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Abstract

Exercise has been shown to benefit brain structure and function, particularly in aging populations. 

However, the mechanisms by which exercise exerts its effects, especially in humans, are not fully 

understood. This review argues that one reason for this knowledge gap is that exercise likely 

operates through multiple levels of mechanisms. Further, the mechanisms of exercise may vary 

depending on factors such as age and health state. We discuss the state of evidence at each 

of three levels of analysis (molecular/cellular, brain structure/function, mental states and higher-

order behaviors) and highlight consistencies across these levels, inconsistencies within them, and 

knowledge gaps. Lastly, based on these, we speculate about which mechanisms of exercise may be 

universal across age groups and populations vs. those that might be distinct to specific age ranges 

or populations.
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Challenges of identifying mechanisms of exercise

Exercise unequivocally influences the brain [1–6]. However, fundamental questions remain 

regarding the effects of exercise on brain health and subsequent behavioral manifestations 

such as cognitive function. In part, despite important insights from animal models, the 
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mechanisms by which exercise affects the brain remain largely unknown, particularly in 

humans. But first, what exactly does it mean to refer to mechanisms of exercise?

When discussing mechanisms, we are interested in inferring a path (or paths) by which 

a behavior or intervention -- in this case, exercise -- produces changes in an endpoint 

of interest. In this article, we focus primarily on two frameworks that can be used to 

infer causality and thereby identify mechanisms—one is related to study design, and the 

other to statistical approach [7,8]. Briefly, in the first framework causal evidence comes 

from experimental manipulations of exercise behavior, which in humans are referred to 

as randomized controlled trials (RCT) (see Glossary), or from animal models in which 

one group of animals is permitted to exercise while another group is treated as a control. 

Causality is established if the outcome variable (e.g., cognition) changes to a greater extent 

in the treatment (e.g., exercise training) group relative to the control group.

When random assignment is not possible or the independent (i.e., treatment) variable is not 

directly manipulated, a statistical framework for causal inference can be used (i.e., statistical 

mediation). Statistical mediation evaluates pathways between the treatment and outcome 

variables by examining the roles of several intermediate variables that might lie in the 

causal path. The intermediate variable is considered a mediator if the coefficient describing 

the strength of the treatment-outcome relationship through the mediating variable, known 

as the indirect effect, is statistically significant [9]. In other words, if the indirect effect 

is significant, the mediator is a viable mechanism by which the independent variable 

influences the outcome. This approach is most frequently used to infer possible causal 

relationships from non-experimental study designs, such as longitudinal, observational, and 

quasi-experimental studies.

Beyond the above strategies to identify mechanisms, we have previously highlighted that 

there are also multiple levels of mechanisms by which exercise might work [8]. That is, 

while many of the widely discussed mechanisms of exercise are molecular or cellular in 

nature and inferred from animal models, exercise-induced changes in cellular and molecular 

pathways are bound to also initiate changes in more macroscopic properties of the brain 

(e.g., brain structure and function) and/or in higher-level behaviors or mental states that 

could in turn independently influence outcomes such as cognition.

Given that exercise affects most, if not all organ systems in the body, it seems likely 

that its effects on the brain operate via multiple mechanisms, rather than a single one. In 

particular, it seems logical to assume that different mechanisms could operate across age 

groups, brain regions, and subject populations. Equally important is that various modes, 

frequencies, intensities, and durations of exercise might elicit different pathways and thus 

have differing effects on brain health outcomes. Yet, there are often implicit assumptions 

about similar mechanisms operating across exercise types, modalities, populations, and brain 

regions. The primary goal of this paper is not to comprehensively review the literature on 

exercise mechanisms, as there are already many reviews on this topic [e.g., 2,8,10]. Rather, 

we aim to highlight consistencies across mechanistic levels, as well as inconsistencies and 

gaps between them. Through this synthesis, we also speculate about which mechanisms of 

exercise may be more universal (e.g., across populations or age groups) vs. those that might 
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be distinct to specific contexts. For the purposes of this review, we will rely predominately 

on studies employing randomized interventions or statistical mediation models, as these are 

the two frameworks that provide the strongest mechanistic evidence. Moreover, we will 

focus mostly on aerobic exercise (hereafter ‘exercise’), but will specify when referring to 

other forms of exercise, such as resistance training.

Exercise and cognitive function

A recent systematic review conducted in part for the 2018 Health and Human Services 

Physical Activity Guidelines for Americans Advisory Committee, summarized the existing 

evidence for the effects of exercise interventions on cognitive function across the life 

span, as well as in clinical disorders [11]. This umbrella review concluded that there 

is moderately strong evidence that moderate-vigorous exercise leads to improvements in 

cognition, especially processing speed, memory, and executive function. By far the strongest 

evidence for the cognitive-enhancing effects of exercise come from studies focusing on 

two age windows, i.e., children of ages 6–13 and adults over 50 years old, as well as 

populations with dementia or other cognition-impairing condition (e.g., schizophrenia). 

Notably, although evidence for the effects of exercise in children and older adults is the 

strongest, it is still marred by inconsistencies and deficiencies in study design [e.g., see 12]. 

There is therefore still a need for rigorous and adequately powered RCTs in these groups to 

more definitively evaluate the effects of exercise on cognition.

There is also emerging evidence that exercise has beneficial effects on cognition in non-

neurologic or psychiatric conditions, such as in women treated for breast cancer who 

experience co-occurring cognitive symptoms and complaints (Box 1). While there are 

complexities in defining specific age ranges for developmental periods such as adolescence 

[e.g., see 13], age groups are used to simplify the presentation of the studies discussed here. 

With that, there are major gaps in our understanding of the effects of exercise on cognition, 

particularly in early childhood (<6 years old), adolescence (approximate age range of 14–

17), and young to middl-eage adulthood (ages 18–50). Work in these areas is emerging [e.g., 

14], but there is currently insufficient evidence from studies employing causal designs to 

support firm conclusions regarding the effects of exercise on cognitive outcomes in these age 

ranges.

What is known about cellular and molecular (‘Level 1’) mechanisms of 

exercise?

Aerobic exercise induces significant biochemical changes in the brains of animals [2,5 for 

reviews,10]. Some of the most widely studied molecules in animal models are (1) brain 

derived neurotrophic factor (BDNF), which initiates a host of downstream effects including 

long-term potentiation and proliferation of neurons; (2) vascular endothelial growth factor 

(VEGF) which supports blood vessel survival and growth; and (3) insulin-like growth factor 

(IGF-1) which influences several neural and angiogenic processes [2]. In humans, most 

studies on exercise-induced cellular/molecular changes have focused on analytes measurable 

in the bloodstream or cerebrospinal fluid. For example, meta-analyses and reviews have 

concluded that there are increases in BDNF after long-term exercise in children, adolescents, 
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younger adults, older adults, Alzheimer’s patients, and those with psychiatric disorders, 

despite some inconsistency in the findings across individual studies [15,16 for review]. 

In addition, circulating levels of BDNF in humans statistically mediate exercise-related 

improvements in executive functioning [17] in adults older than 71 years of age. This pattern 

of evidence supports the hypothesis that BDNF may be a mechanism of exercise that is 

conserved across species and age groups in humans (Figure 1, Key Figure).

In older adults, there is also evidence that IGF-1 levels increase following exercise, although 

this effect is again somewhat inconsistent across studies [see 18 for a recent meta analysis]. 

A major open question is whether exercise influences IGF-1 levels across the lifespan, as 

studies of exercise and IGF-1 in age groups other than older adults are lacking. The evidence 

linking VEGF and exercise in humans is similarly limited [but see 19].

An overarching limitation of assessing Level 1 mechanisms in humans is that it is 

notoriously difficult to assess these molecular pathways in vivo. That is, rather than 

measuring the relevant biomolecules directly from the brain, as is typical in animals, indirect 

measures of them (i.e., circulating analytes) are often used to infer brain levels in humans. 

However, there are also non-neuronal sources, kinetics, and roles of these biomolecules 

in humans [e.g., 20], which introduces an inherent source of error into inferences about 

their brain levels. Further, these biomolecules could play different roles in childhood vs. 

older adulthood or across health states [e.g., 21] and this could potentially influence their 

sensitivity to exercise. For example, it’s possible that older adults or patients deficient in 

one or more of these biomolecules may experience greater increases in response to exercise 

compared to groups with normal levels.

What is known about the effects of exercise on brain structure and function 

(‘Level 2’ mechanisms)?

Gray Matter

The most widely studied brain region in the context of exercise is the hippocampus. This 

stems from the fact that foundational work on exercise mechanisms was conducted in rodent 

models and established that exercise promotes neurogenesis (likely in response to increases 

in aforementioned neurotrophins) in the hippocampus and improves hippocampal-dependent 

cognitive functions (e.g., learning and memory) in aging animals [10]. While significant 

questions remain regarding both the similarities and differences between hippocampal 

neurogenesis in rodents and humans [for discussion see 22,23], many studies on the effects 

of exercise in humans have focused on gray matter volume of the hippocampus during 

aging, partly with the goal of assessing the relevance of parallel findings in animal models to 

humans [24].

While the focus of exercise RCTs to date has been on older adults, a recent meta-analysis 

reported that (various types of) exercise may attenuate age-related loss of left hippocampal 

volume including participants ranging from 24–76 years old and ranging from healthy to 

those diagnosed with a clinical disorder [24]. This net positive effect is notable given the 

degree of heterogeneity not only in populations, but also in intervention characteristics 
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(e.g., intensity, control groups, duration) across studies included in the meta-analysis. Within 

older adults, there was mitigation of volume loss for both the left and right hippocampus 

following exercise. While this could suggest that the effect of exercise might be stronger 

in this subgroup, the scarcity of studies in other populations makes it difficult to draw a 

firm conclusion. In fact, for this same reason, in their meta-analysis the authors were unable 

to examine the effect of exercise in other subgroups. Furthermore, the extent to which 

hippocampal volumetric changes mediate improvements in cognitive processes in these age 

groups is still unknown.

Conspicuously missing from the existing literature are RCTs of exercise and hippocampal 

volume in children and adolescents. RCTs that examine hippocampal volume changes 

in young and middle age adults are also scarce [but see 25–27]. However, there is 

cross-sectional evidence in these groups that provides support for a link between exercise 

and related constructs (e.g., cardiorespiratory fitness), hippocampal volume and cognitive 

performance in healthy children (9–10 years old), adolescents, young and middle-aged 

adults (but not yet in very young children) [28–31]. More work is needed to assess whether 

hippocampal volumetric and functional changes can be detected in the context of RCTs in 

lesser-studied age groups and what, if any, specific intervention parameters are required to 

do so.

A common limitation of the existing studies of exercise and hippocampal volume is the 

lack of consistency in terms of whether studies also concurrently assess behavioral outcomes 

(i.e., cognitive functioning). Co-assessment of brain volume and cognitive changes would be 

necessary in order to make a more substantive causal link between exercise, hippocampal 

volume and cognition. Nonetheless, a net positive effect of exercise on hippocampal volume 

from existing RCTs, coupled with promising cross-sectional work in less-studied groups 

lend support to the idea that exercise preserves hippocampal volume and this might be 

the case across species [e.g., see 32,33 for animal studies], and across age groups and 

health states (Figure 1). This of course does not rule out the possibility that age or other 

characteristics could moderate the effect, nor the possibility that that there could be multiple 

molecular mechanisms underlying the effects of exercise on hippocampal volume [33,34].

Although not as consistently studied as the hippocampus, there is evidence that exercise 

also affects cortical volume. In population samples of healthy individuals, studies have 

demonstrated that specific brain regions in the frontal, parietal and temporal cortex are 

susceptible to the influence of exercise, as denoted by changes in cortical volume and 

cortical thickness across the lifespan and within different healthy populations [1, see also 

35]. However, recent RCTs in clinical populations have been more equivocal [36,37]. 

Altogether, there is insufficient evidence to conclude whether changes in cortical volume 

are a universal mechanism underlying exercise-induced cognitive improvements.

The trajectory of neural development across the lifespan is an important factor to consider 

in relation to the strength of exercise’s effects on regional gray matter volume. Cortical 

brain regions, particularly the prefrontal cortex, are still rapidly developing in children 

and adolescents, whereas the hippocampus is (structurally) mostly developed at these ages. 

Conversely, the hippocampus (along with prefrontal cortex) is often amongst the first regions 
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to show structural atrophy in aging [38]. One could speculate that the effects of exercise 

are largest in the prefrontal cortex during youth as this region is more developmentally 

plastic. Given these different developmental influences, one cannot assume that the strength 

of exercise’s effects in well-studied regions, such as the hippocampus, are the same across 

the lifespan.

White Matter

A growing number of studies, including several RCTs, have begun to examine the potential 

effects of exercise on white matter (WM) volume, lesions, and microstructure [39–43]. 

As with studies of gray matter, studies of WM and exercise have also focused primarily 

on cognitively-normal older adults [for review see 43]. Although the results of individual 

studies are mixed, meta-analytical results [43] indicated a small but significant net effect 

of exercise on higher global WM volume and smaller global volume of WM lesions in 

older adults. Of note, out of 29 studies included in the meta-analysis, only 2 were RCTs 

[44,45]. More recent RCTs of exercise and WM in healthy older adults have either found no 

change in WM structure following exercise [41], or have reported that only certain types of 

exercise, such as dance [39] or resistance exercise [46] influence WM structure. The fairly 

inconclusive results from RCTs therefore suggest a need for additional controlled studies on 

traditional aerobic as well as other types of exercise. In addition, there are likely to be some 

key boundary conditions [e.g., sex, genetics; see 47] of the effects of exercise on WM in late 

adulthood.

A systematic review of the effects of exercise in youth reported emerging evidence that 

exercise benefits WM structure in typically developing children [48]. The effects of exercise 

on WM structure (e.g., WM integrity) also appear to extend to pediatric patient populations, 

including those recovering from brain tumors [37,49], although very few RCTs have been 

conducted in pediatric clinical populations to date.

An overarching limitation of the WM research is that few studies have been randomized 

interventions. Even fewer have directly examined whether exercise-related increases in WM 

structure can also be linked to meaningful functional (e.g., cognitive) improvements [but 

see 42 for a recent example in young adults]. Finally, there is again a dearth of studies in 

children <6 years old, adolescents, and young to middle-aged adults. Limitations aside, even 

if changes in WM do turn out to be a universal Level 2 mechanism underlying some of the 

cognition-enhancing effects of exercise, it is still unlikely that the pathways underlying such 

changes are consistent across age groups. For example, while changes in health factors such 

as blood pressure following exercise have been proposed as a mechanism influencing white 

matter outcomes in middle aged or older adults [e.g., 50], this is a far less likely mechanism 

in children or patient populations with no vascular pathology. However, this does not rule 

out the possibility that vascular health changes are closely tied to exercise-related WM 

changes in older adults, while partly overlapping or completely separate pathways underlie 

WM changes in other age groups and populations.
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Brain Structure and Function

While a less often studied brain outcome in the context of RCTs, several recent reviews 

provide evidence that changes in brain structure and function mediate some of the effects 

of exercise on cognition (‘Level 2’ mechanisms) both in preadolescent children and older 

adults [8,48,51].

Existing studies in older adults have predominately focused on the effects of exercise on the 

connectivity of large-scale functional networks, such as the default mode network (DMN) 

[8,51]. Despite much heterogeneity across existing RCTs, some general patterns emerge. 

For example, exercise generally leads to increased functional coherence within the DMN, as 

well as increased cross-network specificity across functionally distinct networks [51]. There 

is also emerging work using EEG in this age group, which demonstrates a decrease in P3b 

latency following exercise training that is linked to better cognitive performance [52].

In contrast, for children the effects of exercise on brain function have focused predominately 

on task-evoked activation. Activation changes typically differ in direction depending on the 

region and task, with conflicting results often reported within the same region (e.g., in the 

anterior cingulate cortex) across existing studies. The parietal cortex was the only region in 

which RCTs consistently showed decreased activation during inhibitory task performance 

coupled with cognitive improvements [48]. This may indicate that exercise improves neural 

efficiency in childhood. Emerging cross-sectional and RCT work using EEG in children also 

supports the neural efficiency hypotheses in that improved cognitive performance following 

exercise is linked to shorter P3b latencies and larger P3b amplitudes [52].

Functional brain changes in response to exercise may be the most uncharacterized of 

the Level 2 mechanisms, since there are a range of analytical approaches and contexts 

(e.g., rest vs. task) of functional magnetic resonance imaging that could further compound 

other overarching limitations, such as the heterogeneous nature of exercise interventions. 

Further complicating the picture on functional brain mechanisms is the fact that this type of 

mechanism has been widely unexplored in RCTs or via statistical mediation in populations 

other than children and healthy older adults [but see 53 for a recent study in individuals with 

mild cognitive impairment].

Another relevant factor to consider is that exercise-related functional mechanisms could very 

well differ across age groups. For instance, the DMN and attentional networks are relatively 

immature in children and may not fully develop until early adulthood [54]. This would 

likely influence the functional connections most likely to be affected by exercise in younger 

populations--e.g., one possibility is that exercise training makes these networks more ‘adult-

like’ in these age groups. However, convergence in terms of the brain outcomes assessed in 

exercise interventions across age groups has so far been lacking, so these abovementioned 

possibilities remain to be tested. A final point to emphasize regarding Level 2 mechanisms 

is that they are likely to be inter-connected with Level 1 mechanisms (Box 2). Interactions 

amongst these levels, however, is still an area of emerging research.
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What is known about the psychosocial (‘Level 3’) mechanisms of exercise?

Mood

By “psychosocial mechanisms of exercise” we refer to mental states and higher-order 

behaviors that may be influenced by exercise and thus contribute to some of its salutary 

effects on brain and cognition. Mood, in particular depressive symptomology, is one 

likely candidate psychosocial mechanism of exercise [8]. In population samples of healthy 

individuals, higher levels of objectively measured physical activity are associated with lower 

levels of depressive symptoms and better cognitive function in children and adolescents 

(ages 5–17) [55,56], as well as older adults [57]. However, it is important to note that 

most of the evidence to date in psychologically normal (i.e., not clinically depressed) 

samples is cross-sectional in nature, and existing RCTs in non-clinically depressed adults 

rarely examine cognitive outcomes [58,59]. These gaps render any conclusions regarding 

depressive symptoms as a mechanism of exercise-induced cognitive improvements in 

psychologically normal samples tenuous.

Most of the causal evidence for mood as a mechanism of exercise comes from studies 

of patients diagnosed with a mental disorder (e.g., major depression) (Figure 1). A 

recent meta-analysis of exercise interventions [60] concluded that exercise is an effective 

additive treatment (compared to treatment-as-usual) to reduce symptoms of depression 

in adolescents, young adults, and older adults with depressive or psychiatric disorders. 

Moreover, exercise concurrently improves the cognitive symptoms typical in these disorders, 

supporting that exercise-induced changes in mood may at least partially underlie exercise-

induced improvements in cognitive function in patient populations [60], and there is 

evidence that this occurs through molecular and structural brain changes (Box 3). It is 

also possible that exercise-related improvements in cognition partially mediate reductions 

in depressive symptoms. The mechanisms linking exercise to cognition and depressive 

symptoms may therefore be bidirectional.

Sleep

Sleep is another candidate psychosocial mechanism of exercise. Sleep outcomes (most 

often efficiency and duration) improve in middle-aged to older adults following exercise 

interventions [61,62], although the evidence from intervention studies is inconsistent for 

children, adolescents and young adults. This is potentially attributable to the heterogeneous 

methodology and quality of the included studies [61]. In adult patient populations with sleep 

disruptions (e.g., sleep apnea, insomnia), exercise training also has a positive impact on 

sleep outcomes [63,64]. While fewer RCTs of exercise and sleep exist in youth patient 

populations (e.g., pediatric cancer), cross-sectional evidence supports that the positive 

effects of exercise on sleep extends to these groups as well [65].

Critically, sleep is also known to have restorative effects on brain regions especially sensitive 

to exercise such as the prefrontal cortex and hippocampus [66], and this may be one of 

the Level 3 pathways by which exercise-induced improvements in sleep underlie exercise-

induced changes in cognitive function. A recent statistical mediation study [67] supports this 

idea. In a sample of 112 younger (n = 59) and older (n = 53) adults, the authors found that 
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the association between objectively measured physical activity and measures of executive 

control could be statistically accounted for by sleep efficiency. However, sleep efficiency did 

not account for the relationship between physical activity and processing speed. Likewise, a 

correlational study in older adults concluded that physical activity and sleep quality relate to 

cognitive performance (measured using the Alzheimer’s Disease Assessment Scale) through 

independent mechanisms after finding no evidence of mediation [68], suggesting some 

degree of mechanistic specificity of exercise on cognitive processes. Given the central role 

of the prefrontal cortex in executive control processes, one explanation for this pattern of 

results is that prefrontal processes may be especially sensitive to exercise due to the effects 

of efficient sleep on this region. Of course, a major limitation of both studies cited above is 

that they are cross-sectional in nature. RCTs of exercise measuring both sleep and cognitive 

outcomes are needed in order to more definitely test sleep as a mechanism of exercise across 

younger age groups, and to test whether it operates on multiple cognitive domains. For 

example, it is possible that sleep is only a mediator in populations with poor sleep quality/

efficiency as opposed to those with high-quality sleep, but this idea (and others) remains to 

be tested.

Concluding Remarks

Given that exercise influences multiple organs in the body, it seems likely that there is 

no single mechanism mediating all of exercise’s effects on the brain and its functions. 

Further, given the differences in biological processes at play across different age groups and 

populations, the mechanisms involved in exercise’s influences on the brain are also likely 

to vary with age and between individuals. Accordingly, we would argue, a limiting factor 

in understanding the mechanisms by which exercise works has been a tendency to focus 

on specific age ranges and population samples. Future studies and conceptual models need 

to consider mechanisms of exercise at multiple levels, and consider mechanisms that might 

differ depending on the population under investigation, brain region of focus, or parameters 

of exercise being used (see Outstanding Questions).
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Glossary

Exercise
A type of physical activity that is conducted in a planned and structured manner with the 

goal of improving fitness.

Aerobic exercise
A form of physical activity that raises heart rate and has the goal of improving 

cardiovascular conditioning.

Indirect effect
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A measure from statistical mediation models which is used to evaluate whether a given 

mediating variable is a viable mechanism by which an independent variable influences an 

outcome.

Randomized controlled trial (RCT)
an experimental manipulation in which two (or more) groups would receive equivalent 

treatment except for the independent variable of interest (e.g., participation in moderate- to 

vigorous-intensity exercise).

Statistical mediation
a technique that allows for the evaluation of alternative causal mechanisms between the 

treatment and outcome variables by examining the roles of intermediate variables that lie in 

the causal path.
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Box 1:

Exercise as a treatment for declines in cognition and brain health in non-
brain diseases--The case of breast cancer

Although not considered a neurologic or psychiatric disease, up to 75% of women with 

breast cancer (BC) experience deteriorations in cognitive function with chemotherapy 

[69,70]. Given the beneficial role of exercise in counteracting brain aging in both 

cognitively normal populations and ones with dementia, it is possible that exercise may 

also provide similar benefits to patients with non-neurologic/psychiatric diseases that 

involve impaired cognitive function. Emerging work on exercise and BC represents an 

interesting case study on this topic [71,72]. Cross-sectional and prospective observational 

studies report improved memory [73] and self-reported cognitive function with aerobic 

exercise in women with BC [74,75]. In addition, a recent 12-week RCT of aerobic 

exercise in women with BC (N=87) found that, compared to controls, exercise improved 

processing speed. No other group differences in subjective or objective cognitive function 

were observed [76]. Thus, there is promising evidence that aerobic exercise may 

ameliorate some of the cognitive symptoms in BC patients. However, there is a need 

for corroborating RCTs of aerobic exercise in this unique patient population.

The effects of exercise on brain health in BC are similarly unclear. In a 24-week RCT 

in women with early stage breast cancer [77], three months to three years post-adjuvant 

therapy, improved processing speed (Trail Making Test A) was detected in women who 

engaged in aerobic exercise (n=10) versus controls (n=9). Functional MRI was performed 

in a subgroup of this sample when performing a Stroop task. The results indicated that, 

compared to controls (n = 7), the exercise group (n = 7) had reduced neural activity 

in the cingulate cortex and superior frontal gyrus with no between-group differences on 

Stroop performance, which was interpreted as suggesting that less exertion was needed 

for cognitive performance with exercise [77].

There is reason to expect that exercise may improve cognitive function via pathways 

similar to those associated with accelerated aging in cancer [76,78]. In a RCT, the authors 

found improved self-reported cognitive function, reductions in some inflammatory 

markers (e.g., IFNg, IL-8 and IL1b) and increases in others (e.g., IL-6, IL-10 and 

sTNFrα) following aerobic plus resistance exercise in adults with non-metastatic 

cancer [79]. Aerobic plus resistance exercise has also been shown to reduce metabolic 

syndrome, sarcopenic obesity, insulin, IGF-1, leptin and adiponectin in a 16-week RCT 

of 100 physically inactive, obese, BC survivors [79]. Finally, self-reported cognitive 

function frequently coexists with other symptoms commonly experienced by women 

with BC including fatigue, depressive symptoms, anxiety and pain. Exercise has been 

demonstrated to reduce fatigue, anxiety, depression, and pain in patients with cancer, 

suggesting that exercise also may work to improve cognitive function via these more 

‘Level 3’ (i.e., psychosocial, see Figure 1) pathways [8,80–83].
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Box 2.

Convergence between ‘Level 1’ and ‘Level 2’ mechanisms

The “levels” of mechanism we discuss are not mutually exclusive. For example, the 

pathways identified using Level 2 and 3 analyses are necessarily invoked by changes at 

lower levels of analysis, and bidirectional effects, such as feedback loops, are likely to 

exist between levels. How then might changes in brain structure and function (‘Level 2’ 

mechanisms) interrelate with cellular and molecular (‘Level 1’) mechanisms?

Some studies in humans have linked volumetric and morphologic brain changes 

following exercise to the molecular pathways discussed above. For example, changes 

in peripheral levels of BDNF are correlated with changes in hippocampal volume [84] 

and changes in BDNF, VEGF, and IGF-1 are correlated with changes in functional 

connectivity [19] following 12-month exercise interventions in older adults. These 

findings are consistent with the idea that circulating levels of these molecules may at least 

partially mediate exercise-induced changes in brain structure and function. However, null 

effects of exercise on these molecules also exist, albeit following a shorter (3 month) 

exercise intervention in older adults [85]. Offering a potential explanation for these 

seemingly disparate results, Voss et al [19] noted that baseline levels of these molecules 

predicted their degree of change in response to exercise, suggesting that there may be 

important person- or group-level moderators of their expression. For example, BDNF is 

dysregulated in normal and pathological aging, and so age itself could be a moderator 

of the exercise-BDNF-brain relationship [86]. Unfortunately, limited evidence linking 

BDNF, VEGF, and IGF-1 to exercise-related brain changes exists in younger populations, 

making it difficult to evaluate this hypothesis across the lifespan. However, age is likely 

to be an important moderator of molecular-brain mechanisms in younger age groups as 

well, given that ‘normal’ levels of these molecules fluctuate throughout the lifespan and 

in response to environmental stimuli for which exposure may vary by age group, such as 

social interaction, alcohol/drug use, and physical activity [86,87].
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Box 3.

Relationships between depressive symptoms, changes in brain structure, 
and molecular mechanisms of exercise.

There are points of overlap between the potential Level 3 mechanisms (i.e., psychosocial 

– mental states and higher-order behaviors) and Level 2 mechanisms (i.e., brain 

structure and function) of exercise. For instance, depression is characterized by structural 

abnormalities in brain regions including the hippocampus and prefrontal cortex [88]. 

These are the same regions that show structural plasticity in response to exercise. 

It may therefore be through volumetric changes to these brain regions that exercise 

improves symptoms of depression [for reviews see 89,90]. This has led to the idea that 

lack of exercise may be a risk factor for depression just as depression has long been 

known to reduce engagement in health behaviors such as exercise, highlighting possible 

bidirectional relationships between these variables [e.g., 91]. Interestingly, exercise and 

antidepressant treatments (e.g., medication or electroconvulsive therapy) may alleviate 

depression through common molecular mechanisms. For example, both antidepressant 

treatment and electroconvulsive therapies have been shown to increase expression of 

neurotrophic factors such as BDNF [92]. This provides a possible link between molecular 

mechanisms of exercise and its psychosocial mechanisms, as expressed for instance in 

depressive symptoms.
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Outstanding Questions

1. Do the positive effects of exercise on cognitive health, as seen for instance 

in aging populations and children of ages 6–13, extend to young children 

(i.e., under 5 years), adolescents, and/or young to middle-aged adults? Are the 

underlying cellular/molecular, brain, and psychosocial mechanisms the same 

in these age groups?

2. Can exercise act as a secondary prevention for mitigating cognitive losses 

associated with non-neuronal diseases, such as breast cancer?

3. What is the ideal mode, dose and intensity of exercise necessary to maximize 

beneficial effects across the lifespan and across different health states?

4. Does strength training, high-intensity-interval training, or other forms of 

exercise work through similar or distinct mechanisms compared to aerobic 

exercise?

5. What are the characteristics of people most likely to benefit from increasing 

their exercise levels?
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Highlights

1. There is evidence that aerobic exercise can affect the brain and cognition 

through different levels of mechanisms at various points in the lifespan. The 

strongest evidence comes from children and older adults.

2. Exercise has significant promise for mitigating some of the cognitive and 

brain deficits resulting from a variety of neurologic, non-neurologic, and 

psychiatric conditions.

3. There is a dire need for more rigorous randomized controlled trials of exercise 

in lesser studied age groups, especially children under 5, adolescents and 

young adults.

4. A common limitation of the existing exercise literature relates to the 

heterogeneous nature of studies (e.g., in terms of design, duration, and 

included outcomes assessments)
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Figure 1. 
Evidence-based mechanisms (only those confirmed by RCTs) of exercise that contribute 

to its salutary effects on cognition. Evidence is presented across three different levels of 

analysis and separated by age group to highlight emerging patterns and existing gaps in 

evidence. While there are complexities in defining specific age ranges for developmental 

periods such as adolescence, age group is used to simplify the presentation of the studies 

discussed here. Level 1 refers to cellular and molecular signaling pathways. Level 2 refers to 

brain structural or functional pathways, and Level 3 refers to psychosocial pathways which 

are defined as higher-order behaviors or mental states.

Stillman et al. Page 20

Trends Neurosci. Author manuscript; available in PMC 2022 May 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Challenges of identifying mechanisms of exercise
	Exercise and cognitive function
	What is known about cellular and molecular (‘Level 1’) mechanisms of exercise?
	What is known about the effects of exercise on brain structure and function (‘Level 2’ mechanisms)?
	Gray Matter
	White Matter
	Brain Structure and Function

	What is known about the psychosocial (‘Level 3’) mechanisms of exercise?
	Mood
	Sleep

	Concluding Remarks
	References
	Figure 1.

