 

biochemical pathway, incorrect conclusions might be drawn. As only a small number of 

discovered neuropeptides have been functionally evaluated, there is high risk of not selecting 

all the neuropeptides involved in the pathway. In this case, it is better to perform global 

profiling analyses to detecting as many neuropeptides as possible simultaneously. Therefore, 

the next best alternative for quantitation is to either incorporate isotopes into animals 

before sample collection or to chemically derivatize the animal samples after collection. 

For both methods, the optimal means would involve detection of the same neuropeptides 

in all conditions, while also not detecting any non-modified neuropeptides. Additionally, 

in chemical derivatization, a 100% labeling efficiency would be achieved. Overall, global 

profiling of changes in neuropeptide expression can serve as a foundation to understand 

neuropeptide function and dysregulation.

Functional Studies

Neuropeptides impact a large and diverse array of physiological processes (Insel, 2010; 

Mills et al., 2020; Neumann & Landgraf, 2012; Steinhoff et al., 2014; Wang, Xu & Kang, 

2021; Xu et al., 2020). Functional elucidation is not trivial notably due to neuropeptide 

co-transmission capabilities (Nusbaum, Blitz & Marder, 2017) and pleiotropic nature 

(Souza-Moreira et al., 2011). Changes in neuropeptide abundance and localization can act 

as a foundation for functional studies since dysregulation of these characteristics indicate 

an abnormal or disease state (DeLaney, Buchberger & Li, 2018) (see elsewhere in this 

review). Thus, MS-based quantification of neuropeptides can be exploited to understand 

neuropeptide expression level changes under physiological and pathological conditions. For 

example, Ye et al. profiled neuropeptide expression changes due to differential food intake 

and functionally validated the role of significantly changed neuropeptides by injecting them 
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into rats (Ye et al., 2017). This section focuses on physiology- and microdialysis-based 

functional studies where neuropeptides are the target analyte. Yet, it is also worth noting that 

neuropeptide receptor dynamics also play a critical role in neuropeptide function (DeLaney 

et al., 2018).

A. Physiology-based Functional Studies

Besides MS, other techniques are often used to understand neuropeptide function, and 

these characterizations are critical for development of therapeutics. For example, pituitary 

adenylate cyclase activating polypeptide (PACAP), known to improve cornea health, is 

shown by Kovacs et al. to be resistant to degradation in solution, demonstrating its 

potential for use in eye drops (Kovacs et al., 2020). A common technique to investigate 

neuropeptide function is overexpression of the peptide in an animal model. Transgenic mice 

overexpressing thyrotropin-releasing hormone exhibit higher blood pressure and heartbeat 

rate (Landa et al., 2020). Since the development of transgenic animal models is difficult and 

costly, so alternative methods are often preferred.

Neuropeptide function are often characterized by examining physiological effects in vitro 
or ex vivo. Such studies allow the researcher to control experimental parameters better than 

in in vivo experiments. For example, somatostatin/allatostatin-C ArSS2 standards have a 

relaxation effect on dissected starfish tube foot, apical muscle, and cardiac stomach muscle 

contractions (Zhang et al., 2020b). Muscle contractions are typically recorded using a 

timer or by connecting the tissue to a force-displacement transducer or similar instrument 

recording contraction force. Manual counting is advantageous when studying small animals 

as employed in a recent study on the effect of adipokinetic hormone Carmo-HrTH-II 

neuropeptide on heartbeat rate (Katali, Marco & Gade, 2020). Since certain invertebrates, 

including decapod crustaceans, have neurogenic hearts, neuropeptide modulation of cardiac 

function has become a field of interest, broadly reviewed by Calabrese, Norris, & Wenning 

(2016) (Calabrese, Norris & Wenning, 2016). Marciniak et al. showed that FMRF6 causes 

a decrease in beetle heartbeat rate and an increase in hindgut contractions (Marciniak et 

al., 2020). Dickinson et al. perfused shrimp pyrokinin PevPK2 neuropeptide onto a lobster 

heart to observe an increase in heartbeat rate and amplitude and decrease in heart contraction 

duration. Altering the peptide sequence resulted in a loss of activity (Dickinson et al., 

2015). The Dickinson group used semi-intact heart preparations to evaluate the neuropeptide 

modulation of heart (Wiwatpanit, Powers & Dickinson, 2012) and also published a review 

on crustacean neuropeptide modulation of pattern generating systems (Dickinson, Qu & 

Stanhope, 2016). Cardiac assays have also been performed on mammals. Studneva et al., 

administered forms of galanin to myocardial injury-induced rats and recorded blood pressure 

and heart rate in vivo (Studneva et al., 2019).

Additional methods to investigate neuropeptide function measure biochemical effects. Wei et 

al. cultured crab hepatopancreas tissue and applied crustacean cardioactive peptide (CCAP), 

measuring an increase in nitric oxide and resulting improved bacterial clearance in the 

medium (Wei et al., 2020). To investigate the impact of neuropeptides on reproduction, 

Chieu et al. incubated dissected sea cucumber ovarian tubules in solutions containing 

gonad-stimulating peptide and observed oocyte maturation (Chieu et al., 2019b). Hao 
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et al. injected newly synthesized diapause hormone (DH)-like peptides into locusts and 

found some peptides to induce diapause in eggs (Hao et al., 2019). Atkins et al. applied 

neuropeptides, including arginine vasopressin to excite rat optic nerves ex vivo to evaluate 

their involvement in the regulation of circadian rhythm (Atkins et al., 2018).

One strategy is to minimize sample handling, as seen in the use of microfluidic platform 

to culture neurons in a capillary and directly analyze secreted neuropeptides by MS (Lee et 

al., 2016). While in vitro and ex vivo experiments have their clear benefits, there is a push 

towards in vivo approaches, particularly when translation to therapeutics is aimed for.

B. Microdialysis-based Functional Studies

Microdialysis probes in or adjacent to the location injected with peptides can be used 

to collect local perfusates. Guvenc-Bayram et al. observed an increase in prostaglandin 

in mice hypothalamic injected with nefastin 1, indicating that this peptide activates the 

arachidonic acid-cyclooxygenase and -lipoxygenase signaling pathway (Guvenc-Bayram et 

al., 2020). Our lab has recently investigated neuropeptides implicated in circadian rhythm 

using microdialysis (Liang, Schmerberg & Li, 2015), after the development of a protocol 

for the in vitro microdialysis of a neuropeptide standard as well as the in vivo microdialysis 

sampling of neuropeptides from a live crab (Behrens & Li, 2010). Using microdialysis 

coupled with MS, Mabrouk et al. measured an increase in oxytocin and arg-vasopressin 

levels in rat brain (Mabrouk & Kennedy, 2012).

Bulbul et al. administered neuropeptide-S into Parkinson’s disease-induced rats and 

observed increased dopamine levels (collected via microdialysis) 7 days after the 

administration. This suggests that the peptide has protective effects in the brain (Bulbul 

et al., 2019). Grund et al. examined potential anxiety disorder therapeutics and saw 

that neuropeptide S stimulates oxytocin release (Figure 4) (Grund et al., 2017). Cui 

and Smith studied the neuronal regulation of obesity and demonstrated an increase in 

agouti-related peptide release when Gs-linked G protein-coupled receptors were activated 

(Cui & Smith, 2019). Willie and collaborators combined intracerebral microdialysis and 

electroencephalography/electromyography with motor activity monitoring to study the effect 

of orexin neuropeptides in brain injury (Willie et al., 2012). In addition to roles in 

biochemical signaling, certain neuropeptides have measurable behavioral effects. Lee et 

al. delivered oxytocin neuropeptide into mice and observed a decrease in the rate by which 

mice self-administered the drug methylphenidate (CNS stimulant) along with differential 

regulation of dopamine levels (collected via microdialysis from mice that were randomly 

implanted in the right or left brain side) between different brain regions (Lee et al., 2019). 

A logical next step is to expand the number of simultaneously measurable characteristics, 

particularly during in vivo experiments, and to increase the sensitivity for neuropeptide 

detection, such as by improving sample preparation methods (see Sample Preparation 

section).

Conclusions

In the last decade, significant advances in mass spectrometry instrumentation and associated 

technologies have accelerated the progress of neuropeptide research, enabling high 
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throughput neuropeptidome characterization. As the biological importance of neuropeptides 

is increasingly realized, we predict that more people will be attracted to study them and 

conduct more in-depth investigations. However, compared to well-established proteomic 

workflows and tools, there are still many technological gaps to be filled, and implementation 

of advancements in proteomics tools should be more readily applied to neuropeptidomics. 

Techniques capable of reliably enriching scarcely distributed neuropeptides and removing 

interfering substances are in high demand. As neuropeptides vary in length and structure, 

there is a need for customized MS approaches to be developed based on each 

particular family, class, and even isoform of neuropeptides being targeted to enable 

obtaining comprehensive MS/MS spectra. For MSI, areas of interest are better robust 

sample preparation techniques, improving spatial resolution, increasing throughput, and 

development of quantitation methods. Algorithms that are able of integrating prohormone 

cleavage preferences would be beneficial in performing mature neuropeptide prediction from 

genomes as they are increasingly being sequenced. Further advances in bioinformatics must 

keep up such that all MS data will be interpreted in a convenient fashion while providing 

rich chemical information. Although empirical determination of individual neuropeptide 

functions is highly valuable, the time it takes to do so can be considered a bottleneck step in 

the overall pipeline from discovery to therapeutics. To improve and facilitate interpretation 

of neuropeptidomics data, methods capable of elucidating neuropeptide co-modulation must 

be developed. Finally, further development of sensitive, reliable quantitation approaches that 

can handle limited sample amount will be key to allow cross comparisons of neuropeptides 

in a high throughput manner. While the field of neuropeptide analysis by MS has seen great 

advances over the years, the incorporation of more advanced techniques and tools in the 

future will greatly benefit our understanding of neuropeptides and neurochemical signaling.
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Abbreviations:

DHB 2,5-dihydroxybenzoic acid

AMT accurate mass time

ACN acetonitrile

HOAc acetic acid

Aβ amyloid-β protein
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BK bradykinin

CE capillary electrophoresis

CNS central nervous system

CCS collision cross sections

CID collision-induced dissociation

CCAP crustacean cardioactive peptide

cryo-IM-MS cryogenic IM-MS

CHCA α-cyano-4-hydroxy-cinnamic acid

DAACPs D-amino acid containing peptides

DDA data-dependent acquisition

DIA data-independent acquisition

DESI desorption electrospray ionization

DH diapause hormone

ExD electron activated dissociation

ECD electron-capture dissociation

ETD electron-transfer dissociation

EThcD electron-transfer/higher-energy collision dissociation

ESI electrospray ionization

EDTA ethylenediaminetetraacetic acid

FDRs false discovery rates

FFPE formaldehyde-fixed paraffin embedding

FA formic acid

FTICR-MS Fourier-transform ion cyclotron resonance MS

HCD high-energy collision dissociation

HRAM high-resolution accurate mass

HCl hydrochloric acid

IQ informed quantitation

IM-MS ion mobility MS

ICAT isotopic-coded affinity tag
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LFQ label-free quantitation

LSI laserspray ionization

LC liquid chromatography

LESA liquid extraction surface analysis

MS mass spectrometry

m/z mass-to-charge ratio

MALDI matrix-assisted laser desorption/ionization

MSH melanocyte-stimulating hormone

MeCAT metal-coded affinity tag

MeOH methanol

MTBE methyl-tert-butyl ether

mDa milliDalton

M molarity

MD molecular dynamics

MWCO molecular weight cut-off

NIMS nanostructure initiator MS

NMR nuclear magnetic resonance

OCT optimal cutting temperature

PRM parallel reaction monitoring

PACAP pituitary adenylate cyclase activating polypeptide

pHPMA poly[N-(2-hydroxypropyl)methacrylamide

PEI polyethylenimine

PTMs post-translational modifications

RIAs radioimmunoassays

SIMS secondary ion MS

SP single stage MS (MS1) substance P

MS/MS tandem MS

TOF/TOF tandem TOF

TOF time of flight
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TFA trifluoroacetic acid
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Figure 1. General workflow and strategies for investigating neuropeptides by mass spectrometry.
Two major routes: extract profiling and tissue imaging.
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Figure 2. Using EThcD, both N- and O-linked glycosylated neuropeptides are identified.
EThcD spectra of an (a) O-linked orcomyotropin neuropeptide discovered in rock crab 

C. irroratus nervous system, an (b) O-linked truncated crustacean hyperglycemic hormone 

precursor-related neuropeptide discovered in blue crab C. sapidus nervous system, and an (c) 

N-linked B-type allatostatin (AST-B) neuropeptide discovered in C. sapidus nervous system. 

Reprinted with permission from (Cao et al., 2020).
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Figure 3. Schematic diagrams of analyte ions separation in a drift tube (small ion in blue, large 
ion in red).
(A) Analytes are ionized and enter the drift tube. Small ions travel faster in the drift tube due 

to less collision with the buffer gas. In this example, the small ion has two conformations: 

compact ring conformation and unfolded linear conformation. Same ion with compact 

conformation will travel faster than unfolded linear species. (B) Drift time profile of analyte 

ions.

Phetsanthad et al. Page 66

Mass Spectrom Rev. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. In hypothalamic slices, neuropeptide S (NPS) stimulates silent oxytocin (OXT) neurons 
via NPS receptor (NPSR) but does not stimulate active OXT neurons.
(A) Schematic drawing of the PVN OXTpr-GCaMP6s virus infusion and subsequent [Ca2+] 

imaging of OXT neurons. (B) Basal activity of two distinct subpopulations of OXT neurons 

(dark gray: active; light gray: silent) illustrated by typical ΔF/F0 traces. Pie charts represent 

the proportion of active (up) and silent (down) OXT neurons: n slices (ns) = 11, n OXT 

neurons (nn) = 237. (C) Pie charts of proportion of responsive OXT neurons to NPS 

application alone (2 μm, 20 s; ns = 11, nn = 24 of 237; green) or in the presence of NPSR 

antagonist (SHA-68 100 μm, >15 min; ns = 6, nn = 3 of 135; light blue) and typical ΔF/F0 
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traces. Pseudo-color video extract of identified OXT neurons through GCaMP6s imaging 

[Ca2+] in control conditions (gray), in presence of NPS (green) or NPS + SHA-68 (light 

blue) (stacks of 50 images/10 s of recording). Scale bar, 20 μm. (D) Relative AUC increase 

and maximal ΔF/F0 of OXT neurons in presence of NPS (ns = 11; green) or NPS + SHA-68 

(ns = 6, light blue). Only response duration of OXT neurons in presence of NPS (ns = 

11; green) are represented here. White circles represent average value per slice. *p < 0.05 

(Student's t test). **p < 0.01 (Student's t test). Reprinted with permission from (Grund et al., 

2017).
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Figure 5. Comparison between linear and spiral DDA MS imaging.
(a) and (b) illustrate the step motion and size, respectively, while (c)-(h) demonstrate 

image quality obtained from both with high mass accuracy. Reprinted with permission from 

(OuYang, Chen & Li, 2015).
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Figure 6. Two major types of quantitation in MS.
(A) Label-free quantitation strategies, include intensity comparisons and spectral counting. 

(B) Label-based quantitation. These techniques can be done at both MS1 and MS2 levels.

Phetsanthad et al. Page 70

Mass Spectrom Rev. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Phetsanthad et al. Page 71

Table 1.

Examples of various organic buffers applied for neuropeptide extraction from different biological material.

Biological Material Extraction Buffer Reference(s)

various 90% MeOH, 9% HOAc, 1% water
(Adamson et al., 2016; Budamgunta et al., 2018; Chen et 
al., 2010c; Hui et al., 2013; Lavore et al., 2018; Sterkel et 
al., 2011; Van Bael et al., 2018b; Ye et al., 2015)

whole sea anemone 90% MeOH, 9% water, 1% FA (Hayakawa et al., 2019)

rat spinal cord tissues 80% MeOH, 10% water, 10% FA (Tillmaand et al., 2020)

mice cecum 37.5% MeOH, 12.5% chloroform, 50% water (Keller et al., 2020)

starfish 70% MeOH, 5% HOAc (Kim et al., 2016)

bed bug beetle 50% MeOH, 1% FA (Predel et al., 2018) (Ragionieri & Predel, 2020)

stick insect tissues 50% MeOH, 1% TFA (Liessem et al., 2018)

various 0.25% HOAc (DeAtley et al., 2018; Dowell, Heyden & Li, 2006; 
Fridjonsdottir et al., 2018)

dog saliva human plasma 80% ACN (Wang, Marti & Anderson, 2019) (Kirwan et al., 2018)

oyster ganglia 90% ACN, 0.1% TFA (Schwartz et al., 2019)

monkey plasma and 
cerebrospinal fluid ACN (Lee et al., 2018)

citrus psyllid colonies 10% trichloroacetic acid, 2% 2-
mercaptoethanol in acetone (Fleites et al., 2020)

sea urchin 60% acetone, 40% water, 1% HCl (Monroe et al., 2018)

Aplysia abdominal ganglia 80% acetone, 10% water, 10% FA (Anapindi et al., 2018)

rat spinal cord tissues dry ammonium sulfate with 0.01 M EDTA (Do et al., 2018b)

bone 1.2 M HCl in 20% ACN (Gatenholm et al., 2019)
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Table 2.

Four common ion activation and dissociation techniques - CID, HCD, ETD, ECD, and EThcD - for 

fragmenting peptides.

Method Mass Analyzers Fragment Ions Advantages Disadvantages

CID Quadrupole ion trap, 
triple quadrupole

b-type, y-type Fast, sensitive, more efficient for 
low charge ions, induces glycan 
fragmentation

Low mass resolution, loss of labile 
modifications

HCD Orbitrap b-type, y-type Fast, high mass resolution, induces 
glycan fragmentation

Less sensitive and slower than CID, 
loss of labile modifications

ETD Ion trap, ion trap-
orbitrap hybrid

c-type, z-type Retains neutral and labile modifications, 
faster than ECD, suitable for higher 
charge state ions (>2+)

Slow, inefficient fragmentation for 
low charge state precursors, less 
accessible instrumentation

ECD FTICR or selected 
time-of-flight

c-type, z-type Retains neutral and labile modifications Less accessible instrumentation

EThcD Orbitrap b-type, y-type, c-type, 
z-type

Rich sequence-specific fragment ion 
information, more suitable for 
characterization of neuropeptides with 
labile PTMs

Longer duty cycle, requires the 
production of higher charge state of 
precursor ions
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Table 3.

Various software tools designed specifically for advancing neuropeptide research.

Type of
Tool Name Brief

Description Link to Resource

Prediction

ENPG Neuropeptide prediction https://sourceforge.net/projects/enpg/

NeuroPID Neuropeptide precursor and neuromodulator 
prediction http://neuropid.cs.huji.ac.il/

NeuroPIpred Insect neuropeptide prediction https://webs.iiitd.edu.in/raghava/neuropipred/

NeuroPP Neuropeptide precursor prediction NA

NeuroPred Neuropeptide prediction http://neuroproteomics.scs.illinois.edu/neuropred.htm

NeuroPred-FRL Neuropeptide prediction http://kurata14.bio.kyutech.ac.jp/NeuroPred-FRL/

SignalP Signal peptide prediction http://www.cbs.dtu.dk/services/SignalP/

Database

BLAST Sequence alignment search tool http://www.ncbi.nlm.nih.gov/BLAST/

DINeR Insect neuropeptide database http://www.neurostresspep.eu/diner/

NeuroPep Database of neuropeptides, their genes, 
precursors http://isyslab.info/NeuroPep/

SwePep Endogenous peptide database NA

MS Data Search

IggyPep Hybrid de novo and genome wide-database 
search NA

NeuroPedia Searchable neuropeptide database and spectral 
library http://proteomics.ucsd.edu/Software/NeuroPedia.html

PRESnovo Motif prescreening prior to de novo 
sequencing https://www.lilabs.org/resources
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