Substrate scope of aldimine estersa.
![]() | ||||||
---|---|---|---|---|---|---|
Entry | R | R′ | 3 | drb | Yield (%)c | ee (%)d |
1 | p-ClC6H4 | Me | 3a | 18 : 1 | 67 | 99 |
2 | p-BrC6H4 | Me | 3b | 19 : 1 | 68 | 99 |
3 | p-FC6H4 | Me | 3c | 17 : 1 | 64 | 99 |
4 | m-ClC6H4 | Me | 3d | 14 : 1 | 62 | 99 |
5 | m-BrC6H4 | Me | 3e | 16 : 1 | 70 | 98 |
6 | Ph | Me | 3f | 15 : 1 | 68 | 99 |
7 | p-MeC6H4 | Me | 3g | 12 : 1 | 60 | 97 |
8 | p-MeOC6H4 | Me | 3h | 18 : 1 | 66 | 99 |
9 | m-MeC6H4 | Me | 3i | 15 : 1 | 58 | 99 |
10 | m-MeOC6H4 | Me | 3j | 16 : 1 | 61 | 99 |
11 | o-MeC6H4 | Me | 3k | 11 : 1 | 63 | 99 |
12 | o-ClC6H4 | Me | 3l | 15 : 1 | 66 | 99 |
13 | o-BrC6H4 | Me | 3m | 15 : 1 | 64 | 99 |
14 | 2-thienyl | Me | 3n | 14 : 1 | 58 | 99 |
15 | 2-furyl | Me | 3o | 10 : 1 | 55 | 99 |
16 | n-Pr | Me | 3p | 11 : 1 | 44 | 99 |
17 |
![]() |
3q | 10 : 1 | 62 | 99 | |
18 | p-ClC6H4 | Et | 3r | 20 : 1 | 66 | 99 |
19 | p-ClC6H4 | n-Pr | 3s | 20 : 1 | 63 | 99 |
20e | p-ClC6H4 | Allyl | 3t | 20 : 1 | 66 | 99 |
21 | p-ClC6H4 | CH2Ot-Bu | 3u | 20 : 1 | 65 | 99 |
22 | p-ClC6H4 | CH2CH2CO2Me | 3v | 19 : 1 | 58 | 99 |
23 | p-ClC6H4 | H | 3w | 9 : 1 | 54 | 99 |
24f | p-ClC6H4 | Me | 3a | 15 : 1 | 68 | 99 |
All reactions were carried out with 0.30 mmol 1 and 0.20 mmol 2a in 2 mL of DCE. Cu(i) = Cu(MeCN)4BF4. Ir(i) = [Ir(cod)Cl]2.
dr was determined by the 1H NMR of the crude reaction mixture.
Isolated yields of the overall two steps.
ee was determined by chiral HPLC analysis.
Ethyl aldimine ester.
1.0 mmol scale.