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Optimizing Piezoelectric Nanocomposites by
High-Throughput Phase-Field Simulation and Machine
Learning

Weixiong Li, Tiannan Yang,* Changshu Liu, Yuhui Huang, Chunxu Chen, Hong Pan,
Guangzhong Xie, Huiling Tai, Yadong Jiang, Yongjun Wu, Zhao Kang,* Long-Qing Chen,*
Yuanjie Su,* and Zijian Hong*

Piezoelectric nanocomposites with oxide fillers in a polymer matrix combine
the merit of high piezoelectric response of the oxides and flexibility as well as
biocompatibility of the polymers. Understanding the role of the choice of
materials and the filler-matrix architecture is critical to achieving desired
functionality of a composite towards applications in flexible electronics and
energy harvest devices. Herein, a high-throughput phase-field simulation is
conducted to systematically reveal the influence of morphology and spatial
orientation of an oxide filler on the piezoelectric, mechanical, and dielectric
properties of the piezoelectric nanocomposites. It is discovered that with a
constant filler volume fraction, a composite composed of vertical pillars
exhibits superior piezoelectric response and electromechanical coupling
coefficient as compared to the other geometric configurations. An analytical
regression is established from a linear regression-based machine learning
model, which can be employed to predict the performance of nanocomposites
filled with oxides with a given set of piezoelectric coefficient, dielectric
permittivity, and stiffness. This work not only sheds light on the fundamental
mechanism of piezoelectric nanocomposites, but also offers a promising
material design strategy for developing high-performance polymer/inorganic
oxide composite-based wearable electronics.

1. Introduction

With the gradual emergence of the internet of things (IoT) and
smart wearable industry revolution, piezoelectric materials with

W. Li, C. Chen, H. Pan, G. Xie, H. Tai, Y. Jiang, Y. Su
School of Optoelectronic Science and Engineering
University of Electronic Science and Technology of China
Chengdu 610054, P. R. China
E-mail: yjsu@uestc.edu.cn

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/advs.202105550

© 2022 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.

DOI: 10.1002/advs.202105550

the intriguing ability for mechanical-
electrical energy conversion have attracted
considerable attention in the fields of
robotics, [1–5] human-machine interaction
(HMI),[6–10] energy harvesters,[11–17] and
mobile personalized healthcare,[18–24] etc.
Multifunctional capability, flexibility, minia-
turization, and self-powered operation are
desired attributes for wearable electronics
and implanted devices. In order to achieve
high-performance on-body electronics,
advanced soft piezoelectric materials with
stretchability, biocompatibility, and high
energy conversion efficiency are demanded.

Inorganic piezoelectric oxides such as
BaTiO3 (BTO),[25] PbZrxTi1-xO3 (PZT),[26]

and (1-0.35)PbMg1/3Nb2/3O3-0.35PbTiO3
(PMN-35PT),[27,28] etc. possess high
piezoelectricity (typically in the order
of 100 pC N−1) and excellent electrome-
chanical coupling efficiency (can reach 40
%–50 %). Meanwhile, they suffer from sev-
eral drawbacks such as rigidity, brittleness,
and inferior compatibility with the human
body[29], which limits the applications in
soft, wearable electronics. In comparison

with the inorganic piezoelectric oxides, the piezoelectric poly-
mers, such as PVDF, PVDF-TrFE, and P(VDF-HFP)[30–35] are
mechanically flexible and bio-compatible but exhibit weak
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piezoelectricity (typically 10–30 pC N−1). Therefore, a combina-
tion of high piezoelectricity inorganic piezoelectric oxides and
high flexibility organic polymer matrixes offers a feasible route
to overcome these shortcomings and synergize the merits of the
polymers and piezoelectric oxides. The emergence of ceramic-
polymer nanocomposites has greatly improved the output per-
formance of flexible piezoelectric devices.[36] In addition, com-
posite films prepared by processes such as casting and elec-
trospinning have a simpler manufacturing route than ceramic
nanowires that require microstructure processing techniques
such as photolithography.[37] Therefore, nanocomposites are fa-
vorable for the large-scale application of piezoelectric materials in
varieties of fields. For instance, by virtue of surface modification
and material engineering strategies,[38] piezoelectric composites
endow multifunctional capabilities in a wide variety of applica-
tions including sensing, actuation, energy acquisition, and cataly-
sis. The interfacial coupling between the oxide fillers and polymer
matrixes is the main factor in determining the electromechani-
cal coupling efficiency of nanocomposites during the energy con-
version procedure.[13,35] However, the impact of geometrical mor-
phologies and spatial orientation as well as material constants
of the oxide fillers on the effective properties of nanocomposites
have not been systematically investigated, which poses a huge
challenge for the designing and preparation of high-performance
piezoelectric nanocomposites.

In this work, high-throughput phase-field simulations to-
gether with machine learning are employed to investigate
the effective stress transfer efficiency, effective dielectric per-
mittivity, and piezoelectric coefficient of polymer/ceramic
nanocomposites. Previously, the integration of the high-
throughput phase-field method with machine learning has been
widely applied to design high-energy-density polymer/ceramic
nanocomposites.[39–41] Herein, it is discovered that with a con-
stant volume fraction, the piezoelectric coefficient and dielectric
permittivity increase monotonically with the depth-to-width
ratio (DR) of fillers, while the mechanical compliance follows
an opposite trend. Among 400 geometric configurations, the
1–3 composites with nanopillars perpendicular to the film
plane possess the optimal properties of piezoelectric coefficient,
electromechanical coupling efficiency (k33), and quality factor
(d33/c33, k33, d33s33). Furthermore, a machine learning strategy is
adopted to model and predict the performance of PVA-polymer
(polyvinyl alcohol) nanocomposite composed of various oxide
fillers. The present work not only strengthens the fundamental
understanding of the influence of fillers on the piezoelectric
behaviors but also paves the way for designing and optimizing
high-performance piezoelectric composites.

2. Results and Discussion

We first investigate the effect of the topological shape and ori-
entation of oxide fillers on the stress transfer ability and ef-
fective dielectric permittivity as well as the electromechanical
coupling efficiency of polymer/ceramic nanocomposites. High-
throughput phase-field simulations are performed to analyze
the effective properties of the BTO/PVA composites with ver-
satile geometrical morphologies to design the optimal configu-
ration with both excellent piezoelectric and mechanical proper-
ties. In this study, we choose PVA as the polymer matrix be-

cause PVA has good degradability,[42] stretchability,[43] biologi-
cally compatibility,[44] and self-healing ability,[45] which makes it
an excellent candidate material for biomedical applications. For
the high-throughput calculations, a set of 400 (20 × 20) compos-
ite architectures are generated simultaneously to form a comput-
ing dataset by tuning the geometric ratios ay/az and ax/az of ox-
ide fillers ranging from 0.1–10, assuming that the oxide fillers
randomly disperse in the polymer matrix with a constant vol-
ume fraction of 1 vol%. Ten representative filler geometrical mor-
phologies are selected from the dataset in order to efficiently re-
flect the structure discrepancy of the oxide fillers, as shown in
Figure 1.

In order to quantitatively understand the piezoelectric and me-
chanical performance of the nanocomposites with diverse ge-
ometric ratios, a comprehensive phase-field simulation is per-
formed to systematically study the mechanical, electrical, and
piezoelectric fields for various architectures. In the phase-field
model, the simulation system is divided into a three-dimensional
array of 128 × 128 × 128 grid points with three-dimensional
periodic boundary conditions for the stress, strain, and electric
field.[46,47] Since we are only interested in the equilibrium-state
material response, in this work, we build a quasi-static model
where the responses can be obtained by directly solving the me-
chanical and electrical equilibrium equations. The spatial dis-
tribution of electric field E(r), polarization P(r), stress 𝝈(r), and
strain 𝝐(r) of the composites in response to external stress can
be attained by solving the following equations via the Fourier-
spectral iterative-perturbation method,[48,49]

∇ ⋅ D = ∇ ⋅
(
𝜀0𝜀rE + d𝝈

)
= 0 (1)

∇ ⋅ 𝜎 = ∇ ⋅
(
c𝜀 − cdTE

)
= 0 (2)

where 𝜖0 is the vacuum permittivity, 𝝐r is the relative dielectric
constant of the local phase, c is the elastic stiffness, and d is the
piezoelectric coefficient. The volumetric average of the stress ten-
sor „𝜎 is set to the given applied stress 𝝈app, i.e.,

„𝜎 = 𝜎app =
⎡⎢⎢⎣
0 0 0
0 0 0
0 0 1

⎤⎥⎥⎦
(MPa) (3)

It should be noted here that the interfacial effect is neglected
for the sake of simplicity, where the full transfer of stress and
electric field across the matrix-filler interfaces is assumed. The
materials constants for the BTO filler and PVA matrix are listed
in Table S1 (Supporting Information).

As shown in Figure 2a, 6 types of nanocomposites composed
of randomly aligned nanofillers with diverse shapes and orien-
tations are constructed by computer, including horizontal pil-
lar (S7), vertical sheet (S9), vertical pillar (S8), vertical rod (S5),
sphere (S6), and horizontal sheet (S3) at a fixed 1 vol%. Their
corresponding stress distribution, piezoelectric field, and electric
potential in response to applied stress of 1 MPa along the z-axis
are visualized in Figure 2b–d, respectively.

Notably, the vertical pillar (S8) and sheet (S9) demonstrate
larger and more inhomogeneous stress distribution among
all the structures investigated in this study, implying a supe-
rior stress transfer efficiency. It is worth noting that both the
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Figure 1. Range of the geometric ratios ay/az and ax/az of oxide fillers of the computing dataset and schematics of selected architectures.

vertical pillar and the vertical sheet exhibit larger stress inside the
oxide fillers than at the oxide-polymer interfaces. This indicates
that the mismatch of the elastic moduli between the flexible poly-
mer and the rigid piezoelectric oxides at the interface imposes a
tremendous obstacle for transferring the net mechanical stress,
while the large and homogeneous elastic stiffness inside the ox-
ide fillers is conducive to the applied stress delivery. As a result,
the applied stress induces a larger electric field and electric po-
tential within the vertical pillar than other structures like sphere,
horizontal sheet, and horizontal pillar. Figure S1 (Supporting In-
formation) illustrates the stress distribution, piezoelectric field,
and electric potential for the other four geometric configurations
(S1, S2, S4, S10). Among the 10 representative structures (Fig-
ure 2e,f), the vertical pillar with the smallest ax/az and ay/az
shows the maximum piezoelectric coefficient (d33), mechanical
stiffness (c33) and relative permittivity (𝜖33), as well as the elec-
tromechanical coupling coefficient (k33).

To evaluate the impact of filler volume fraction on the effec-
tive properties of piezoelectric nanocomposites, we perform a
systematic study for the piezoelectric coefficient, dielectric per-
mittivity, and elastic stiffness of polymer nanocomposites as a
function of filler volume fractions, with results presented in Fig-
ure 2g,h. Apparently, both the effective piezoelectric coefficient
and dielectric permittivity increase with increasing filler volume

fraction from 1 to 10 vol%. For all filler volume fractions, the d33,
𝜖33, k33, and c33 (see Figure S2, Supporting Information) show a
dependence on the type of geometric architectures (S7, S9, S8,
S5, S6, S3) with a similar pattern to that of the nanocomposite
at 1 vol%, indicating a consistent effect of the geometric modula-
tion. Figure S3 (Supporting Information) visualizes the mechan-
ical and piezoelectric properties for 5 typical geometrical mor-
phologies (S8, S6, S3, S7, and S9) of polymer nanocomposites
at a fixed volume fraction of 4 vol%. The nanocomposite with
4 vol% BTO exhibits stronger geometric architecture dependency
as compared to the case with smaller BTO content (e.g., 1 vol%),
in which the vertical pillar exhibits a higher electric potential and
field distribution as compared to the other architectures in this
study, indicative of an ideal configuration for energy transduction
and self-power detection.

To comprehensively illustrate the high-throughput simulation
for the whole dataset (20 × 20) of the nanocomposites, we calcu-
late the piezoelectric, mechanical, and dielectric properties of ver-
satile architecture with various geometrical ratios via phase-field
modeling, as shown in Figure 3. Evidently, the effective piezo-
electric coefficient (d33), dielectric permittivity (𝜖r), and elastic
stiffness (c33, c44) varies continuously with the variation of ge-
ometrical ratios, i.e., ay/az and ax/az. With the microstructure
of nanofiller changing from horizontal nanosheet (S3, right-top
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Figure 2. Phase-field simulation of 6 types of nanocomposites with different filler configurations. a) Structure of the selected types of nanocomposites
with 1 vol% filler fraction. b) corresponding stress, c) electric field, and d) electric potential distribution within the nanofillers in response to an applied
stress of 1 MPa along the z-axis of the above nanocomposites. e–f) Piezoelectric coefficient d33, relative permittivity 𝜖33, elastic stiffness c33, and the
electromechanical coupling coefficient k33 of the above nanocomposites. g) Effective piezoelectric coefficient and h) dielectric permittivity for the 6 types
of nanocomposites with filler fractions ranging 1–10 vol%.
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Figure 3. High-throughput phase-field simulation results of the whole dataset of the nanocomposites, including a) piezoelectric coefficient d33, b)
relative permittivity 𝜖33, and c) elastic stiffness c33 with various filler geometries. Machine learning results of d) piezoelectric coefficient, e) dielectric
permittivity, and f) mechanical stiffness.

corner) to vertical pillar (S8, left-bottom corner) along the dia-
gram diagonal, the piezoelectric coefficient (d33) and the effective
dielectric permittivity (𝜖r) of the nanocomposite increases mono-
tonically from 0.059 to 7.240 pC N−1 and from 10.20 to 12.74,
respectively, showing a strong dependence on the filler geomet-
rical ratios under a constant volume fraction. It is worth noting
that the effective stiffness follows a similar tendency to the piezo-
electric coefficient, which indicates that high piezoelectricity and
high flexibility is incompatible for the nanocomposites in this
study.

To further optimize and guide the design and preparation of
the piezoelectric oxides/polymer-based nanocomposites, a facile
and predictive model based on regression is proposed to achieve
a comprehensive analytical expression for piezoelectric and me-
chanical properties as a function of geometric ratios of the fillers.
Two variables, namely the geometric ratios ax/az and ay/az are
employed as the main fingerprints for the machine learning
model. The machine learning results on the piezoelectric coef-
ficient, dielectric permittivity, and mechanical stiffness with the
geometry variation are elucidated in Figure 3d–f, respectively. No-
tably, all the machine learning results of the material properties
agree well with the phase-field simulation results, showing the
accuracy and reliability of the regression-based machine learn-
ing. The relationship of the piezoelectric coefficient (d33) with re-
spect to the geometric ratios can be expressed as,

d33 =

0.1738 − 0.00347 ln x − 0.00435 ln y − 0.00231ln2x
− 0.00232ln2y + 0.00881 ln x ln y

1 + 0.39875 ln x + 0.39438 ln y + 0.00534ln2x
+ 0.00434ln2y + 0.1513 ln x ln y

×
(
pC N−1

)
(4)

where x and y refer to ax/az and ay/az, respectively. This expres-
sion gives a coefficient of determination of R2 = 0.99388707. Note
that it is a monotonically decreasing function of ax/az and ay/az
in the range (0.1, 10) with a maximum value at (0.1, 0.1), in-
dicating that the piezoelectric coefficient of polymer nanocom-
posite can be improved by enhancing the length-to-width ratio
of oxide fillers along the longitudinal direction. On the other
hand, the expressions of relative dielectric permittivity and me-
chanical stiffness endow a coefficient of determination value of
R2 = 0.9809938061 and 0.99030566, respectively, and can be at-
tained as

𝜀33 =

10.44 + 3.760lnx + 3.742lny + 0.06738ln2x
+ 0.04148ln2y + 1.3096lnxlny

1 + 0.3706lnx + 0.3689lny + 0.00846ln2x
+ 0.00617ln2y + 0.1282lnxlny

(5)

c33 =

1.724 + 0.3275lnx + 0.2059ln2x − 0.1756ln3x
+ 0.53055lny + 2.366

1 + 0.1897lnx + 0.1189ln2x + 0.31124lny
(GPa) (6)

Furthermore, the high-throughput phase-field simulation and
machine learning results for shear piezoelectric coefficients (d15,
d31), stiffness (c11, c44), and compliance (s11, s33) are presented in
Figures S4 and S5 (Supporting Information). It can be seen that
the d31 follows a similar trend to that of d33.

Given that the piezoelectric coefficient and mechanical stiff-
ness both increase upon increasing the length-to-width (Fig-
ure 3), it is of great significance to seek the specific architecture
to simultaneously optimize the piezoelectric response and com-
pliance. Therefore, in order to evaluate the flexibility and high en-
ergy conversion efficiency of nanocomposites, a set of quality fac-
tors such as d33/c33, k33, and d33s11 are proposed and calculated to
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Figure 4. Geometrical effect on the quality factors of nanocomposites, including the phase-field simulation results of quality factors of a) d33/c33, b)
electromechanical coupling efficiency k33, and c) d33s11 with various filler geometries, as well as the machine learning results of d) d33/c33, e) k33, and
f) d33s11.

characterize the overall performance of the polymers nanocom-
posites. As shown in Figure 4 and Figure S6 (Supporting Infor-
mation), among the 400 groups of various architectures, the three
quality factors all increase upon decreasing the geometric ratios
ay/az and ax/az, indicating that the 1–3 composites with nanopil-
lars parallel to the z-axis possess the optimal effective properties.
The expressions of these three quality factors as a function of geo-
metric ratios can also be obtained via machine learning (see Note
S1 and Table S2, Supporting Information). Therefore, the archi-
tecture of nanopillar is employed for all the following simulation
and theoretical analyses. We also investigated the influence of ox-
ide filler size on the piezoelectric properties. As described in Fig-
ure S7 (Supporting Information), the effective piezoelectric coef-
ficient (d33) of sphere fillers (S6) is mainly reversely proportional
to the radius (r) under a constant volume fraction of 10 vol%.
However, the change in piezoelectric coefficient is much less as
compared to the case with different filament morphologies.

In order to evaluate the impact of filler materials on the out-
put performance of PVA-polymer nanocomposites, a compre-
hensive phase-field simulation is performed to calculate and
compare the stress distribution, piezoelectric field, and elec-
tric potential among 5 categories of piezoelectric oxides in-
cluding BTO/PVA, KxNa1-xNbO3(KNN)/PVA, PMN-35PT/PVA,
PZT/PVA, and ZnO/PVA. The oxide fillers have a fixed geo-
metric ratio of (0.1, 0.1) and a volume fraction of 1 vol% (see
Figure 5). The detailed material parameters for different oxide
fillers are listed in Table S3 (Supporting Information). It is found
that the PMN-35PT/PVA holds the maximum piezoelectric co-
efficient and dielectric permittivity when compared with other
counterparts. This is due to the inherent nature of the PMN-
35PT oxides with concurrent large electrostrictive coefficient Q33

and large dielectric permittivity 𝜖33, which gives rise to a higher
d33 based on the relationship d33 = 2PsQ33𝜖33.[50] Moreover, the
PMN-35PT/PVA nanocomposites hold the smallest mechanical
stiffness c33. In addition, to verify the reliability of the phase-
field simulation, the simulation and experimental results[51–54]

are compared in Figure S8 (Supporting Information). For the 0–
3 BTO/polymer composites, the piezoelectric response predicted
by phase-field simulation in this study is within the range of the
experimentally measured value, which validates the reliability of
the current phase-field model.

Furthermore, a machine learning strategy is proposed to estab-
lish an analytical expression to predict the effective properties of
the oxide-PVA nanocomposites with various filler materials. Ac-
cording to the operational scenario of regression analysis (Figure
S9, Supporting Information), three properties of the nanofillers,
namely the dielectric permittivity, piezoelectric coefficient, and
elastic stiffness are chosen as variables for fingerprints for the
machine learning. As illustrated in Figure 6, we train a prediction
model to approximate the results of the phase-field simulation by
randomly selecting 70% of the phase-field simulated results of
ten piezoelectric oxide fillers including ((K,Na)NbO3 (KNN), PZT,
ZnO, (Ba,Na)NbO3 (BNN), BiFeO3 (BFO), CdS, LiNbO3 (LNO),
LiTaO3 (LTO), ZnS, and PMN-35PT) as the training dataset. The
remaining 30% of phase-field simulation results are used as
the verification dataset to verify the established model. It can
be clearly seen from the parity plot that the piezoelectric coef-
ficients of these 10 systems scattered nearby the diagonal dash
line with a slope of 1, representing d33

phase-field = d33
machine-learning,

implying that the piezoelectric coefficients for these nanocom-
posites predicted from the machine learning are in accor-
dance with the results calculated from phase-field simulations
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Figure 5. Phase-field simulation of nanopillar- filler-based nanocomposites with various filler materials. a) Phase-field simulation results of the stress dis-
tribution, piezoelectric field, and electric potential among 5 categories of piezoelectric nanocomposites including BTO/PVA, KNN/PVA, PMN-35PT/PVA,
PZT/PVA and ZnO/PVA. The oxide fillers are at a fixed fraction of 1 vol% with a geometric ratio of (0.1, 0.1). b) Piezoelectric coefficient d33, relative per-
mittivity 𝜖33, and c) elastic stiffness c11 and c33.

(see Figure 6a), which confirms the validity and reliability of the
proposed model. Furthermore, the mechanical stiffnesses with
the variety of filler materials are almost aligned along the di-
agonal dashed line (Figure 6b), showing the consistency and
compatibility between the predictive analytical expression and
phase-field simulation. Moreover, the predicted relative permit-
tivity and three quality factors agree well with the correspond-

ing phase-field simulation results, further validating the appli-
cability and feasibility of the proposed machine learning model
(Figure 6c–f). A high coefficient of determination (R2) of 0.907
suggests the good performance of our multiple linear regression
model. Detailed machine-learned relationship between the effec-
tive properties of the composite and the ceramic filler is given in
Method. It can be discovered that the piezoelectric response of the
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Figure 6. Comparison between material constants from machine learning and those from phase-field simulation, including a) piezoelectric coefficient
d33, b) stiffness coefficient c33, c) relative permittivity 𝜖33, and quality factors d) d33/c33, e) d33s11, and f) electromechanical coupling coefficient k33.

composite shows a positive correlation with the d33, c11, c12, c44,
d15, and n (volume fraction) of the ceramic filament, while it ex-
hibits a negative correlation with c33 and 𝜖33 of the ceramic filler.
This indicates that the composite material is a complex system
where the piezoresponse depends on multiple factors, which can
be enhanced by increasing the specific piezoelectric coefficient
(d33), as well as decreasing the dielectric constant (𝜖33) and spe-
cific elastic stiffness (c33) of the ceramics.

Finally, to test the generality of the model, we performed the
phase-field simulation of piezoelectric composites based on the
PVDF matrix. As shown in Figure S10 (Supporting Informa-
tion), the 1–3 composite shows better piezoelectric performance
as compared to the other composite architectures (i.e., 0–3 com-
posite), consistent with the observations for the PVA-based com-
posites, showing that the main conclusions of this study can be
further extended to the other polymer-ceramic piezoelectric com-
posites.

3. Conclusions

Based on the high-throughput phase-field simulation and ma-
chine learning, a comprehensive theoretical study is conducted
to explore the role of filler materials and composite architec-
ture in determining the piezoelectric and mechanical proper-
ties of oxide-polymer nanocomposites. Among the 400 groups
of geometric configurations of oxide fillers examined, nanopil-
lar fillers with the largest length-to-width ratio exhibit the max-
imum piezoelectric coefficient, dielectric permittivity, and me-
chanical stiffness under given filler volume fractions. Further

calculation and regression analysis of quality factors d33/c33,
k33, and d33s11 validate that the filler architecture of nanopillar
(ax/az = 0.1, ay/az = 0.1) simultaneously holds optimal piezoelec-
tric and mechanical attributes for high-performance flexible com-
posites. Moreover, a machine learning strategy is proposed to es-
tablish the analytical expression to predict the effective piezoelec-
tric properties of the PVA-polymer nanocomposites prepared us-
ing various filler materials under diverse volume fractions. This
work not only sheds some light on the fundamental mechanism
of piezoelectric polymer nanocomposites but also provides an in-
novative method for optimizing the piezoelectricity of compos-
ites for device applications in flexible electronics and energy har-
vest devices.

4. Experimental Section
Fitting the Surface Formed by the Characteristic Parameters: The Table

Curve 3D program is used for mathematical modeling to describe the re-
lationship between the topological shape and orientation of the oxide filler
and the characteristic parameters. By comparing the built-in formulas like
z = f (x, y), the computer finds the form with the largest correlation coeffi-
cient (Figure S7, Supporting Information). The obtained correlation coef-
ficients (R2) in the several models are all around 0.95.

Linear Regression: Certain correlation between the properties of a
given material and the properties of the corresponding compound was
considered. With the given training data, a predictive multiple linear re-
gression model was trained:

y = 𝛼 + 𝛽x (7)
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where y = {y1,y2, ⋅⋅⋅, y8}T refers to the properties (c11, c12, c33, c44, 𝜖33, d33,
d31, d15) of composite; x = {x1,x2, …, x9}T includes the corresponding
properties of the oxide filler as well as its volume fraction; 𝜷 denotes the
linear coefficient, and 𝜶 is the intercept. The model can be represented in
the matrix form as:

⎛⎜⎜⎝
ĉ11
⋮

d̂15

⎞⎟⎟⎠ =
⎛⎜⎜⎝
𝛽11 ⋯ 𝛽19
⋮ ⋱ ⋮
𝛽81 ⋯ 𝛽89

⎞⎟⎟⎠
⎛⎜⎜⎜⎝

c11
⋮

d15
n

⎞⎟⎟⎟⎠
+
⎛⎜⎜⎝
𝛼1
⋮
𝛼8

⎞⎟⎟⎠ (8)

where c11 to d15 are properties of the oxide filler, n is the volume fraction
of the ceramic; ĉ11 to d̂15 are properties of the corresponding composite.

Then the square loss was adopted to describe the difference between
the predicted value and the true value in the dataset:

L = ||||YT − YP
||||2 (9)

where YP denotes the characteristic parameter values of composites pre-
dicted by the linear regression model and YT refers to the phase-field sim-
ulation values. By minimizing L, the 𝜶 and 𝜷 parameters of the multiple
linear regression model were estimated. For example, d33 are predicted as
follows:

d̂33 = 0.021c11 + 0.062c12 − 0.054c33 + 0.084c44 − 0.007𝜀33

+ 0.058d33 − 0.18d31 + 0.041d15 + 2.935n − 8.240 (10)

where the stiffness c adopts a unit of GPa, the piezoelectric coefficient
d adopts a unit of pC N−1, and the dielectric permittivity is unitless. In
this expression, the d33 of the composite can be approximated as a linear
combination of several parameters of the ceramic filament. This model
summarized by machine learning can be used to estimate the piezoelec-
tric properties of 1–3 polymer/ceramic composites composed of different
materials within small amount of ceramic addition. The complete data of
the trained model is shown in Table S4 (Supporting Information).

Statistical Analysis: Pre-Processing of Data: Since the magnitude differ-
ence between the piezoelectric coefficient (C N−1) and the stiffness coef-
ficient (Pa) was extremely large (up to 1022), the units of the piezoelectric
coefficient were adjusted to pC N−1 and stiffness coefficient were adjusted
to GPa, so that the orders of magnitude of different parameters were sim-
ilar. It was not only in line with the parameter units commonly used in
materials, but also beneficial for machine learning.

Data Presentation and Sample Size (n): By changing the input parame-
ters of the phase field simulation (the piezoelectric coefficient, the volume
fraction of ceramic fillers, etc.), 120 different input–output pairs were ob-
tained (sample size n= 120), and 70% of the data (n1 = 84) were randomly
selected for machine learning (training matrix), 30% of the data (n2 = 36)
were used to verify the reliability of the model.

Statistical Methods Used to Assess Significant Differences with Sufficient
Details: The above operations were independently repeated 10 times.
The squared loss (L) was normalized to the coefficient of determination
R2, and the average value of R2 from 10 trainings was used to evalu-
ate the reliability of the model. The closer the value of R2 was to 1, the
more accurate the machine learning model was, and it was found that the
R2 = 0.8563 ± 0.0385.

The coefficient of determination R2:

R2 = 1 −
Sres

Stot
(11)

Sres =
∑

i

(
YTi

− YPi

)2
=
∑

i

Li (12)

Stot =
∑

i

(
YTi

− YT

)2
(13)

where YP denotes the characteristic parameter values of composites pre-
dicted by the linear regression model and YT refers to the phase-field sim-
ulation values. YT is average of YT.

Software Used for Statistical Analysis: The compilation environment
was Python 3.6, and the scikit-learn module is called for machine learn-
ing.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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