Skip to main content
. 2019 Jul 25;9(40):23045–23052. doi: 10.1039/c9ra05139b

In vitro antibacterial EC50 activity value of the target compounds against Xac.

Compd n R Toxic regression equationa r 2 EC50/(μg mL−1) pEC50/(μM)
6a 3 Ph y = 0.8044x + 4.1554 0.9961 11.2 ± 3.4 4.8
6b 3 4-CH3-Ph y = 0.6949x + 4.1397 0.9697 17.3 ± 2.2 4.6
6c 3 3-CH3-Ph y = 0.8528x + 3.9474 0.9972 17.2 ± 1.4 4.6
6d 3 4-CH3O-Ph y = 1.0517x + 3.5664 0.9650 23.1 ± 2.8 4.5
6e 3 2-CH3O-Ph y = 0.6924x + 3.7991 0.9822 54.3 ± 2.4 4.1
6f 3 3,4-Di-CH3-Ph y = 0.8130x + 4.1875 0.9977 10.0 ± 3.9 4.8
6g 3 3,4-Di-CH3O-Ph y = 0.9169x + 3.8298 0.9762 18.9 ± 2.6 4.6
6h 3 2,4-Di-CH3O-Ph y = 0.6912x + 3.8298 0.9690 28.1 ± 1.5 4.4
6i 3 4-t-Bu-Ph y = 0.7819x + 4.2398 0.9917 9.4 ± 1.9 4.9
6j 3 2-Thiophene y = 0.9335x + 3.8960 0.9642 15.2 ± 2.9 4.6
6k 4 Ph y = 0.9655x + 3.7731 0.9334 18.7 ± 0.8 4.6
6l 4 4-CH3-Ph y = 0.9335x + 4.0630 0.9877 10.1 ± 1.1 4.8
6m 4 3-CH3-Ph y = 0.7733x + 4.0122 0.9599 18.9 ± 0.9 4.6
6n 4 4-CH3O-Ph y = 0.9324x + 3.9636 0.9716 12.9 ± 1.9 4.7
6o 4 2-CH3O-Ph y = 0.6712x + 4.1730 0.9624 17.1 ± 2.5 4.6
6p 4 3,4-Di-CH3-Ph y = 0.9633x + 3.8184 0.9729 16.9 ± 2.6 4.6
6q 4 3,4-Di-CH3O-Ph y = 0.9311x + 4.1191 0.9819 8.8 ± 1.9 4.9
6r 4 2,4-Di-CH3O-Ph y = 0.5861x + 4.1558 0.9706 27.6 ± 3.1 4.4
6s 4 4-t-Bu-Ph y = 0.7906x + 4.0584 0.9903 15.5 ± 2.0 4.7
6t 5 Ph y = 1.1883x + 3.6956 0.9958 12.5 ± 2.9 4.7
6u 5 4-CH3-Ph y = 0.7831x + 3.9652 0.9780 21.0 ± 1.0 4.5
6v 5 4-CH3O-Ph y = 0.7105x + 4.0749 0.9998 20.5 ± 2.7 4.5
6w 5 3,4-Di-CH3O-Ph y = 0.7706x + 4.0642 0.9814 16.4 ± 1.9 4.7
Myrb y = 0.6520x + 3.6763 0.9838 107.2 ± 1.6
BTc y = 0.8357x + 3.5466 0.9876 54.9 ± 1.4
TCc y = 0.8874x + 3.4149 0.9984 61.1 ± 3.4
a

Tested and calculated at the drug test concentrations of 100, 50, 25, 12.5, and 6.25 μg mL−1.

b

Myr (myricetin).

c

BT (commercial fungicides, bismerthiazol) and TC (thiediazole copper).