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Summary
One mechanism by which genetic factors influence complex traits and diseases is altering gene expression. Direct measurement of gene

expression in relevant tissues is rarely tenable; however, genetically regulated gene expression (GReX) can be estimated using prediction

models derived from large multi-omic datasets. These approaches have led to the discovery of many gene-trait associations, but whether

models derived from predominantly European ancestry (EA) reference panels can map novel associations in ancestrally diverse popula-

tions remains unclear. We applied PrediXcan to impute GReX in 51,520 ancestrally diverse Population Architecture using Genomics and

Epidemiology (PAGE) participants (35% African American, 45%Hispanic/Latino, 10% Asian, and 7%Hawaiian) across 25 key cardiome-

tabolic traits and relevant tissues to identify 102 novel associations.We then compared associations in PAGE to those in a random subset

of 50,000 White British participants from UK Biobank (UKBB50k) for height and body mass index (BMI). We identified 517 associations

across 47 tissues in PAGE but not UKBB50k, demonstrating the importance of diverse samples in identifying trait-associated GReX. We

observed that variants used in PrediXcan models were either more or less differentiated across continental-level populations than

matched-control variants depending on the specific population reflecting sampling bias. Additionally, variants from identified genes

specific to either PAGE or UKBB50k analyses were more ancestrally differentiated than those in genes detected in both analyses, under-

lining the value of population-specific discoveries. This suggests that while EA-derived transcriptome imputation models can identify

new associations in non-EA populations, models derived from closely matched reference panels may yield further insights. Our findings

call for more diversity in reference datasets of tissue-specific gene expression.
Introduction

Gene expression is tightly regulated to maintain normal

biological functions. Gene expression profiles reflect a

combination of cell type, developmental stage, environ-

mental cues, and/or genetic variation, with dysregulation

possibly leading to disease. Therefore, probing gene
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expression may yield insights into the biological mecha-

nisms underlying a host of complex traits. However, our

ability to assess gene expression is hampered by a lack of

access to tissues of interest (for example, brain tissue

cannot be easily obtained from healthy living people)

and the high cost of assaying gene expression compared

to SNP arrays. Further, the dynamic nature of gene
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expression means that causality may be difficult to infer

from disease association studies, in which, depending on

study design, differential gene expression between cases

and controls may occur as a consequence of treatments

or behaviors stemming from the disease being studied.

Taken together, these factors mean that gene expression

will likely not be directly interrogated in the appropriate

tissue and cell types at the necessary scale to yield insights

into disease etiology. Transcriptomic imputation (TI) offers

a method to infer the genetically regulated component of

tissue-specific gene expression from readily available

genome-wide SNP data.

TI uses well-curated, publicly available expression quan-

titative trait locus (eQTL) reference panels, such as from

the Genotype-Tissue Expression (GTEx) project,1 to

construct tissue-specific predictions of genetically regu-

lated gene expression (GReX). GReX can then be imputed

for large, deeply phenotyped studies with genome-wide ge-

notype data, thereby enabling association testing of broad

phenotype domains. In comparison to genome-wide asso-

ciation studies (GWASs), TI studies offer increased biolog-

ical interpretability by revealing phenotype-associated

changes in expression of a particular gene in a particular

tissue; by contrast, GWASs yield large regions of associa-

tion, with great uncertainty about how a variant or haplo-

type may impact biology. TI studies may also yield insights

into tissues that are traditionally difficult or impossible to

access, allowing investigators to more comprehensively

investigate the transcriptome. In addition, TI studies in-

crease power to detect genetic effects by combining effects

of multiple eQTLs in a region to reveal a set of candidate

genes.

While TI offers great potential for insights into tissue-spe-

cific disease mechanisms, available reference panels and

prediction models are overwhelmingly composed of Euro-

pean ancestry (EA) individuals, with application of these

models largely confined to EA GWAS cohorts. GWASs

have demonstrated that the practice of focusing on EA indi-

viduals hinders both analytic and translational application

of findings.2 Consequently, results may not generalize to

other populations, and important associations and oppor-

tunities to understand disease architecture may be

missed.3–5 The few ancestrally diverse expression datasets

available are limited in tissue sampling but have shown dif-

ferences ingene expressionbyancestral group.6Aswebegin

to develop tools to annotate and translate genetic associa-

tions into more biologically interpretable findings, it is

important that we account for the genetic diversity present

in all humanpopulations. Here, we seek to demonstrate the

feasibility of TI approaches for non-EA populations. We

combine data from our large multiethnic (non-EA)

GWAS7with state-of-the art TI approaches to identify novel

associated genes across 25 cardiometabolic traits (Table 1)

and to demonstrate the applicability of TI approaches

across populations. Our previous GWAS efforts in the Pop-

ulation Architecture using Genomics and Epidemiology

(PAGE) study—which include genotypes from 51,520 Afri-
670 The American Journal of Human Genetics 109, 669–679, April 7,
can American, Hispanic/Latino, Asian, Native American,

and Hawaiian participants—have yielded novel associa-

tions and insights intodisease biology, aswell as confirming

> 1,400 existing GWAS associations.7 Using the PAGE sum-

mary statistics, Geoffroy et al. used S-PrediXcan in whole

blood from three ancestries.5 In this paper, we seek to

further these findings by employing the PrediXcan TI

method.8 Although ancestry imbalance in eQTL reference

data is as severe as in GWAS (for example, �85% of GTEx

samples, 95% of eQTLGen samples, and 100% of PsychEn-

code samples included in eQTL analyses are EA), previous

work implies that eQTLsmay bemore conserved across an-

cestries than matched, non-eQTL variants9,10 and that EA-

derived PrediXcanmodelsmayhave similar accuracy across

populations.11 Although eQTLs are selected from EA-

derived models, we determine that, for some populations,

they are less ancestrally differentiated than matched SNPs

on a continental level, demonstrating the need for

ancestry-aware representativeness for the utility and appli-

cability of this powerful approach for diverse populations.
Subjects and methods

Demographics of the PAGE sample
The PAGE study includes 51,520 participants genotyped at the Cen-

ter for Inherited Disease Research (CIDR) using the Multi-Ethnic

Genotyping Array (MEGA), consortium version.7 These participants

comefromfourancestrallydiverse studies (Table S1): BioMeBiobank,

the Hispanic Community Health Study/Study of Latinos (HCHS/

SOL), the Multi Ethnic Cohort (MEC), and the Women’s Health

Initiative (WHI), representing 35% African American, 9% Asian,

44% Hispanic/Latino, 1% Native American, 8% Native Hawaiian,

and 2% other ancestries. All participants in these studies provided

written informed consent to participate in genetic research, and

study approvals were obtained from the institutional review boards

at all participating institutions in accordance with the principals of

the Declaration of Helsinki.
Imputation of gene expression in PAGE genotype

samples
We imputed GReX in 51,520 individuals from the PAGE con-

sortium, using 47 GTEx v7-derived tissue-specific prediction

models (listed in Table S2). GReX was calculated as a weighted

sum of SNP dosages, following standard PrediXcan methodology.

GReX prediction model creation is described in detail elsewhere;

notably, these models are based on the EA subset of GTEx partici-

pants.8,13 In total, our analysis included 25,861 unique genes

across 47 tissues. The number of genes included in each tissue

model and the number of GTEx samples used to generate the

model are shown in Table S2.
Selection of trait-relevant tissues
For each of the 25 traits, tissues were selected based on etiological

relevance (Table 1). For example, heart tissues were selected as rele-

vant for electrocardiogram (EKG) phenotypes and adipose, brain,

skeletalmuscle, and thyroid were selected for anthropometric phe-

notypes. Additionally, we included whole blood for every trait

because it is present throughout the body.
2022



Table 1. Summary of traits and tissue-specific findings

Trait
N (total or
cases/controls)

Mean (SD)
or % cases Tissues

Novel
genes

Significant
genes

Inflammatory traits

C-reactive protein (mg/L) 28,520 4.1 (4.8) EBV-transformed lymphocytes,
liver, spleen, thyroid, whole blood

4 25

White blood cell count (109 cells/L) 28,518 6.2 (1.9) 1 180

MCHC (g/dL) 19,803 32.9 (1.2) 0 9

Platelets (103/mL) 29,328 245 (64) 2 28

Lipid traits

HDL cholesterol (mg/dL)a 33,063 51 (15) adipose (subcutaneous and visceral
omentum), liver, whole blood

0 21

LDL cholesterol (mg/dL)a 32,221 138 (41) 3 24

Triglycerides (mg/dL)a 33,096 138 (92) 2 28

Total cholesterol (mg/dL)a 33,185 215 (46) 1 27

Lifestyle traits

Cigarettes/dayb 15,862 12.5 (9.1) braind, liver, whole blood 6 7

Coffee (cups/day) 35,902 0.89 (1.13) 3 3

Glycemic traits

HbA1c (mmol/mol)c 11,177 36.8 (4.5) adipose (subcutaneous and visceral
omentum), liver, skeletal muscle,
pancreas, whole blood

5 12

Fasting insulin (pmol/L)c 21,551 10.2 (8) 5 5

Fasting glucose (mmol/L)c 23,911 5.05 (0.63) 2 8

Type 2 diabetes (cases/controls) 14,042/31,683 30.70% 3 18

Electrocardiogram traits

QT interval (ms) 17,348 410 (31) adrenal gland, aorta, coronary artery,
tibial artery, heart atrial appendage,
heart left ventricle, skeletal muscle,
whole blood

6 27

QRS interval (ms) 17,046 89 (10) 4 20

PR interval (ms) 17,422 159 (22) 17 24

Blood pressure traits

Systolic blood pressure (mm Hg)a 35,433 132 (22) adrenal gland, aorta, coronary artery,
tibial artery, heart atrial appendage,
heart left ventricle, whole blood

0 7

Diastolic blood pressure (mm Hg)a 35,433 81 (14) 3 7

Hypertension (cases/controls) 27,123/ 22,018 55.20% 1 3

Anthropometric traits

WaistWHRc, females 24,838 0.86 (0.08) adipose (subcutaneous and visceral
omentum), braind, skeletal muscle,
thyroid, whole blood

2 4

WHRc , males 9,066 0.95 (0.7) 5 5

Height (cm) 49,781 164 (10) 7 234

BMI (kg/m2) 49,335 29 (6) 12 29

Kidney traits

eGFR (mL/min)e 27,900 91 (22) adrenal gland, aorta, coronary artery,
tibial artery, heart atrial appendage,
heart left ventricle, whole blood

7 10

For each group of traits, tissues were selected based on biological knowledge. The number of total significant genes across all tissues and the number of novel
associated genes are listed. MCHC, mean corpuscular hemoglobin concentration; WHR, waist to hip ratio.
aAdjusted for medication use.
bNon-smokers excluded from analysis.
cAnalyses including brain refer to all of the following tissues: amygdala, anterior cingulate cortex, caudate basal ganglia, cerebellar hemisphere, cerebellum, cor-
tex, frontal cortex, hippocampus, hypothalamus, nucleus accumbens basal ganglia, putamen basal ganglia, spinal cord cervical c-1, substantia nigra.
dAdjusted for BMI.
eEstimated glomerular filtration rate (eGFR) was calculated using the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) formula from Levey et al.12
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Association testing of gene dosages with 25 traits
We tested for association between tissue-specific GReX from trait-

relevant tissues and each of our 25 outcomes—including anthro-

pometric, inflammation, kidney function, EKG phenotypes, hy-

pertension, lipids, glucose control, and caffeine and cigarette use

(detailed in Table 1)—using generalized estimating equation

(GEE) models to account for relatedness as implemented in SU-

GEN.14 Models were adjusted for age, sex, study center, ten prin-

cipal components (PCs), and self-reported race/ethnicity. Trait

harmonization, exclusion criteria, and covariates were detailed

previously and are outlined in Table S3.7 An association was

defined as novel if there were no known GWAS or TI (i.e., PrediX-

can or TWAS) associations for that trait within one megabase (MB)

of the gene as of August 5, 2019. By this definition, any gene

within 1 MB of loci with significant associations in our previous

work with this dataset were considered known.7

Correcting for multiple testing
Our analyses included a large number of genes, tissues, and traits.

To avoid introducing spurious results, we applied multiple testing

corrections. Given the high degree of eQTL sharing among tissues

and of correlation in gene expression both within and across tis-

sues, these tests cannot be considered independent, and therefore

a Bonferroni correction would be overly conservative. We applied

an experiment-wide false discovery rate (FDR) (all trait-tissue-gene

sets) to ascertain significance using the Benjamini-Hochberg

method.15 We considered tissue-specific GReX associated with a

trait with an FDR < 0.05 as significant. This was equivalent to a

p value of 5.02 3 10�5.

Principal-component analysis
Kinship coefficients were estimated using PC-Relate, as imple-

mented in the R package GENESIS,16,17 and used to select unre-

lated individuals for accurate estimation of the PCs using SNPRe-

late,18 implemented in R. As was done previously,7 the relevant

PCs were selected using scree plots to assess the spread of genetic

ancestry within self-identified racial/ethnic clusters. A parallel co-

ordinate plot for the first ten PCs was generated in which each

PAGE individual was represented by a set of line segments con-

necting their PC values. The variance explained diminished with

each subsequent PC, and we estimated that the top ten PCs pro-

vided sufficient information to explain the majority of genetic

variation in the PAGE study population.7

eQTL by genetic ancestry
We investigated the impact of ancestral differentiation on the gener-

alizability of effect sizes, and therefore predicted gene expression,

across populations. First, we used 1:1 comparison group propensity

scorematchingbetween eQTLs andmatchednon-eQTL sites, imple-

mented in the ‘‘MatchIt’’ R package.19 A total of 23,901 polymorphic

eQTLs with minor allele frequency (MAF) > 0.5% were subset from

the PAGE genotype data (133 variants excluded for low frequency

[>0.5%], with four being monomorphic within PAGE). For each

eQTL, a matched ‘‘control’’ SNP was selected using a nearest-

neighbor estimation based on GC percentage, distance to transcrip-

tion start site (TSS), and combined allele frequency within PAGE to

address possible biases. After matching, there were no differences

in distance to TSS, GC percentage, or combined allele frequency

(p> 0.05) between eQTL and matched controls.

After matched controls were selected, we assessed the differ-

entiation of SNPs between continental-level genetic ancestries
672 The American Journal of Human Genetics 109, 669–679, April 7,
in PAGE by estimating the association between variant geno-

types and the PCs estimated from the principal-component

analysis detailed above. This univariate regression of genotypes

on PCs was conducted in SUGEN. Statistically significant

differentiation was determined if the resulting association had

a p value < 1.07E�5 to account for multiple comparisons. Ana-

lyses were restricted to the first five PCs to ensure interpret-

ability at a continental level for genetic ancestry. We contrasted

the proportion of variants that exhibited statistically significant

differentiation within the eQTLs versus the matched controls

for each of these five PCs separately through logistic regression

in R. We also estimated the association between the strength of

differentiation (the beta from the SUGEN regression model of

PCs on genotypes) with eQTL or matched-control status. Regres-

sion models contrasting eQTLs and matched controls were

adjusted for GC percentage, distance to TSS, and combined

allele frequency in a pooled PAGE sample to account for

possible residual confounding. A sensitivity analysis was also

conducted restricting variants to MAF >5% (21,682 eQTL vari-

ants and 21,682 matched-control variants). While there was

no significant difference between groups in the proportion of

statistically significant associations, the strength of effects as

determined by the beta from the PC x genotype analysis ex-

hibited consistent results.

Allele frequencies comparing the eQTLs and their matched

controls were estimated within the 1000 Genomes Project

Phase 320 data at the level of ‘‘superpopulations’’ (Africa, Eu-

rope, and East Asia) after removing first-degree-related individ-

uals. The reference allele for all superpopulations was set to the

minor allele (MAF <50%) in European populations to directly

compare allele frequencies assuming a European discovery

population.
Comparing GReX associations between PAGE and UK

Biobank
To provide context and interpretability of our results, it was

important to compare our PAGE PrediXcan association results

to those from an equivalently sized homogeneous European pop-

ulation. We thus selected a random sample of 50,000 individuals

of self-reported White British EA from the UK Biobank (UKBB50k).

The full biobank includes �500,000 individuals of largely British

EA origin, with self-defined information on nearly 4,000 traits.

For these 50,000 UKBB50k participants, we performed GWAS of

height and BMI.7 Briefly, to compare these data to our PrediXcan

associations, we used S-PrediXcan13 to convert the UKBB50k

GWAS summary statistics to GReX summary statistics for all 47

GTEx v7 tissues. S-PrediXcan is exactly analogous to PrediX-

can,13 when linkage disequilibrium (LD) is correctly specified

and may be applied directly to summary statistics rather than

raw genotypes. In Europeans or populations closely matched to

the PrediXcan reference panel used, we expect >98% concor-

dance between directly computed PrediXcan association statistics

and S-PrediXcan association statistics.11,13 These analyses were

repeated for the full 451,305 EA individuals in UK Biobank

(UKBB450k), as determined by k-means clustering. We created

sex-specific residuals after regressing out age, center, genotype

chip, and age-squared for BMI. Then the sex-specific residuals

were inverse normalized. PCs 1–15 were adjusted for running

genome-wide association analyses in Bolt-LMM.21 Results were

cleaned by removing variants with info scores < 0.4, MAF <

0.001, or effective N < 30.
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Box 1. Biological relevance of select associations

Expression ofWDFY2 (WD repeat and FYVE domain containing 2) was associated with BMI in visceral adipose tissue.

WDFY2 positively regulates adipocyte differentiation by facilitating the phosphorylation and thus inactivation of the

anti-adipogenic transcription factor Foxo1.22 WDFY2 also plays a role in endosomal control of AKT2 signaling,

through interaction with insulin receptors (INSRs) in hepatocytes,23 and is required for insulin-stimulated AKT2

phosphorylation and glucose uptake and insulin-stimulated phosphorylation of AKT2 substrates.22 SCN11A (sodium

voltage-gated channel alpha subunit 11) was associated with serum triglyceride levels in subcutaneous and visceral

adipose tissue. SCN11A mediates BDNF (brain-derived neurotrophic factor) expression in the brain,24 which has

been associated with obesity and food intake.25,26

Several TI signals were associated with EKG traits in relevant tissues. TMEM87B expression in adrenal gland tissue

was associated with PR interval duration. TMEM87B and its close homolog, TMEM87A, encode transmembrane pro-

teins likely involved in the complex regulation of the retrograde transport of membrane proteins from endosomes to

the trans-Golgi network (TGN),27 which is centrally important across multiple cellular processes, including develop-

mental signaling as well as transport of cytoskeletal ions and glucose.28 TMEM87B deficiency has been associated with

congenital heart defects,29,30 accounting for some of the adverse cardiac phenotypes observed in recurrent 2q13 dele-

tion,30 including restrictive cardiomyopathy and atrial septal defect.29

Expression of PCCB was associated with QT interval duration in heart atrial appendage, whole blood, and tibial ar-

tery tissue. PCCB encodes a subunit of propionyl-CoA carboxylase (PCC), an enzyme involved in fatty acid meta-

bolism.31 PCC deficiency was previously associated with long QT syndrome,32–35 and these results build upon a

growing body of evidence detailing the importance of long-chain fatty acid metabolism in cardiomyocyte homeosta-

sis, with possible implications for lipid-altering treatments and arrhythmogenesis. Of note, the beneficial effect of sta-

tins on life-threatening ventricular arrhythmias36 may be mediated by their increase of high-density lipoprotein

(HDL);37,38 in contrast, the statin probucol, notable for its HDL-lowering effects, was withdrawn from the U.S. market

in 1995 due to its prolongation of QT interval.39

EYA4 expression in artery aorta tissues was associated with QT interval duration. EYA4 encodes a member of the

eyes absent protein family with an important role in organogenesis, likely through its function as a histone phospha-

tase. EYA4mutations have been linked with ventricular size in zebrafishmodels, as well as withsmild abnormalities in

cardiac morphology associated with late-onset congestive heart failure40 and arrhythmia41 in humans,40,42,43 high-

lighting the potential involvement of EYA4 in normal cardiac function as well as development, possibly through

the implication of the p27/casein kinase-2a/histone deacetylase 2 transcriptional cascade.42
Allele frequency differences contributing to differences

in UK Biobank and PAGE results
We compared the subset of genes that were associated with height

and BMI in PAGE, UKBB50k, or both. We then extracted all eQTLs

for those genes in the relevant tissues. To avoid redundancies of

eQTLs between tissues, analyses were performed in parallel across

tissues and in whole blood alone. Ancestry-specific allele fre-

quencies were estimated for these sites in PAGE (as determined

by self-identified race/ethnicity), and EA frequencies (as deter-

mined by superpopulation designations from 1000 Genomes)

were estimated using 1000 Genomes Project Phase 3 data.20 For

each gene identified in either or both of the PAGE andUKBB50k an-

alyses, we compared allele frequencies of all SNPs in each gene pre-

dictionmodel. Additionally, we estimated the association between

themagnitude of eQTLweights and the absolute value of allele fre-

quency differences between populations to determine whether

eQTLs with more population differentiation have different effect

weights than variants with similar frequencies across populations

using Pearson’s correlation.
Results

Identification of gene expression-trait associations

Across the 25 outcomes encompassing anthropometric,

inflammation, kidney function, EKG phenotypes, hyper-
The Ame
tension, lipids, glucose control, and caffeine and cigarette

use (detailed in Table 1), we observed a total of 1,113 tis-

sue-specific GReX associated with a trait at FDR < 0.05 (Ta-

ble 1; Tables S4 and Table S5). We observed a total of 102

novel gene-trait associations, each occurring across 1–6

trait-relevant tissues (Table S4). We identified novel genes

even for traits that have previously been the focus of

large-scale meta-analyses, including 41% of gene-tissue as-

sociations for BMI. In Box 1, we further explore novel find-

ings with biologically compelling candidate genes.

Consistency of TI findings in a European panel

To compare our results in diverse PAGE participants to

those expected from an equivalent sample size of EA par-

ticipants, we selected two traits (height and BMI) well rep-

resented in both PAGE and the UKBB50k and compared Z

scores between the two analyses (height, Figure S1A;

BMI, Figure S1B). We observed a highly significant (p <

1.43 3 10�6) correlation of Z scores in each tissue between

the PAGE and UKBB50k studies overall, with r2BMI z 0.15

and r2height z 0.3 (Table S6). These tissue-specific correla-

tions were strengthened when using the UKBB450k results.

Within any given tissue there was substantial overlap in

associated genes identified in PAGE and UKBB50k (Table S7,
rican Journal of Human Genetics 109, 669–679, April 7, 2022 673



Figure 1. Overlap of tissue-specific associations between PAGE and UKBB
All genes significantly associated (p < 5.023 10�5) with BMI (A) or height (B) in PAGE or UKBB50k are displayed in the stacked bar chart.
Associations significant only in PAGE are shown in red. Associations significant only in UKBB50k are blue. Associations significant in
PAGE and UKBB50k are in bright purple. Associations seen in PAGE and UKBB450k are shown in dark purple.
Figure 1). Restricting to whole blood, we identified 93

genes significantly associated (pUKBB_height < 5.02 3 10�6)

with height in UKBB50k GReX and found significantly

higher replication of these genes in PAGE GReX than

might be expected by chance (10 of 93 genes are significant

[pPAGE_height < 5.023 10�6]: binomial p ¼ 1.13 10�30; 43/

93 are nominally significant [pPAGE_height < 0.05]: binomial

p¼ 5.93 10�31).We see a similar enrichment of significant

BMI associations across studies (2 of 19 genes are signifi-

cant [binomial p ¼ 4.63 10�7]; 10 of 19 are nominally sig-

nificant [p ¼ 5.9 3 10�9]).

Conversely, we identified 27 genes significantly associ-

ated in whole blood with height in PAGE, ten of which

were statistically significant in UKBB50k with ten more

nominally significant in UKBB50k. Four of these gene asso-

ciations that are only nominally significant in UKBB50k

appear to be driven primarily by strong associations within

the Hispanic ancestry-specific analysis that would be un-
674 The American Journal of Human Genetics 109, 669–679, April 7,
derpowered in the EA-specific UKBB50k analysis (Table

S8). For BMI, which is notably less polygenic than height,

we identified four statistically significant genes associated

in PAGE, only two of which were also significant in

UKBB50k. For one of these genes, HPS5, the association

was driven by Hispanic ancestry (Table S9).

eQTL differentiation reflects sampling bias

In light of these findings, we were interested in the appli-

cability of eQTLs underlying the EA-derived models in a

diverse ancestry population. To explore this, we assessed

levels of population differentiation both between groups

within PAGE and in contrast with a well-characterized

reference dataset, the 1000 Genomes Project, specifically

comparing levels of differentiation among eQTLs to those

among matched controls. A total of 23,901 eQTLs and

their matched-control variants (total of 47,801 variants;

see material and methods) were included in this analysis
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Table 2. Mean frequencies of eQTL variants predicted to increase gene expression identified in PAGE, UKBB50k, or both for BMI and height
in 1000 Genomes European and PAGE populations for all tissues

BMI (N ¼ 207) Height (N ¼ 1,112)

PAGE Both UKBB50k PAGE Both UKBB50k

# Genes 54 6 156 372 133 769

# SNPs 2,119 286 13,303 21,431 11,202 83,019

1000 Genomes European 51.47% 51.05% 47.80% 48.96% 50.10% 51.25%

PAGE Combined 51.98% 50.54% 49.28% 48.95% 49.66% 51.63%

African American 52.06% 47.82% 49.24% 49.03% 49.60% 51.48%

Hispanic/Latino 51.74% 51.83% 48.86% 48.65% 49.57% 51.50%

Asian American 53.37% 52.80% 50.88% 49.75% 50.19% 52.52%

Native Hawaiian 51.10% 52.35% 49.86% 49.37% 49.80% 51.91%

Native American 51.61% 51.14% 48.26% 48.76% 49.67% 51.38%

Mean allele frequencies of weighted variants oriented to a positive weight, i.e., frequency of allele predicted to increase expression of gene for all tissues (N¼ 48).
Some SNPs may be found in multiple genes, and therefore observations are not independent.
with a MAF of 0.5% (see material and methods). Each

variant was assessed for association with genetic ancestry

at a continental level as represented by the first five PCs

estimated in a principal-component analysis. Variants

were determined to have statistically significant associa-

tion with genetic ancestry if the association between geno-

type and a specific PC had a p value below 1.05 3 10�7 to

account for multiple comparisons. For PC1, which repre-

sents African versus non-African ancestry, control variants

were significantly more differentiated than eQTLs in terms

of proportion of sites that had a significant p value for SNP

x PC (t test p¼ 9.63 10�10) (Table S10). However, later PCs

representing other genetic ancestries showed more differ-

entiation for eQTLs than their matched controls.

This is at least partially explained when examining the

allele frequencies for eQTLs versus their controls across

continental-level populations from the 1000 Genomes

Project. In European populations, the mean MAF was

higher in eQTLs (22.57%) than in matched-control vari-

ants (18.66%) (Table S11). Maintaining the ‘‘minor’’ allele

from European populations as the index allele, the average

allele frequencies were higher for both eQTLs and their

matched-control variants in both African (27.88% and

26.10%, respectively) and East Asian populations

(25.27% and 21.83%, respectively). However, the averages

do not give us a complete picture. When examining the

distribution of allele frequency differences between Afri-

can and European populations, as well as East Asian and

European populations, more than half of the eQTL vari-

ants have a higher frequency in European versus East Asian

populations (52.17%). This is not seen in the matched-

control variants, which aremore likely to be at a higher fre-

quency in East Asian than in European populations, nor

for either eQTLs or matched controls comparing African

to European populations.

Taken together, these trends reflect the original sampling

bias, as the eQTLs were originally identified in EA partici-

pants and therefore required a MAF within that specific
The Ame
population high enough to be detected given a fixed sam-

ple size. Conditioning on these allele frequencies, variants

tend to be found at higher frequencies in African popula-

tions, therefore constraining population differentiation

compared to matched controls. These constraints have

the opposite effect for non-African ancestries compared

to European ancestries due to underlying population ge-

netics and associated allele frequencies. These trends sug-

gest that the transferability of weights trained on eQTLs

discovered in one population may depend on how the un-

derlying genetic architecture differs between continental-

level population groups with respect to the training

dataset.

Genetic differentiation of eQTLs

To better understand the role of genetic differentiation for

model eQTLs in application, we compared the allele fre-

quencies of eQTLs for genes significant for height or BMI

(p < 5.02 3 10�5) found in just the PAGE analysis, in

just the UKBB50k analysis, or in both. For this analysis,

PAGE allele frequencies were estimated pooled across the

entire study, as well as stratified by self-identified race/

ethnicity. These frequencies were further compared to

allele frequencies in 1000 Genomes Project Phase 3 Euro-

pean population data. We observed that height and BMI

showed different trends in the frequencies of alleles

contributing to increased expression (positive eQTL

weight). For BMI, the highest frequencies for both Euro-

pean population reference data and PAGE combined sam-

ples were found in genes identified only in PAGE (Table 2).

For height, the highest frequencies for both of these data-

sets were found in genes identified in both PAGE and

UKBB50k. This may reflect different genetic architectures

by ancestry, which would contribute to the lower number

of genes identified for BMI relative to height. These trends

were amplified when looking only at whole blood instead

of all trait-relevant tissues combined to minimize the

redundancy of eQTLs across tissues (Table 3).
rican Journal of Human Genetics 109, 669–679, April 7, 2022 675



Table 3. Mean frequencies of eQTL variants predicted to increase gene expression identified in PAGE, UKBB50k, or both for BMI and height
in 1000 Genomes European and PAGE populations in whole blood

BMI (N ¼ 21) Height (N ¼ 110)

PAGE Both UKBB50k PAGE Both UKBB50k

# Genes 2 2 17 17 10 83

# SNPs 30 62 354 525 215 2,474

1000 Genomes European 60.85% 45.81% 48.33% 42.47% 53.02% 50.59%

PAGE Combined 58.18% 53.88% 50.03% 44.99% 51.19% 51.56%

African American 55.94% 65.90% 49.25% 48.61% 53.68% 51.46%

Hispanic/Latino 58.84% 45.99% 50.48% 42.73% 51.93% 51.38%

Asian American 59.37% 49.79% 51.57% 44.06% 41.53% 52.70%

Native Hawaiian 62.24% 52.80% 49.05% 43.74% 47.62% 51.67%

Native American 59.95% 46.46% 49.64% 42.41% 51.96% 50.92%

Mean allele frequencies of weighted variants oriented to a positive weight, i.e., frequency of allele predicted to increase expression of gene in whole blood. Some
SNPs may be found in multiple genes, and therefore observations are not independent.
Using only height in whole blood, we also compared the

correlation between absolute allele frequency differences

between 1000 Genomes European populations or the com-

bined PAGE sample with the magnitude of the eQTL

weight. Genes that were found to be significant in both an-

alyses (UKBB50k and PAGE) had no relationship between

increased weights and a significant difference in SNP fre-

quencies (r ¼ 0.066, p ¼ 0.34). However, genes found in

just the UKBB50k or PAGE analyses showed negative corre-

lation at r ¼ �0.075 (p ¼ 1.88 3 10�4) and �0.111 (p ¼
0.011), respectively. This indicates that as the weights

become stronger for these analyses, the allele frequencies

between 1000 Genomes European populations and PAGE

are less diverged. This relationship may explain partly

why these genes were found in only one analysis versus

both and confirm our findings that eQTLs can be less

differentiated than the set of matched-control variants

(p < 0.001) depending on the continent-level ancestry.

When looking at individual PCs, eQTLs for both traits in

whole blood were significantly differentiated across the

first five PCs (SNP x PC p value < 10�5) (Table S12). How-

ever, the degree of differentiation was PC specific and

therefore population specific as well as trait specific. For

example, when comparing African to non-African ancestry

(PC1) among height-associated eQTLs, the highest propor-

tion that were significantly differentiated were among

PAGE-specific findings (94.72% with p < 10�5), followed

by shared eQTLs between PAGE and UKBB50k (94.18%),

and lastly UKBB50k-specific findings (93.86%). This is

reflective of better statistical power for these genes due to

the shared African ancestry in a large proportion of PAGE

samples. However, when looking at PC2, which captures

East Asian versus non-East Asian ancestry, there were

slightly lower levels of differentiation, potentially reflect-

ing the relatively smaller sample size of Asian participants

compared to Hispanic/Latino and African American partic-

ipants. For these variants, approximately 88.29% were

differentiated in the shared loci, with comparable levels
676 The American Journal of Human Genetics 109, 669–679, April 7,
of differentiation among cohort-specific findings (88.29%

in PAGE, 88.35% in UKBB50k). These trends are consistent

when looking across all tissues (Table S13). Taken together,

these results indicate the importance of diverse genetic

ancestry for the identification of novel genes underlying

traits, even when using models derived from EA data, but

careful consideration must be taken with respect to how

the sample populations’ genetic ancestry compares to the

that of the training data.
Discussion

The advent of large-scale GWASs has yielded substantial in-

sights into the genetic architecture of complex traits.

Although these studies provide lists of genome-wide signifi-

cant loci, these associations do not directly translate

to biological mechanisms. Here, we combine GWAS

summary statistics with large, well-curated eQTL reference

panels through TI approaches (PrediXcan) to identify

gene-level associations with directional and tissue speci-

ficity.8,44,45 In this study, we demonstrated that eQTL and

TI methods are appropriate for non-EA analyses and identi-

fied novel trait-GReX associations. Our analysis leverages

data from the PAGE study, including 25 clinical and behav-

ioral traits in 51,520 non-EA individuals. To our knowledge,

this is the largest trans-ancestryTIanalysisperformedtodate.

Here, we apply TI approaches to calculate GReX in indi-

vidual-level data. Our analysis of eQTL conservation across

ancestries, coupled with previous evidence, suggests that

these approaches may accurately be applied to non-EA

populations when researchers have access to individual-

level genotype data.11 Access to these individual genotypes

allows researchers to estimate LD directly, rather than

relying on an existing, external LD matrix.13 Specification

of an appropriate ancestry-matched LD matrix is vital for

summary-statistic analyses; applying publicly available

LD matrices derived from European samples may lead to
2022



spurious results and further diminish the power TI in

understudied populations, as we and others have previ-

ously demonstrated.5,13

We identified 1,113 gene-tissue associations, of which

102 are novel. Based on our analyses leveraging UK Bio-

bank data, we show that many of these gene-tissue associ-

ations would not have been identified in an EA GWAS of

similar size; indeed, even an analysis including all Euro-

pean UK Biobank (UKBB450k) samples would not identify

the majority of our novel genes (Table S7; Figure 1). Our

findings provide novel insights into disease architecture

(Figure S2) as well as disease biology (Box 1). By comparing

our findings in �50,000 ancestral diverse PAGE partici-

pants to 50,000 EA UKBB participants, we demonstrated

that a substantial proportion of signals found in PAGE

(65%) are not significantly associated in the UKBB50k data-

set (Table S7). This may in part be due to the strong associ-

ation of eQTLs with African ancestry (Table S12), which is

only present within the PAGE sample, along with the

greater phenotypic variation for these traits across ances-

trally diverse samples. The larger number of associations

seen in 50,000 EA samples highlights the power of

applying expression models derived from the same

ancestry. The vast majority of eQTL reference panels are

derived from EA samples; as such, TI approaches may

have reduced accuracy or applicability in non-EA samples.

However, previous work has shown that eQTLs may be less

differentiated by ancestry than matched, non-eQTL vari-

ants.9,10 Although we and others have demonstrated that

TI prediction models have cross-ancestry applicability,11

it is likely that access to eQTL reference panels derived

from matched populations will substantially improve pre-

diction accuracy46–51 and that release of non-EA-derived

LD matrices will radically improve the applicability of ex-

isting TI prediction models. Moreover, there is an ethical

imperative to improve diversity in functional genomics

and transcriptomics studies; opportunities to participate

in groundbreaking research approaches should be equally

available regardless of race or ethnicity, and the scientific

insights obtained should be applicable and accessible to

all.

To date, only small non-EA eQTL reference panels are

available in a few tissues, with cell-type proportions

varying by individual sample and with insufficient po-

wer to derive powerful prediction models. This high-

lights the need to invest in ascertaining gene expres-

sion data in multi-tissue, ancestrally diverse datasets.

However, we urge that as larger samples become avail-

able, ancestry-specific prediction models be derived and

their relative accuracy assessed. In addition, we empha-

size the need to ensure cross-ancestry applicability of

methodological and translational advances; indeed,

demonstration of cross-ancestry applicability should

become standard for developers of new analytical tools

and software designed to tackle complex trait genetics.

Increasing sample sizes and assembling new cohorts for

GWAS is vital to increasing diversity; however, this is
The Ame
not sufficient. To achieve equity in precision medicine

and to ensure that biological insights into disease do

not continue to exclude entire populations, deliberate

efforts must be made to also diversify translational

and methodological approaches. This includes expand-

ing the ancestral diversity of functional genomic re-

sources (for example, tissue-specific gene expression

and eQTL reference data) so that new insights available

from functional genomics do not compound racial and

ethnic inequity in genetic research.
Data and code availability

Summary statistics for PrediXcan and S-PrediXcan analyses are

deposited in Zenodo: https://doi.org/10.5281/zenodo.5980229.

All PAGE GWAS summary statistics are available through the

GWAS Catalog.
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