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Abstract

Psychedelic research across different disciplines and biological levels is growing at a remarkably 

fast pace. In the prospect of a psychedelic drug becoming again an approved treatment, 

much of these efforts have been oriented toward exploring the relationship between the actual 

psychedelic effects and those manifestations of therapeutic interest. Considering the central 

role of the serotonin 5-HT2A receptor in the distinct effects of psychedelics in human psyche, 

neuropharmacology sits at the center of this debate and exploratory continuum. Here we discuss 

some of the most recent findings in human studies and contextualize them considering previous 

preclinical models studying phenomena related to synaptic plasticity. A special emphasis is placed 

on knowledge gaps, challenges, and limitations to evaluate the underpinnings of psychedelics’ 

potential antidepressant action.
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Psychedelics have been part of our cultures since ancient times (Fantegrossi et al., 2008; 

Glennon, 1994; Hanks & González-Maeso, 2016a, 2016b; Nichols, 2016; Rucker et al., 

2018). This family of psychoactive drugs includes naturally occurring alkaloids such as 

psilocybin which is the main active component found in more than 100 species of “magic” 

mushrooms including Psilocybe cyanescens in Europe and the west coast of the U.S., 

and Psilocybe cubensis in South America and parts of Mexico, mescaline which is the 

principal active compound in the peyote cactus (Lophophora williamsii) native to Mexico 

and southwestern Texas, bufotenin which is found in the gland secretion of certain toads’ 
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skin (Bufonidae), and dimethyltryptamine (DMT)—found in different vegetable sources 

such as Mimosa sp. root bark and Psychotria viridis leaves, one the main ingredients of 

ayahuasca, a brew traditionally used for ceremonial purposes in the Amazon region made 

in combination with roots of Banisteriopsis caapi that render this psychedelic orally active 

by virtue of the monoamine oxidase A inhibitors contained in this vine (Abraham et al., 

1996; Halpern, 2004). The paradigmatic psychedelic of the 20th century, lysergic acid 

diethylamide (LSD), however, is hemisynthetic in nature. It was first synthesized in 1938 

by Dr Albert Hofmann, who also serendipitously discovered its psychopharmacological 

effects in 1943 while working on ergot derivatives from Claviceps purpurea in search for 

respiratory stimulants at Sandoz Pharmaceuticals in Basel, Switzerland (Hofmann, 1979). 

All these drugs have in common a battery of acute (within minutes to hours) effects 

in humans that include profound changes in processes related to perception, cognition, 

sensory processing, and mood. As substances listed in DEA Schedule I, elucidating the 

mechanisms by which psychedelics induce their unique neuropsychological effects has been 

an important objective of drug abuse research for decades (Halpern & Pope, 1999; Heal et 

al., 2018; Krebs & Johansen, 2013). Currently, however, psychedelics are not considered 

addictive—although some can produce tolerance in rodents (Smith et al., 2014), they lack 

reinforcement effects (Johnson et al., 2018). Notably, more recent clinical work as well as 

preclinical findings in rodents suggest that psychedelics, and particularly psilocybin, behave 

as fast-acting and long-lasting therapeutic agents against a number of psychiatric conditions 

that include depression (Carhart-Harris et al., 2016, 2021; Davis et al., 2020; Griffiths 

et al., 2016), and substance use disorders (Bogenschutz et al., 2015; Krebs & Johansen, 

2012). Although the molecular pharmacology of this family of drugs is notoriously complex 

(Inserra et al., 2021), one receptor emerges from the plethora of neurotransmitter receptors 

that psychedelics interact with as the main mediator of psychedelics’ most distinct effects. 

Thus, previous gene deletion models in mice (Gonzalez-Maeso et al., 2003, 2007) and 

pharmacological antagonism in both rodents (de la Fuente Revenga et al., 2019, 2020; 

Halberstadt & Geyer, 2013) and healthy volunteers (Schmid et al., 2015; Vollenweider et al., 

1998) have clearly established the prominent role of the serotonin (or 5-hydroxytryptamine) 

5-HT2A receptor (5-HT2AR) in the mechanism of action of psychedelics. For a general 

review about classification and pharmacology of serotonin 5-HT receptors, see here (Barnes 

et al., 2021).

Serotonergic psychedelics are classified into two main groups that include phenethylamines 

such as mescaline and its synthetic analog 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane 

(DOI), and tryptamines. The latter group can be subdivided into two subgroups: simple 

tryptamines such as psilocybin and its active metabolite psilocin, and DMT, which 

contains an indole ring and shows substantial structural flexibility, and ergoline derivatives 

such as LSD (Hanks & González-Maeso, 2016a, 2016b; Nichols, 2004). Most of the 

medicinal chemistry, molecular pharmacology, and behavioral work in rodent models has 

been conducted with psychedelics that belong to these three families and hence most 

of the chemical structure–psychedelic activity relationships reported to date belong into 

a relatively narrow chemical space. This, however, does not exclude the possibility that 

compounds that possess different structural cores may also behave as psychedelics so long 

they exhibit pharmacological mimicry. Recent examples that support this concept include 
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the HIV antiretroviral medication efavirenz (Dalwadi et al., 2016, 2018; Gatch et al., 

2013) and quipazine (de la Fuente Revenga et al., 2021a), an N-substituted piperazine 

in which development as a potential antidepressant was halted. It has been demonstrated 

that both efavirenz and quipazine activate the serotonin 5-HT2AR and induce behavioral 

signatures characteristic of psychedelic action in rodent models. While largely anecdotal, 

their departure from the structural orthodoxy of phenethylamines and tryptamines sets a new 

frontier in the exploration of chemical spaces populated by novel 5-HT2AR agonists as well 

as the role of additional monoaminergic G protein-coupled receptors (GPCRs).

Preclinical research with psychedelics largely relies on rodent models that bear high 

predictive values but are not exempt from substantial limitations (Hanks & Gonzalez-Maeso, 

2013). One of such limitations is their translational validity. It is tempting to speculate 

that the alterations induced upon acute administration of psychedelics in processes related 

to perception and sensory processing are uniquely human and therefore difficult, if not 

impossible, to model in rats and mice. In 1990, it was reported that the phenethylamine 

psychedelic DOI induced a dose-dependent increase in ear-scratch response in mice 

(Darmani et al., 1990). While this behavior is not preserved in humans exposed to a 

psychedelic drug, the effect in rodents was prevented by pre-administration of serotonin 

5-HT2A/2CR antagonists such as ketanserin (Darmani et al., 1990)—a drug that was also 

shown to block the hallucinogenic effects of psilocybin and LSD in humans (Schmid et 

al., 2015; Vollenweider et al., 1998). Head-twitch behavior (a rapid side-to-side movement 

of the head) represents a similar case—while naturally present in rodents, the frequency 

of manifestation increases abruptly with all the psychedelic serotonin 5-HT2AR agonists 

studied so far (Canal, 2012; Hanks & Gonzalez-Maeso, 2013). This behavior, which was 

originally reported in 1955 (Woolley, 1955), is not induced by closely related 5-HT2AR 

agonists that lack psychedelic potential in humans, such as lisuride and ergotamine 

(Gonzalez-Maeso et al., 2003, 2007). It has also been demonstrated that there is a high 

correlation between the potency of psychedelic-induced head-twitch behavior in rodents 

and their behavioral subjective effects in humans (Halberstadt et al., 2020). Based on these 

and other preclinical findings, this behavior is widely used as a mouse behavioral proxy of 

human hallucinogenic potential. However, it is important to remark that there are still a few 

examples of false positives that are able to induce head-twitch behavior in rodents—these 

include cannabinoid CB1 receptor agonists (Darmani and Pandya, 2000; Darmani et al., 

2003) and α2-adrenergic receptor antagonists (Matsumoto et al., 1997). Another potential 

false positive is the serotonin precursor 5-hydroxytryptophan (5-HTP). At relatively high 

doses, this intermediate metabolite of the essential amino acid L-tryptophan has been shown 

to induce a robust increase in mouse head-twitch behavior that is prevented by 5-HT2AR 

antagonists (Schmid & Bohn, 2010; Schmid et al., 2008). 5-HTP has been used for the 

treatment of a variety of conditions related to potential alterations in serotonin levels that 

include depression, insomnia, and migraines. While psychedelic-like events do not appear to 

concern in such studies, the allometric scales of the doses of 5-HTP employed in the rodent 

head-twitch studies can exceed by orders of magnitude the doses of 5-HTP used safely in 

humans.

Related to the molecular target responsible for the distinct interoceptive cue elicited by 

psychedelics, Richard Glennon and his team reported a significant correlation between the 
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affinity of multiple psychedelic agents and their potencies (EC50 values) using both drug 

discrimination with 2,5-dimethoxy-4-methylamphetamine (DOM) as the training drug in 

rats and human hallucinogenic potencies of these agents (Glennon et al., 1984). About 

15 years later, studies in healthy volunteers suggested the psychedelic psilocybin-induced 

schizophrenia-like related effects, including ego-disorders, affective changes, loosened 

associations, and perceptional alterations–these behavioral disruptions were blocked dose-

dependently by the 5-HT2A/2CR antagonist ketanserin (Vollenweider et al., 1998). A similar 

conclusion related to the role of the 5-HT2AR in the acute effects of psychedelics was 

recently reached by testing the effects of LSD in healthy subjects (Schmid et al., 2015). 

Mouse and rat head-twitch behavior induced by psychedelics is also blocked by 5-HT2A/2CR 

and 5-HT2AR antagonists, including ketanserin and M100907, respectively, as well as 

by genetic deletion of the 5-HT2AR (Htr2a) gene in mice (Hanks & Gonzalez-Maeso, 

2013). It is therefore accepted that the 5-HT2AR is the principal target responsible for 

the hallucinogenic-like effects in humans and head-twitch behavior in mice upon acute 

psychedelic administration. However, the potential role of this serotonin receptor in the post-

acute antidepressant-like behavioral and synaptic plasticity effects induced by psychedelics 

still remains to be fully elucidated.

Depression and other mood disorders represent a psychiatric condition that affects 

approximately 5% of the adult population (Kessler et al., 2003; Krishnan & Nestler, 2008). 

Traditional monoaminergic antidepressants, such as fluoxetine, have the ability to reduce 

depression in some depressive patients, but their clinical effects require a long-lasting 

(weeks to months) administration and there is a high percentage of patients with depression 

that does not respond to the currently available antidepressant medications (Duman & 

Aghajanian, 2012; Insel & Wang, 2009). Based on the relatively recent clinical effects of 

the dissociative drug ketamine, a non-competitive antagonist of the N-methyl-D-aspartate 

(NMDA) receptor, showing robust, rapid (a few hours following administration) and 

sustained (several days on average) antidepressant effects following a single administration 

(typically intravenous) at a sub-anesthetic dose (Abdallah et al., 2015; Berman et al., 

2000), more recent studies have provided convincing evidence that classical psychedelics, 

particularly naturally occurring compounds such as psilocybin and DMT in the ayahuasca 

brew, also behave as rapid-acting antidepressant medications (Carhart-Harris et al., 2016, 

2021; Davis et al., 2020; Griffiths et al., 2016; Kyzar et al., 2017; Vollenweider & Kometer, 

2010). Dendritic spines are small protrusions studding neuronal dendrites located at the 

postsynaptic sites of most excitatory synapses in brain regions including frontal cortex 

and the hippocampus (Koleske, 2013; Spruston, 2008). Santiago Ramón y Cajal was the 

first to observe these small protrusions using his famous Golgi staining. A number of 

studies in animal models as well as postmortem human brain samples from subjects with 

depression and controls has provided evidence that mood disorders occur in conjunction 

with a reduction in the density of dendritic spines, particularly in the frontal cortex (Duman 

& Aghajanian, 2012; Liu & Aghajanian, 2008; Nestler et al., 2002; Russo & Nestler, 2013). 

In 2009, studies in rat cortical neuronal primary cultures suggested that the psychedelic 

DOI induced a rapid (observed 30 min upon drug administration) and transient (returned 

to control levels by 60 min) effect on dendritic spine remodeling (Jones et al., 2009). 

This was corroborated with additional in vitro studies in cortical neuronal primary cultures 
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with the psychedelics DOI, DMT, and LSD (Ly et al., 2018). Additionally, these studies 

showed that the effects of psychedelics on in vitro structural plasticity were blocked by the 

5-HT2A/2CR antagonist ketanserin (Ly et al., 2018). Using an in vivo 3D automated method 

for quantitative structural analysis, it has also been suggested that a single administration 

of the psychedelic DOI produced fast-acting effects on mouse frontal cortex dendritic spine 

structure with a selective augmentation of the density of transitional stubby and dynamic 

thin spines in cortical pyramidal neurons, but not mature mushroom spine density (de la 

Fuente Revenga et al., 2021b). This structural synaptic remodeling event induced by DOI 

was not observed in 5-HT2AR knockout mice (de la Fuente Revenga et al., 2021b). Together, 

these in vitro (Ly et al., 2018) and in vivo (de la Fuente Revenga et al., 2021b) findings 

suggest that expression of the 5-HT2AR is necessary for the effects of a single administration 

of the psychedelics DOI, DMT, and LSD on changes in frontal cortex dendritic spine 

structural plasticity (Figure 1).

Intriguingly, this does not seem to be the case for the tryptamine psychedelic psilocybin. 

Thus, it has been reported that ketanserin pretreatment did not prevent phenotypes related 

to psilocybin-induced synaptic strengthening of hippocampal synapses, although under 

these experimental conditions ketanserin was only able to partially, and not fully, reduce 

psilocybin-induced head-twitch behavior (Hesselgrave et al., 2021). Additional investigation 

is necessary to fully understand the pharmacological reason behind this lack of effect of 

the 5-HT2A/2CR antagonist ketanserin on synaptic plasticity events induced by psilocybin, 

but a potential explanation is the time (1 h) between antagonist and agonist administration 

when ketanserin might be metabolized. More recently, it has also been reported that 

ketanserin given 10 min prior to psilocybin was able to fully block head-twitch behavior, 

and under these experimental conditions, the effect of coadministration of this 5-HT2A/2CR 

antagonist with psilocybin on frontal cortex dendritic spine density was not statistically 

different from that of the ketanserin alone group, suggesting that pharmacological blockade 

of 5-HT2A/2CRs prevents the post-acute effects of psilocybin on frontal cortex structural 

plasticity. However, under these experimental conditions, the ketanserin +psilocybin group 

showed an increase in frontal cortex dendritic spine head width as compared to the 

ketanserin alone group (Shao et al., 2021). Ketanserin targets the human 5-HT2AR with 

higher affinity as compared to human 5-HT2CR, whereas this ligand is considered a 

non-selective mouse 5-HT2R antagonist (Barnes et al., 2021). Since these inter-species 

differences in its pharmacological profile also imply that ketanserin may not fully bock 

the 5-HT2AR population in psychedelic-target brain regions, such as the frontal cortex in 

mouse models, it is clear that additional work will be necessary to fully understand the main 

molecular target/s on the cell surface responsible for the long-lasting effects of the different 

classes of psychedelics on synaptic plasticity and associated behaviors via engagement 

of downstream mechanisms known to involve processes such as tropomyosin receptor 

kinase B (TrkB), mammalian target of rapamycin (mTOR), brain-derived neurotrophic factor 

(BDNF), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate 

receptors, and/or metabotropic glutamate receptor 2 (mGluR2) (Benvenga et al., 2018; 

De Gregorio et al., 2021; Ly et al., 2018; Moreno et al., 2011). This exploration of 

cell membrane transducers becomes particularly relevant considering the pronounced 

pharmacological promiscuity of psilocybin and other psychedelics. It is worth noting that 
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both 5-HT1AR and 5-HT2AR constitute targets within range for drugs currently approved for 

the treatment of mood disorders, anxiety, and depression, such as buspirone and trazodone 

(Kessler et al., 2003; Krishnan & Nestler, 2008). Potential alternative molecular targets 

include a number of class A GPCRs, such as 5-HT2CR (Canal et al., 2010), and 5-HT5AR 

(Grailhe et al., 1999) as well as dopaminergic (De Gregorio et al., 2016; Inserra et al., 

2021; Marona-Lewicka & Nichols, 2007; Marona-Lewicka et al., 2005; Rickli et al., 2016) 

and adrenergic (Inserra et al., 2021; Rickli et al., 2016) receptors, which have already been 

involved in some of the acute behavioral effects of psychedelics in rodents. Particularly, 

it has been suggested that the later (90–120 min after psychedelic exposure) temporal 

phase of LSD administration on discriminative stimulus is mediated via D2 receptors 

(Marona-Lewicka & Nichols, 2007; Marona-Lewicka et al., 2005) (Figure 1). Additionally, 

some fundamental questions still remain open as the pro-synaptic effects of psychedelics 

cannot simply be generalized as therapeutically positive. Synaptic plasticity events in 

regions related to reward can reinforce drug-seeking behaviors in addiction. For example, 

psychoactive drugs of abuse such as cocaine increased the density of dendritic spines in 

medium spiny neurons of the nucleus accumbens (Maze et al., 2010). Similarly, plasticity 

events underlie the development of chronic pain (Cunha et al., 2020). Causal research is 

also necessary to determine if psychedelic-induced changes in frontal cortex dendritic spine 

density are responsible for the post-acute effects of psychedelics. Related to this concept, an 

increase in the density of immature thin dendritic spines has also been shown in the frontal 

cortex of a genetic rat model related to schizophrenia (Sanchez-Gonzalez et al., 2021).

Dosing is also deserving of consideration. The occurrence of psychedelics’ subjective 

effects on human psyche occurs once a certain threshold is exceeded. However, it has 

been posed that below such threshold, therapeutic and/or adaptive benefits can readily 

manifest. Earlier anecdotal reports suggested that psychedelic microdosing, which involves 

regularly consuming a small, sub-perceptual amount of psychedelics substances such as 

psilocybin or LSD, may have the potential to enhance creativity and efficiency, increase 

performance on problem-solving tasks, and treat neuropsychiatric conditions including 

depression and Alzheimer's disease (Cameron et al., 2020; Kuypers et al., 2019). These 

overarching claims were recently challenged by studies suggesting that subjective effects of 

microdosing in volunteers were not different than placebo and hence largely explained by 

positive expectation (Kaertner et al., 2021; Szigeti et al., 2021). The study of microdosing 

in human subjects bears significant challenges considering that the drugs of study are 

subject to heavy legal burdens and the so-called positive effects appear to be of interest 

in the community rather than in a clinical-controlled setting. In this regard, preclinical 

research offers a more accessible platform to characterize the molecular and behavioral 

fingerprints of psychedelics across the dose range. Although the additional investigation is 

necessary to further define better preclinical models of microdosing in animal models, it 

is worth mentioning the recent studies in male and female Sprague Dawley rats showing 

either reduced effects of microdosing with DMT on models of depression such as reduced 

immobility time in the forced swim test or absence of effect in more elaborated behaviors 

such as fear conditioning and extinction (Cameron et al., 2019). Additionally, and opposite 

to the effects observed upon post-acute DMT administration, these findings also suggested 
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that chronic, intermittent low doses of DMT led to a decrease in the dendritic spine density 

in the frontal cortex of female, but not, male rats (Cameron et al., 2019).

One of the still open questions is whether the fast-acting and long-lasting beneficial effects 

of psychedelics, particularly psilocybin, on a number of neuropsychiatric conditions that 

range from depression and alcoholism to post-traumatic stress disorder and cluster headache 

are observed as a repercussion of the action of these agents in complex neuropsychological 

processes such as ego-dissolution, depersonalization, oceanic boundlessness or visionary 

re-structuralization (Schmid et al., 2015; Vollenweider et al., 1998). It has also been reported 

that classical psychedelics occasion reliable and measurable mystical-type experiences in 

healthy volunteers (Griffiths et al., 2008). In this case, preclinical research and animal 

models offer little value as surrogates to study the phenomenology of such events. 

From a translational perspective, it would be challenging, perhaps unfeasible, to ascertain 

whether these intricate behavioral disruptions are necessary for their therapeutic-related 

phenotypes in rodents. Despite such limitations, it has been shown that rodent models 

replicate some of the clinically relevant post-acute effects of psychedelics in human subjects. 

Thus, a number of recent publications supports the notion that a single administration of 

different families of psychedelics such as the phenethylamine DOI and the tryptamines 

psilocybin and LSD produce long-lasting (5 weeks after administration) antidepressant-

related behavior in mice and rats when evaluating behavioral despair or passivity such as 

the forced swim test (Cameron et al., 2018; de la Fuente Revenga et al., 2021b; Hibicke 

et al., 2020). Additionally, it has also been reported that a single dose with the DMT 

facilitates the extinction of cued fear memory in rats (Cameron et al., 2018), whereas 

a single administration of the psychedelic DOI accelerated contextual fear extinction 

via the 5-HT2AR in mice (de la Fuente Revenga et al., 2021b). Using sucrose and 

female urine preference as a model of anhedonic behavior, it was validated the chronic 

stress led to anhedonic-related behavior in male mice. A single injection with psilocybin 

reduced stress-induced anhedonic behavior (Hesselgrave et al., 2021). However, this 

behavioral phenotype was not prevented by pretreatment with the serotonin 5-HT2A/2CR 

antagonist ketanserin (Hesselgrave et al., 2021). Although as mentioned above under these 

experimental conditions ketanserin only partially blocked psilocybin-induced head-twitch 

behavior (Hesselgrave et al., 2021), these findings suggest that opposite to what had been 

observed with DOI, DMT, and LSD (de la Fuente Revenga et al., 2021b; Ly et al., 2018), the 

effects of psilocybin on post-acute antidepressant-related behavior do not require activation 

of the 5-HT2AR. Considering that both newly synthesized putative non-psychedelic yet 

highly selective 5-HT2AR agonists such as tabernanthalog (Cameron et al., 2021), as well 

as already classical non-psychedelic 5-HT2AR agonists such as lisuride (Nakamura et al., 

1989), reduce alcohol-and heroin-seeking behavior, and produce antidepressant-like effects 

antidepressant-like effects in rodents, it is tempting to speculate that the psychosis-related 

behavior induced by psychedelic 5-HT2AR agonists is not necessary for the post-acute 

beneficial effects induced by other psychedelics such as psilocybin or LSD. Alternatively, 

although their antidepressant and anxiolytic clinical effects are mild, it is rather surprising 

that the involvement of the 5-HT1AR on the abovementioned traits has not been established 

considering that this target has been validated in the treatment of anxiety by azapirones such 

as buspirone and the high affinity for the 5-HT1AR of LSD and psilocybin's active form: 
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psilocin. Additional investigation will be necessary to unravel this still open question about 

the molecular target and signaling mechanisms responsible for the therapeutic potential of 

these ligands.

Most cell signaling pathways regulate gene expression in response to extracellular cues, 

and receptor activation can cause concentration-dependent changes in the level of induction 

of specific genes in vitro in cell cultures (Wurmbach et al., 2002; Yuen et al., 2002). 

Using traditional gene expression assays including oligonucleotide and cDNA microarrays, 

it was reported that intraperitoneal administration of psychedelics such as DOI and LSD 

leads to changes in expression of a number of genes including transcription factors such as 

c-Fos, Egr-1, and Egr-2 that showed maximal change at approximately 60 min following 

drug exposure (Gonzalez-Maeso et al., 2003, 2007; Nichols et al., 2003; Nichols & Sanders-

Bush, 2002). However, these changes in gene expression were not observed two hours 

after psychedelic administration. More recent findings have suggested that gene expression 

depends on the ability of the transcriptional machinery to access DNA, which is tightly 

packed into chromatin. The status of chromatin organization depends on epigenetic factors, 

such as DNA methylation and histone modifications that primarily occur on their amino-

terminal tails. Hence these epigenetic mechanisms lead to stable changes in gene expression 

that are mediated via altered chromatin structure without modification of DNA sequence 

and remain largely plastic throughout all periods of brain development and aging (Bastle & 

Maze, 2019; Graff & Tsai, 2013). Unlike psilocybin, DOI exhibits a pronounced preference 

for 5-HT2Rs thus offering some built-in discriminative power to segregate the effects of 

psychedelics via 5-HT2AR from other interactions that can operate as potential confounding 

factors. Using MOWChIP-seq with H3K27ac (Cao et al., 2015; Zhu et al., 2019) and Smart-

seq2 (Picelli et al., 2013, 2014) assays in neuronal nuclei from the frontal cortex of mice, 

recent findings suggest that a single dose of DOI leads to changes in chromatin organization 

particularly at enhancer regions of genes involved in the synaptic assembly that stretched 

for at least one week after the psychedelic exposure (de la Fuente Revenga et al., 2021b). 

Further, DOI-induced alterations in the neuronal epigenomic landscape overlapped with 

genetic loci associated with psychiatric conditions that included schizophrenia, depression, 

and attention deficit hyperactivity disorder (de la Fuente Revenga et al., 2021b). These 

data suggest that epigenetic mechanisms may underlie at least some of the long-lasting 

antidepressant action induced upon psychedelic administration, but also raise concerns about 

the limitations in patients with underlying genetic risk for psychosis.

Psychedelics produce a myriad of acute and post-acute behavioral alterations in both 

humans and animal models, including the promotion of spinogenesis in brain regions 

such as the frontal cortex. The robust and sustained antidepressant and plastic effects 

reported are suggestive of therapeutic potential for treatment-resistant depression and other 

neuropsychiatric disorders. Although recent findings provided evidence about the pathways 

affected by psychedelics and potentially involved in their post-acute beneficial effects, 

questions about the initiator molecular target(s) and causality of downstream signaling 

pathways still remain open. Utilizing behavioral, molecular, and epigenetic tools, ongoing 

and future studies are working to determine how psychedelics are exerting their beneficial 

effects and what factors may be important to consider when using these compounds to treat 

depression and other neuropsychiatric conditions.
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Abbreviations

5-HTP 5-hydroxytryptophan

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA)-type glutamate receptors

BDNF brain-derived neurotrophic factor

DMT dimethyltryptamine

DOI 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane

DOM 2,5-dimethoxy-4-methylamphetamine

GPCR G protein-coupled receptor

LSD lysergic acid diethylamide

mGluR2 metabotropic glutamate receptor 2

MOWChIP-seq microfluidic oscillatory washing-based chromatin 

immunoprecipitation followed by sequencing

mTOR mammalian target of rapamycin

TrkB tropomyosin receptor kinase B

NMDA N-methyl-D-aspartate

5-HT serotonin or 5-hydroxytryptamine
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FIGURE 1. 
Schematic summarizing receptor targets and their potential involvement in therapeutic 

effects of different structural classes of psychedelics. Tryptamine psilocin activates both 

serotonin 5-HT1A and 5-HT2A receptors, contributing to hallucinogenic-like behavior, but 

the role of the 5-HT1A in structural plasticity remains unknown. Phenethylamine DOI is 

more selective for 5-HT2 receptors, with a higher affinity to 5-HT2AR, which is thought 

to contribute to both structural plasticity and hallucinogenic-like behavior. Ergoline LSD 

activates dopamine D2 receptors as well as 5-HT1A and 5-HT2A receptors, which leads to 

hallucinogenic-like behavior, but it is unknown how LSD’s polypharmacology influences 

synaptic structural plasticity
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