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Abstract

Purpose of Review Exciting pre-clinical data presents pluripotent stem cell-derived cardiomyocytes (PSC-CM) as a novel thera-
peutic prospect following myocardial infarction, and worldwide clinical trials are imminent. However, despite notable advances,
several challenges remain. Here, we review PSC-CM pre-clinical studies, identifying key translational hurdles. We further discuss
cell production and characterization strategies, identifying markers that may help generate cells which overcome these barriers.
Recent Findings PSC-CMs can robustly repopulate infarcted myocardium with functional, force generating cardiomyocytes.
However, current differentiation protocols produce immature and heterogenous cardiomyocytes, creating related issues such
as arrhythmogenicity, immunogenicity and poor engraftment. Recent efforts have enhanced our understanding of cardio-
vascular developmental biology. This knowledge may help implement novel differentiation or gene editing strategies that
could overcome these limitations.

Summary PSC-CMs are an exciting therapeutic prospect. Despite substantial recent advances, limitations of the technology
remain. However, with our continued and increasing biological understanding, these issues are addressable, with several
worldwide clinical trials anticipated in the coming years.

Keywords Stem cells - Embryonic stems cells - Induced pluripotent stem cells - Cardiomyocytes - Cardiac cell therapy -
Heart regeneration

Introduction by the inability of the adult heart to meaningfully regener-

ate, resulting in the transformation of contractile heart tissue

Myocardial infarction, the most common cause of heart fail-
ure, results in the death of up to 1 billion highly specialized
cardiomyocytes [1]. The loss of these cells is accentuated

This article is part of the Topical Collection on Regenerative
Medicine

Dinesh Selvakumar and Leila Reyes contributed equally to the work.

P< JamesJ. H. Chong
james.chong @sydney.edu.au

Dinesh Selvakumar
dinesh.selvakumar @sydney.edu.au

Leila Reyes
leila.reyes @sydney.edu.au

Centre for Heart Research, The Westmead Institute
for Medical Research, The University of Sydney, Westmead,
NSW, Australia

Department of Cardiology, Westmead Hospital, Westmead,
NSW, Australia

into akinetic and fibrotic scar [2—4]. Though considerable
advances in the treatment of myocardial infarction have
now been made, heart failure remains a devastating illness,
responsible for great morbidity, mortality and economic bur-
den worldwide [5-7].

In recent years, delivery of exogenous cells has emerged
as a favourable therapeutic strategy for the replacement of
cardiomyocytes lost after injury. Numerous cell types, pre-
dominantly of adult stem cell origin, have now been tested in
clinical trials, though results on efficacy of these cells have
been mixed [8]. It is now clear that these adult stem cells
lack capacity to differentiate into working cardiomyocytes,
exerting any beneficial effect through paracrine mechanisms
rather than remuscularization [9, 10].

The discovery of the pluripotent stems cells (PSCs), an
umbrella term encompassing embryonic stem cells (ESCs)
and induced pluripotent stem cells (iPSCs), was a break-
through in regenerative medicine due to their scalability
and capacity to differentiate into virtually all somatic cell
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types [11, 12]. Since their conception, a plethora of stud-
ies have demonstrated the capacity for both ESCs and
iPSCs to differentiate into cardiomyocytes, allowing for
a near-limitless supply of functional cardiomyocytes for
cell therapy applications.

Pre-clinical transplantation studies followed soon after,
and PSC-CMs have now been shown to remuscularize and
improve function in clinically relevant large animal myo-
cardial infarct models (Table 1) [13ee, 14ee ]5ee [Gee].
Interest in this cell type has now grown significantly, and
clinical trials around the world are imminent [17-20]
(Table 1). However, several translational hurdles have been
identified, requiring solutions before this technology can be
widely embraced as a serious contender to current clinical
approaches (Fig. 1A).

In this review, we summarize the pre-clinical work inves-
tigating PSC-CM cardiac cell therapy, highlighting limita-
tions that may inform the refinement of cardiomyocyte dif-
ferentiation strategies. We then outline the various methods
used to differentiate cardiomyocytes from PSC cultures and
characterize the cell types arising from these conditions.
This is done to help inform future strategies which may pro-
duce PSC-CMs fit for widescale clinical translation.

Summary of Pre-clinical Studies

Interest in harnessing the regenerative potential of PSCs or
their derivatives has been pursued over the past two decades.
Unlike adult stem cells, PSCs are highly expandable and
have the capacity to differentiate into virtually all somatic
cell types, providing an unlimited source of cardiomyocytes
and the prospect of replacing inert myocardial scar with
functional muscle graft. Initial speculation that environmen-
tal cues could direct undifferentiated PSCs to a cardiomyo-
cyte lineage after transplantation into the heart resulted only
in immune rejection or teratoma formation [21].

Attention turned instead toward transplantation of PSC-
derived cardiovascular progenitors (CVPs) or bona-fide car-
diomyocytes. Of these two products, CVPs have now been
evaluated in the clinical arena, with a phase 1 clinical trial
demonstrating safe delivery of these cells embedded in a
fibrin patch to patients undergoing coronary artery bypass
surgery [22ee]. The feasibility and safety of this approach
was demonstrated, paving the way for larger studies exam-
ining efficacy. However, pre-clinical evaluation of this cell
type suggests a lack of durable engraftment, with any benefi-
cial effects likely secondary to paracrine mechanisms rather
than direct remuscularization [23, 24].

This is contrasted with PSC-CM, which now have robust
data proving both remuscularization capacity and cardiac
functional improvement post myocardial infarction in small
and large animal models [13ee, 14ee 16ee 25-29 30e]. In
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2014, Chong et al. [13ee] showed remarkable remusculari-
zation capacity of this therapy after transplantation of 1 bil-
lion PSC-CMs into the infarcted hearts of pigtail macaques.
Grafts were perfused by host vasculature and electromechan-
ically coupled to native myocardium. Follow-up work, also
in non-human primate subjects, confirmed the functional
benefits of PSC-CM grafts, showing durability of the cell
graft and near normalization of left ventricular ejection frac-
tion by three months post-transplant in cell recipients [14ee,
16e¢]. Explanations for this dramatic effect were postulated
to be a combination of both cell-mediated paracrine influ-
ences as well as direct contractile force generated by the
cardiomyocyte graft.

There is now global interest in this cell type, with unpub-
lished reports of first-in-human delivery of this therapy
already emerging from China and pilot clinical trials at
various stages of development in Japan, North America and
Europe [31]. However, the aforementioned pre-clinical stud-
ies have also identified several hurdles that must be over-
come prior to successful clinical translation. Cardiac cell
therapy is exceedingly complex, and a worldwide, cross-
disciplinary approach to address mechanistic, clinical and
regulatory hurdles is essential to ensure successful transla-
tion. The following is a discussion of some of the key clini-
cal challenges faced by this therapy.

Barriers to Translation
Immunogenicity

Immune rejection is a major issue affecting the retention and
survival of transplanted PSC derivatives [32]. Though undif-
ferentiated PSCs may possess immune privilege properties,
expressing low or absent levels of major histocompatibility
complex (MHC) antigens and co-stimulatory molecules,
increased MHC expression has been documented after dif-
ferentiation leading to detection of the graft by the host
immune response [33-36].

Pre-clinical studies have generally employed xenogeneic
transplantation strategies, injecting human derived cells into
heavily immunosuppressed animal hosts, noting minimal
immune rejection [13ee, 14ee 29 30e]. However, immuno-
suppression, particularly of vulnerable heart failure patients
is not without risk, and strategies to bypass the host immune
response without drug therapy are desirable.

The advent of iPSCs heralded hopes of autologous cell
transplantation negating fears of graft rejection; however,
progress on this front has been limited by manufacturing
and regulatory hurdles [37]. Reprogramming somatic cells
into iPSCs and subsequently differentiating these to good
manufacturing practice (GMP) grade cardiomyocytes from
individual patients is an expensive and time-consuming
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Fig.1 A Summary of challenges to PSC-CM clinical translation. B
Scheme of cardiac differentiation strategies using growth-factors and
small molecules. Underlined agents are optional additives to promote
specific sub-population differentiation. BMP, bone morphogenic pro-
genitor; DKK-1, Dickkopf-1; GSK, glycogen synthase kinase; Ngn,

process, taking up to 6 months and thus not a practical or
scalable option at the current time [38].

Allogeneic transplantation of MHC matched iPSCs is a
promising alternative, allowing for banking of cryopreserved
products and more timely distribution; however, studies using
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Noggin; IWP, inhibitors of Wnt ligand production; PSC-CM, pluripo-
tent stem cell-derived cardiomyocyte; RA, retinoic acid; Rai, retinoic
acid inhibitor; ROCK, Rho-kinase protein kinase; VEGF, vascular
endothelial growth factor

this approach in large animals suggest that some degree of
immunosuppression would still be required to avoid rejection
[16ee, 39, 40]. Acquiring a cell bank that caters to modern,
multicultural and genetically diverse societies may also prove
to be an extremely challenging task [41, 42].
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The most likely way forward appears to be using gene
editing technologies. Knockout of human leukocyte anti-
gens may generate ready-to-use immunocompatible cells,
and exciting progress has already been made on this front
[43—-47]. However, further studies exploring the efficacy of
transplanting cardiomyocytes derived from these ‘universal
donor cells’ are required.

Engraftment

Aside from the host immune response, factors such as cell
delivery technique, engraftment environment and the abil-
ity of transplanted cells to physically integrate with the host
heart can also greatly affect retention and long-term survival.
In fact, it has been reported that less than 10% of injected
cells successfully engraft and survive after delivery into
the heart [48, 49]. Of these surviving cells, however, graft
expansion has been noted, and it is now known that this
phenomenon can be attributed to a subset of transplanted
cardiomyocytes with intrinsic proliferative capacity [50].
Harnessing this proliferative capacity by transcriptional
manipulation may accentuate the potential of PSC-CM
therapy to repopulate damaged myocardium. Indeed, it was
recently shown that overexpression of cyclin D2, a pro-
tein involved in cell cycle regulation, led to significantly
increased graft sizes and subsequent improvements in left
ventricular function in both small and large animal models
[51,52].

Improving functional integration of transplanted cells
with native myocardium has also been explored. Over-
expression of N-cadherin, a cell adhesion protein, has been
shown to improve engraftment and increase the survival
of implanted cells [53]. Importantly, mice receiving these
genetically modified cells also had reduced infarct sizes and
improved left ventricular function compared to cell-treated
controls.

Given transplanted cardiomyocytes die from ischaemia in
the first few days following transplantation, creating a more
favourable environment by enhancing local vascularization
may promote cell survival [54, 55]. This hypothesis was tested
in a rodent study in which PSC-CMs were co-transplanted with
ready-made microvessels obtained from adipose tissue [56].
Microvessels showed persistence and integration at early and
late time points, resulting in increased graft perfusion and sur-
vival and leading to improved functional recovery following
myocardial infarction.

Creating PSC-CM grafts of sufficient size to support
clinically meaningful function is one of the key challenges
facing cardiac remuscularization [57]. A combination of
generating cardiomyocytes with greater proliferative and
integrative potential along with developing a more favour-
able transplant environment are both important strategies in
the pursuit of improving PSC-CM engraftment.

Arrhythmogenicity

Perhaps the most concerning hurdle to PSC-CM clinical
translation is arrhythmogenicity. Ventricular arrhythmias
have now been identified post-cell transplantation in several
large animal studies [13ee, 14ee 16ee 29 30e]. Though
initial reports from small animal experiments proposed this
cell type conferred anti-arrhythmic effects, this has been
unequivocally refuted in larger animals with similar car-
diac size and physiology to humans [28]. In hindsight, the
high basal heart rates of rodents (500-600 beats per minute)
likely surpassed the maximal contraction rate of transplanted
cardiomyocytes, masking the arrhythmogenic potential of
these cells.

Even though these arrhythmias are often transient, gen-
erally subsiding within a few weeks following cell trans-
plant, if left untreated, heart failure can ensue, and in severe
cases sudden cardiac death can result from degeneration of
the rhythm into ventricular fibrillation [29, 30e]. Electro-
physiological studies performed in animals with sustained
engraftment arrhythmia have demonstrated enhanced auto-
maticity at the site of cell engraftment, suggesting the cell
grafts behave as an ectopic pacemaker superseding the host’s
sinoatrial node [14ee, 29].

Although postulated mechanisms underpinning these
arrythmias range from factors related to cell preparation,
transplantation techniques or host characteristics, the mecha-
nism likely relates to the intrinsic characteristics of input
cells. PSC-CM exhibit automatic behaviour with spontane-
ous contraction in vitro, and this automaticity appears to
be retained post transplantation until the graft matures and
forms stable electrical connections with the recipient heart
in vivo [8, 13ee 29, 58, 59]. Histological assessment has
shown greater expression of gap junction proteins such as
connexin 43 at later timepoints when engraftment arrhyth-
mias have been shown to subside, supporting the notion that
early impairment of electrical coupling between host and
graft is important in arrhythmogenesis [13ee, 29].

Current differentiation protocols yield relatively imma-
ture cardiomyocytes, with calcium handling and electrophys-
iological properties akin to foetal cardiomyocytes [60, 61].
In addition, heterogenous cell products are common, and
though ventricular cardiomyocytes predominate, a mixture
of other cells is present including atrial myocytes, cardiac
conduction tissue, fibroblasts and endothelial cells [62-64].
This cellular diversity may contribute to arrhythmogenicity,
and in particular, the presence of pacemaker cells may be
a driving factor in the automatic arrhythmias encountered.

A recent study has demonstrated that pharmacologic
therapy can supress engraftment arrhythmias [30e]. Here, a
combination drug treatment with amiodarone and ivabradine
significantly improved but could not completely eradicate
these cardiac rhythm disturbances. This highlights the need
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to optimise cell products prior to pursuing clinical transla-
tion [30e]. Interestingly, blockade of the pacemaker current
with ivabradine was shown to have potent effects in reduc-
ing the heart rate of pigs in engraftment arrhythmia, again
alluding to the potential importance of attenuating cellular
automaticity and pacemaker myocyte subpopulations.

Cell dosage may be another important factor in
arrhythmogenicity. Initial studies in pigs and non-human
primates have delivered cell doses ranging from 750 mil-
lion to 1 billion cardiomyocytes, though much lower cell
doses of 2—-120 million cardiomyocytes transplanted into
infarcted pig hearts have not result in substantial engraft-
ment arrhythmias, raising questions on whether cell dose
may be an important predictor of arrhythmic burden [13ee,
14ee, 160e, 29, 30e, 51, 65, 66].

Overcoming the arrhythmogenicity of PSC-CMs is para-
mount to its clinical success, and to date a complete solution
remains elusive. It is likely that modification of both cell
specific and graft recipient factors will be required. This may
include addressing the cellular heterogeneity of current dif-
ferentiation protocols, enhancing maturity and gap junctions
of engrafted cardiomyocytes and conducting dose escalation
experiments to identify the optimal PSC-CM transplantation
dose.

Concluding Remarks on Clinical Challenges

Though great promise has been shown, there remain limita-
tions to PSC-CM therapy in its current form and address-
ing these is the focus of intense worldwide research efforts.
Thorough knowledge of cardiomyocyte differentiation strat-
egies and their underlying biology are required to develop
cells more fit for widescale clinical use. In the following
sections, we shift our attention to explore the basic studies
and biology of PSC-CMs, highlighting differentiation and
cell production strategies along with techniques to charac-
terize output cells. Understanding these processes may help
guide future cell products with robust reparative capacity
and minimal adverse effects.

Cardiac PSC Differentiation Strategies

Knowledge from developmental biology, specifically the
induction of mesoderm and cardiac lineages, has guided the
many cardiac differentiation strategies currently established
for use with pluripotent stem cells. These methods try to
recapitulate different stages of embryonic development, with
many studies elucidating signalling pathways that lead to
primitive streak formation (stage 1), induction and specifi-
cation of cardiac mesoderm (stage 2) and the expansion of
committed cardiac lineage cells (stage 3) (Fig. 1B).
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Growth Factors and Peptides

Initial cardiac PSC differentiation strategies utilised growth
factors and peptides involved in key cardiovascular develop-
ment pathways (Fig. 1B). These include the activin/nodal/
transforming growth factor (TGF)-p, Wingless-related inte-
gration site (Wnt) and bone morphogenic progenitor (BMP)
pathways, and as such the growth factors, Activin A, BMP,
basic fibroblast growth factor (bFGF), insulin growth factor
(IGF)-1, vascular endothelial growth factor (VEGF), Wnt
and Dickkopf-1 (Dkk-1), have all been investigated for car-
diomyocyte differentiation [64, 67—73]. Initial studies dem-
onstrated the dose, timing and combination of growth factors
are critical for effective cardiomyocyte differentiation. For
example, using the endogenous Wnt inhibitor, Dkk-1, at the
beginning of culture (day 2-3) suppressed cardiac mesoderm
induction, whilst Wnt later inhibition (day 4) promoted car-
diac specification [67, 74]. Studies investigating different
combinations of growth factors showed the optimal yield
of pure cardiomyocytes across multiple PSC cultures was
best achieved with serial applications of BMP and Activin
A [67].

Techniques to produce specific cardiomyocyte subpopu-
lations of interest have also been explored. Recently, the
importance of retinoic acid signalling in determining cardio-
myocyte fate has been reported [64, 75-79]. Activation of
this pathway commits cardiomyocyte differentiation towards
an atrial or pacemaker lineage, whereas inhibition may pro-
mote generation of more ventricular myocytes.

Though growth factor and peptide-based differentiation
strategies have been favoured in pre-clinical transplantation
studies, the feasibility of upscaling cell production using
this approach would be cost prohibitive for clinical transla-
tion, highlighting the need for alternative approaches [13ee,
1400 28, 80].

Small Molecule Agonists and Antagonists

Using small-molecule agonists and antagonists is one such
alternative strategy that overcomes the burden of cost asso-
ciated with growth factor-directed differentiation meth-
ods (Fig. 1B). Most of these agents harness the important
temporal role of Wnt signalling on cardiac differentiation
as described above [81, 82]. Though initially relying on
endogenous Wnt inhibitors such as Dkk-1, this strategy later
evolved to use small-molecules in conjunction with growth-
factor and serum-free protocols.

In general, these protocols involve the addition of
CHIR99021, a Wnt activator, to PSC culture at the begin-
ning of differentiation (day 0), triggering cardiac mesoderm
induction. This is followed by the addition of small-molecule
inhibitors of Wnt ligand production (IWPs) at day 3 using
insulin-free medium to commit cells to the cardiomyocyte
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fate [83, 84]. This differentiation strategy proved to be more
robust than growth-factor mediated techniques, generating
80-98% cardiomyocyte purity across multiple PSC lines,
and has now been adopted as the preferred differentiation
protocol for several pre-clinical studies [83—-86].

Refining Cardiac Differentiation Strategies

Attention has now turned to the important refinement of
these traditional differentiation protocols, seeking ways
to improve expansion, purity and survival of derived car-
diomyocytes. An early study demonstrated that heat shock
treatment by incubating cardiomyocytes at 43 °C for 30 min
improved cell survival and engraftment [25]. Given the
effectiveness of the extracellular matrix (ECM) to support
PSC cultures, the addition of Matrigel, a commercially avail-
able ECM preparation, was tested and shown to substan-
tially increase both cardiomyocyte purity and survival [71,
87, 88]. Furthermore, the addition of pro-survival factors
(anti-apoptotic Bcl-XL, mitochondrial membrane blocker
cyclosporine A, IGF-1 and caspase inhibitor, ZVAD-fmk)
as well as using insulin-free medium or ROCK inhibitor
(Y27632) has been shown to generate a higher proportion
and improve survival of cardiomyocytes [69, 84]. Other
studies have explored the effect of cellular media, cell—cell
contact and physical separation to improve cardiomyocyte
yield and purity [72, 89-91].

One of the major advancements in cardiomyocyte purifica-
tion was the use of metabolic selection [92]. This method takes
advantage of the differences of glucose and lactate metabo-
lism between cardiomyocytes and non-cardiomyocytes. The
culturing of PSC derivatives in glucose-depleted and lactate-
abundant conditions favoured the survival of cardiomyocytes,
with >95% purity.

Scalability and Production of PSC-CM

Alongside the purity of PSC-CM, it is also important to con-
sider the most efficient production method given that poten-
tially billions of cardiomyocytes will be required for clinical
trials. Early protocols used embryoid bodies in serum-
dependent systems; however, these produced inconsistent
results and more concerningly low cardiomyocyte yield [93].
Protocols later evolved to a monolayer-based, serum-free
system which drastically improved the efficiency of cardiac
differentiation. However, the scalability and reproducibility
of myocyte yields using these protocols better suited small-
scale applications such as disease modelling, drug screening,
in vitro studies and small animal studies [94—-102]. More
recent advancements have come with bioreactor technology,
using 3D cultures and stirred tank bioreactors at large vol-
umes to generate billions of PSC-CM with small molecule

directed differentiation [103, 104]. When combined with
thermoresponsive nanobridges, which allows passaging
and dissociation without the need of enzymes or small mol-
ecules, cardiomyocyte survival and expansion is drastically
improved [105, 106]. As such, bioreactor technology appears
a promising manufacturing platform for PSC-CM expansion
as the field moves forward to clinical translation.

Characterization of PSC-CM

Though the differentiation strategies to procure pure PSC-
CM have improved over time, there is still a considerable
degree of heterogeneity of both myocyte and non-myocyte
populations with current differentiation strategies [107e]. As
highlighted earlier, this cellular diversity may contribute to
the therapeutic limitations arising post transplantation, and
as such, there is a need to correctly identify cardiomyocyte
sub-populations of interest for inclusion or exclusion.

Considerable effort has now been aimed at sub-population
characterization by examining a range of parameters including
cell morphology, surface marker expression, gene and protein
expression, distribution of ion channels and electrophysiologi-
cal properties (Table 2).

Markers to Distinguish Cardiomyocytes
from Non-myocytes

From a manufacturing perspective, identifying markers that
facilitate the isolation of pure cardiomyocytes is critical
for quality control. Gene expression profiles by real-time
reverse-transcription polymerase chain reaction (RT-PCR)
are commonly used at different timepoints during cell pro-
duction to confirm validity of differentiation protocols.
Downregulation of pluripotency markers (POUSF ) concur-
rent with the upregulation of mesodermal markers (MESP1,
T, MIXL]) signify the cell committing to mesoderm induc-
tion in the first few days of differentiated cultures (day 2),
followed by the expression of early cardiomyocyte markers,
(KDR, ISL and GATA4) mid-culture (days 5-6), and later the
expression of markers such as NKX2-5, TBX5 and MEF2C
which signify a cardiomyocyte fate [89].

At the completion of differentiation, cardiac troponin T
positivity has become the gold standard to deduce cardio-
myocyte purity; however, more recently, additional cardio-
myocyte markers such as signal regulatory protein alpha
(SIRPA) and vascular cell adhesion protein (VCAM) have
also been uncovered further improving reliability of cardio-
myocyte detection [73, 108, 109].

Identification of non-cardiomyocytes is of equal impor-
tance in assessing differentiation purity. Marker signa-
tures for several non-myocyte cell types are now known,
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including endothelial cells (VE-cadherin, CD31, CD34),
vascular smooth muscle cells (transgelin, calponin), mes-
enchymal/fibroblast-like cells (CD90, TE-7), endodermal
cells (SOX17, FOXA2, EpCAM) and pan-mesodermal cells
(EOMES) [15ee, 73, 107, 110, 111].

Hence, both gene and surface marker expression can be
used as important quality control tools in the process of man-
ufacturing pure and reproducible clinical grade PSC-CMs.

Cardiomyocyte Maturity Markers

Current differentiation protocols yield phenotypically
immature cardiomyocytes, one of the critical issues con-
tributing to arrhythmogenicity post transplantation [112].
These immature cells have foetal cardiomyocyte features,
including altered calcium handling, weak contractions and
poor subcellular organization and structural alignment [112].
Contrastingly, ‘more’ mature cardiomyocytes derived from
PSC cultures are better reflective of adult human cardiomyo-
cytes possessing increased cell size, greater proportion of
multinucleated cells, more compact myofibril density, align-
ment and organization, faster calcium handling and stronger
contractile performance [62, 112, 113e].

Though prolonged culture and other techniques to hasten
maturation have been described, such processes would bal-
loon production costs for widescale clinical applications [62,
112, 114, 1159, 116]. Thus, understanding and potentially
altering important genes involved in cardiomyocyte matu-
ration may be of great benefit moving forward into clinical
translation. Single cell ribonucleic acid sequencing (scRNA-
seq) experiments have broadened our knowledge in this area,
detecting genes expressed earlier (TNNI1, MYH6) and later
(NKX2-5, MYH7,MYL2, TTN, TNNI3, MYL2) in embryonic
heart development to identify immature and mature cardio-
myocytes [107¢]. Metabolic gene signatures associated with
cardiomyocyte maturity have also been elucidated, along
with potential surface markers denoting mature cardiomyo-
cytes [113e].

Markers to Distinguish Ventricular Cardiomyocytes
from Atrial and Pacemaker-Like Cells

Also of particular importance to the arrhythmogenicity
of PSC-CMs is cellular heterogeneity, with current differ-
entiation protocols producing atrial and pacemaker cells
in addition to the more electrically quiescent ventricular
cardiomyocytes.

Thus, it is advantageous to distinguish cardiomyocyte
sub-populations from one another, with ventricular car-
diomyocytes being the desired subpopulation for thera-
peutic benefit in clinical indications such as heart failure.
NKX2-5 is considered a useful marker to differentiate

@ Springer

atrial and ventricular cardiomyocytes from sinoatrial node
(SAN) pacemaker cardiomyocytes given that its expres-
sion is absent in the second heart field lineage, from where
SAN cells are thought to arise [117]. The surface marker
signature NKX2-5"SIRPA*CD90~ has been shown to
efficiently isolate a highly enriched SAN-like pacemaker
population, whereas a CD77*CD200™ signature has been
shown to effectively isolate > 97% troponin-positive ven-
tricular cells [118, 119].

These surface marker signatures carry the great advan-
tage of allowing isolation of desired subpopulations
through fluorescence-activated cell sorting (FACS). How-
ever, though this may be a suitable strategy to generate
pure cardiomyocyte subtypes for use in in vitro or small
animal experiments, it may not meet the needs of clini-
cal translation due to excessive time and cost constraints,
along with substantial reductions in overall cell yield.

Gene expression profiles obtained by RT-PCR have also
been routinely used to characterize PSC-CM sub-popula-
tions as either atrial (NPPA, GJAS5, KCNAS, SLN), ven-
tricular (MLC2V, IRX4) or nodal (TBX18) [64, 89, 120].
Both bulk and scRNA-seq experiments have revealed that
strict categorization of cell types to ventricular, atrial or
pacemaker-like cardiomyocytes by their gene expression
profile alone has limitations given that gene expression
may be transient and/or more reflective of cardiomyocyte
maturation than subpopulation determination [121e]. This
should be kept in mind for the characterization of PSC-CM
fated for clinical trials.

Conclusion

Regenerative medicine in the cardiovascular field is at a
particularly exciting stage. Learning from lessons of the
adult stem cell field, new robust PSC-CM clinical trials
have commenced with several more working through the
regulatory stages. Barriers to ultimate widescale clini-
cal translation remain. However, this is normal for any
new cutting-edge therapeutic technology. Iterative and
incremental learning will continue through to phase II1/
IV clinical trials and beyond. Further understanding of
cardiovascular developmental biology and characterization
of PSC derivatives may help streamline current cardiac
differentiation strategies, cultivating a cell product capable
of robust engraftment and infarct repair whilst avoiding
potential immuno- and arrhythmogenicity. A worldwide,
cross-disciplinary approach is needed to progress our
biological understanding of PSC-derived cardiac line-
ages along with their therapeutic applications and clinical
effects.
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