Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2022 Apr 5;78(Pt 5):481–484. doi: 10.1107/S2056989022003449

Crystal structure of bis­(ammonium) bis­[penta­aqua­(di­methyl­formamide)­zinc(II)] deca­vanadate tetra­hydrate

Arash Ebrahimi a, Róbert Gyepes b, Marek Bujdoš c, Lukáš Krivosudský a,*
PMCID: PMC9069511  PMID: 35547794

The title polyoxometalate salt, (NH4)2[Zn(DMF)(H2O)5]2[V10O28]·4H2O, comprising a cationic Zn2+ complex, belongs to a group of relatively rare deca­vanadates with complex counter-ions, previously including only eight crystal structures with zinc(II) components. In the crystal structure, the ions are linked by strong O—H⋯O hydrogen bonds between the coordinated water ligands and the deca­vanadate, with the O⋯O distances ranging from 2.660 (2) to 2.893 (2) Å.

Keywords: crystal structure, deca­vanadate, zinc complexes, polyoxometalate, hydrogen bonds

Abstract

The crystalline product (NH4)2[Zn(C3H7NO)(H2O)5]2[V10O28]·4H2O was success­fully isolated from an H2O/DMF solvent combination by evaporation at ambient temperature. The salt crystallizes in the P21/n space group. Imidazole, initially used in the synthesis but not present in the product, and DMF solvent appear to affect the synthesis and crystallization as structural-directing agents. In the title compound, the complex cation [Zn(H2O)5(DMF)]2+ acts as a counter-ion without being directly coordinated to the deca­vanadate anion. An extensive framework of hydrogen bonds integrates the whole architecture as evidenced by X-ray crystallography. The polyoxometalate [V10O28]6– lies on a center of symmetry while the complex cation [Zn(H2O)5(DMF)]2+ links three adjacent anions through a set of 2 + 2 + 3 hydrogen bonds.

1. Chemical context

Decavanadate anions, H x V10O28 (6–x)–, are the major species in equilibrated aqueous vanadate solutions (Rehder, 2015; Gorzsás et al., 2009) at vanadium(V) concentrations above 1 mM in the pH range of ≃2–6 (Schmidt et al., 2001; Pettersson et al., 1985), and are also stabilized in some organic solvents (Slebodnick & Pecoraro, 1998). There are altogether 54 compounds in the CSD (WebCSD, accessed January 2022; Groom et al., 2016) that contain a deca­vanadate anion and a transition-metal complex cation, either coordinated or as a free counter-ion. Both groups are evenly abundant (27 structures). In our search for conditions under which the deca­vanadate acts as a ligand we focused on Zn2+ complexes that have already shown the ability to act as a counter-ion: (NH4)2[Zn (H2O)6]2[V10O28]·4H2O (Udomvech et al., 2012), [Zn(H2O)6] n [{Na2(H2O)6(μ2-H2O)4Zn(H2O)2}V10O28] n ·4nH2O (Yerra & Das, 2017), [Zn3(Htrz)6(H2O)6][V10O28]·10H2O·Htrz (Xu et al., 2012), (C4H14N2)2]·[Zn(H2O)6][V10O28]·6H2O (Jin et al., 2018), (NH4)2[Zn(H2O)5(NH3CH2CH2COO)]2[V10O28nH2O (Klištincová et al., 2010); as well as being directly coordinated to deca­vanadate: {[Zn2(H2O)14[V10O28]}·H2 ppz (Wang et al., 2008), {[Zn(en)2]3[V10O28]}·5H2O (Pang et al., 2012), {[Zn(im)2(DMF)2]2[H2V10O28im·DMF (Xu et al., 2012), {[Zn3(trz)3(H2O)4(DMF)]2[V10O28]·4H2O} n (Xu et al., 2012), [(CH3)4N]2[Zn(H2O)5]2[V10O28]}·5H2O (Huang et al., 2021) and {[Zn(H2O)6][Zn2[V10O28](H2O)10]}·6H2O (Graia et al., 2008) (im = imidazole, Htrz = 1,2,4-triazole, DMF = N,N′-di­methyl­formamide, en = ethane-1,2-di­amine, ppz = piperazine). Employing zinc(II) centers as part of linker moieties for the construction of polyoxometalate-based metal organic frameworks (POMOFs) comes with an advantage over traditionally used rare metals regarding costs, and sometimes even efficiency. Important applications of POMOFs in materials chemistry include, for instance, photovoltaics (Luo et al., 2012) and hydrogen evolution (Nohra et al., 2011). Despite extensive experimental work with an inexpensive multicomponent system H2O/DMF/imidazole/Zn2+/V5+, we were not able to isolate from the various preparations any crystalline product other than (NH4)2[Zn(H2O)5(DMF)]2[V10O28]·4H2O (1). Its crystal structure is presented here. 1.

2. Structural commentary

Compound 1 crystallizes from a bicomponent solvent H2O/DMF at room temperature in the form of orange block-shaped crystals in monoclinic symmetry [P21/n; β = 108.628 (1)°]. Although imidazole is not present in the crystal structure, neither as a free mol­ecule or cation nor as a ligand, its presence was necessary for crystallization to take place. In the absence of imidazole we observed the formation of oily solutions without crystalline product or the slow reduction of vanadium accompanied by a change in color of the solution from orange to greenish. The asymmetric unit of (NH4)2[Zn(H2O)5(DMF)]2[V10O28]·4H2O (Fig. 1) comprises one half of the [V10O28]6– polyoxometalate, one [Zn(H2O)5(DMF)]2+ complex cation, one NH4 + and two mol­ecules of water of crystallization. The H atoms of the ammonium cation and water mol­ecules were found in the difference map and refined freely except for three water mol­ecules where restraints on the O—H distances were applied. The H atoms bound to the C atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms. The Zn2+ center in [Zn(H2O)5(DMF)]2+ is coordinated by five aqua ligands with Zn—O bond lengths in the range 2.0482 (16)–2.1273 (16) Å and one N,N′-di­methyl­formamide ligand coordinated through the oxygen atom with a Zn—O bond length of 2.0926 (14) Å, forming an irregular octa­hedron. The deca­vanadate anion [V10O28]6– is present in a fully deprotonated form, as further confirmed by elemental analysis and charge balance. It resides in a special position on the center of symmetry, as observed many times before (Rakovský & Krivosudský, 2014). The anion adopts C i symmetry (idealized D 2h ) and is composed of ten edge-sharing heavily distorted octa­hedra. The terminal vanadium–oxygen bond lengths (V=O groups) are in the range 1.5929 (14)–1.6210 (14) Å, with an average value of 1.6083 Å. The bond lengths of the bridging μ–O atoms are in the range 1.6890 (13)–2.0696 (14) Å, with an average value of 1.853 Å. The bond lengths of the bridging μ 3–O atoms with coord­ination numbers of three are in the range 1.8700 (14)–2.0208 (14) Å, with an average value of 1.9725 Å. Bond lengths of the hexa­coordinated oxygen atom trapped inside the deca­vanadate (O16) are in the range 2.1033 (13)–2.3337 (13) Å, with an average value of 2.2222 Å. All metrical parameters fall in their typical ranges.

Figure 1.

Figure 1

The mol­ecular structure of 1 showing 50% displacement ellipsoids illustrated with DIAMOND (Brandenburg & Putz, 2005). The half of the deca­vanadate anion that is not part of the asymmetric unit is displayed as faded.

3. Supra­molecular features

The supra­molecular structure of 1 is stabilized by a rich network of hydrogen bonds that involves all components of the compound. The strongest hydrogen bonds are formed by the complex cation (Fig. 2, Table 1), which serves as a linker for deca­vanadate anions in its vicinity. More specifically, [Zn(H2O)5(DMF)]2+ forms 2 + 2 + 3 hydrogen bonds through its aqua ligands (as donors) to three different [V10O28]6− anions (as acceptors). The structural parameters of the hydrogen bonds are summarized in Table 1. Based on the DA distances ranging from 2.659 (2) to 2.892 (2) Å and the angles D—H⋯A falling into the range 164 (3)–177 (3)°, the hydrogen bonds may be considered relatively strong examples.

Figure 2.

Figure 2

Relative positions of the three adjacent deca­vanadate anions (orange polyhedra) linked by a single [Zn(H2O)5(DMF)]2+ cation.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O15i 0.75 (3) 1.98 (3) 2.722 (2) 167 (3)
O3—H3P⋯O18 0.83 (3) 2.07 (3) 2.892 (2) 173 (3)
O4—H4O⋯O17ii 0.74 (3) 1.97 (3) 2.710 (2) 177 (3)
O5—H5O⋯O19 0.85 (3) 1.82 (3) 2.659 (2) 169 (3)
O5—H5P⋯O9iii 0.76 (3) 2.10 (3) 2.842 (2) 164 (3)
O6—H6O⋯O7iii 0.82 (3) 1.95 (3) 2.771 (2) 173 (3)
O6—H6P⋯O11ii 0.78 (2) 2.00 (2) 2.769 (2) 170 (3)

Symmetry codes: (i) Inline graphic ; (ii) Inline graphic ; (iii) Inline graphic .

4. Database survey

In a search of the Cambridge Structural Database (WebCSD, accessed January 2022; Groom et al., 2016) for closely related deca­vanadates bearing mononuclear zinc(II) complex cations which are not coordinated to the deca­vanadate anion, six entries were found: (NH4)2[Zn(H2O)6]2[V10O28]·4H2O ICSD Entry: 422816 (Udomvech et al., 2012), [Zn(H2O)6] n [{Na2(H2O)6(μ-H2O)4Zn(H2O)2}V10O28] n ·4nH2O ICSD Entry: 427974 (Yerra & Das, 2017), (C4H14N2)2]·[Zn(H2O)6][V10O28]·6H2O YEYYEJ (Jin et al., 2018), (NH4)2[Zn(H2O)5(NH3CH2CH2COO)]2[V10O28nH2O XABQIC (Klištincová et al., 2010), [Zn(3-Hdpye)(H2O)5]2[V10O28]·4H2O OXUYUD (Wang et al., 2016), and [Zn(H2O)6][Na3(H2O)14][HV10O28]·4H2O SUDGUW (Amanchi & Das, 2018). The overall compositions (cations, deca­vanadate anion, water) are in all cases similar to that of the title compound.

5. Synthesis and crystallization

NH4VO3 (0.464 g, 4 mmol) was dissolved in 20 ml of water and stirred upon heating. After being cooled down to ambient temperature, deca­vanadate was prepared in situ by adjusting the pH to 4 with 2 M HCl until the color of the solution changed from bright yellow to orange. Under continuous stirring, imidazole (0.136 g, 2 mmol) was poured into the mixture and the pH was adjusted to 4 by adding 2 M HCl again. Finally, first ZnSO4·7H2O (0.287 g, 1 mmol) and secondly 20 mL of DMF were added to the clear solution. The mixture was filtered, and the clear orange filtrate was left to crystallize at RT. The orange crystals were isolated a few days later. The vanadium content was determined using an ICP MS Thermo Scientific iCap-Q; the zinc content was determined using an AAS Perkin-Elmer Model 1100. An infrared spectrum was recorded on a Nicolet FTIR 6700 spectrometer in Nujol mull. Analytical data for C6H50N4O44V10Zn2: theoretical V 33.5%, Zn 8.6%; found V 32.4%, Zn 8.40%. Characteristic bands in the FTIR spectrum (in cm−1): V10O28 964, 951, 938, 805, 596; NH4 + 1416; DMF 1658, 1382, 1118.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined isotropically and those on carbon atoms were placed in geometrically idealized positions (C—H = 0.93 Å) and constrained to ride on their parent atoms with U iso(H) = 1.2 U eq(C). Hydrogen atoms of the water mol­ecules and the ammonium cation were found in the difference-Fourier map. For the two lattice water mol­ecules and one coordinated water, the O—H distances were restrained with DFIX while orientation and displacement parameters were refined freely. All other water hydrogen atoms and the ammonium cation hydrogen atoms were refined freely.

Table 2. Experimental details.

Crystal data
Chemical formula (NH4)2[Zn(C3H7NO)(H2O)5]2[V10O28]·4H2O
M r 1522.64
Crystal system, space group Monoclinic, P21/n
Temperature (K) 120
a, b, c (Å) 15.5436 (6), 8.6538 (4), 16.7362 (7)
β (°) 108.628 (1)
V3) 2133.27 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.31
Crystal size (mm) 0.49 × 0.23 × 0.10
 
Data collection
Diffractometer Nonius KappaCCD with Buker APEXII detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.57, 0.73
No. of measured, independent and observed [I > 2σ(I)] reflections 29908, 4901, 4354
R int 0.033
(sin θ/λ)max−1) 0.650
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.023, 0.056, 1.06
No. of reflections 4901
No. of parameters 372
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.62

Computer programs: Instrument Service (Bruker, 2021), SAINT (Bruker, 2021), SHELXT2018/2 (Sheldrick, 2015a ), SHELXL2018/3 (Sheldrick, 2015b ) and DIAMOND (Brandenburg & Putz, 2005).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022003449/yz2017sup1.cif

e-78-00481-sup1.cif (919.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022003449/yz2017Isup2.hkl

e-78-00481-Isup2.hkl (390.2KB, hkl)

CCDC reference: 2156016

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

(NH4)2[Zn(C3H7NO)(H2O)5]2[V10O28]·4H2O F(000) = 1512
Mr = 1522.64 Dx = 2.370 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 15.5436 (6) Å Cell parameters from 9949 reflections
b = 8.6538 (4) Å θ = 2.6–27.5°
c = 16.7362 (7) Å µ = 3.31 mm1
β = 108.628 (1)° T = 120 K
V = 2133.27 (16) Å3 Prism, orange
Z = 2 0.49 × 0.23 × 0.10 mm

Data collection

Nonius KappaCCD with Buker APEXII detector diffractometer 4354 reflections with I > 2σ(I)
data from phi and ω scans Rint = 0.033
Absorption correction: multi-scan (SADABS; Krause et al., 2015) θmax = 27.5°, θmin = 2.2°
Tmin = 0.57, Tmax = 0.73 h = −20→19
29908 measured reflections k = −11→11
4901 independent reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.023 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.056 w = 1/[σ2(Fo2) + (0.0284P)2 + 1.1852P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.002
4901 reflections Δρmax = 0.36 e Å3
372 parameters Δρmin = −0.62 e Å3
6 restraints

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.31800 (2) 0.46454 (3) 0.54363 (2) 0.00759 (6)
O1 0.36049 (10) 0.62987 (16) 0.47301 (9) 0.0114 (3)
O2 0.31034 (13) 0.30400 (19) 0.45168 (11) 0.0159 (3)
H2O 0.276 (2) 0.240 (3) 0.4386 (19) 0.027 (9)*
H2P 0.350 (2) 0.281 (4) 0.439 (2) 0.043 (11)*
O3 0.44977 (11) 0.3899 (2) 0.60794 (10) 0.0125 (3)
H3O 0.4493 (17) 0.310 (3) 0.6204 (16) 0.012 (7)*
H3P 0.478 (2) 0.433 (3) 0.653 (2) 0.027 (8)*
O4 0.27068 (12) 0.31855 (17) 0.62168 (10) 0.0107 (3)
H4O 0.2351 (18) 0.260 (3) 0.6034 (16) 0.012 (7)*
H4P 0.311 (2) 0.274 (3) 0.6540 (19) 0.026 (8)*
O5 0.32040 (12) 0.64584 (19) 0.62565 (10) 0.0147 (3)
H5O 0.338 (2) 0.648 (4) 0.679 (2) 0.037 (9)*
H5P 0.309 (2) 0.728 (4) 0.609 (2) 0.041 (10)*
O6 0.17863 (11) 0.51996 (18) 0.48529 (10) 0.0107 (3)
H6O 0.1613 (18) 0.600 (3) 0.4584 (16) 0.025 (8)*
H6P 0.1389 (16) 0.463 (3) 0.4648 (17) 0.018 (7)*
C1 0.31089 (15) 0.6545 (2) 0.39870 (13) 0.0127 (4)
H1 0.267624 0.577353 0.372375 0.015*
N1 0.31404 (12) 0.7783 (2) 0.35441 (11) 0.0126 (4)
C2 0.37449 (17) 0.9071 (3) 0.38953 (16) 0.0207 (5)
H2A 0.339767 0.991473 0.403582 0.031*
H2B 0.402328 0.943400 0.348019 0.031*
H2C 0.422078 0.873260 0.440631 0.031*
C3 0.24580 (16) 0.8028 (3) 0.27197 (15) 0.0230 (5)
H3A 0.208105 0.710072 0.255621 0.035*
H3B 0.276127 0.823842 0.229986 0.035*
H3C 0.207451 0.891060 0.275052 0.035*
V1 0.66396 (2) 0.54542 (4) 0.97966 (2) 0.00519 (8)
V2 0.48442 (2) 0.68753 (4) 0.99591 (2) 0.00468 (8)
V3 0.54965 (2) 0.33633 (4) 0.83349 (2) 0.00615 (8)
V4 0.37025 (2) 0.46974 (4) 0.84932 (2) 0.00550 (8)
V5 0.51936 (2) 0.68687 (4) 0.82367 (2) 0.00627 (8)
O7 0.63516 (9) 0.70057 (15) 0.90117 (8) 0.0068 (3)
O8 0.48640 (9) 0.80713 (15) 0.91677 (8) 0.0066 (3)
O9 0.76998 (9) 0.57672 (15) 1.03142 (9) 0.0079 (3)
O10 0.60927 (9) 0.67399 (15) 1.05199 (8) 0.0057 (3)
O11 0.45500 (9) 0.79640 (15) 1.06789 (8) 0.0066 (3)
O12 0.57404 (10) 0.20530 (16) 0.77742 (9) 0.0102 (3)
O13 0.42410 (9) 0.32537 (15) 0.79962 (8) 0.0067 (3)
O14 0.26409 (10) 0.43520 (16) 0.80457 (9) 0.0096 (3)
O15 0.66637 (9) 0.39324 (15) 0.90763 (8) 0.0068 (3)
O16 0.51531 (9) 0.50621 (14) 0.92593 (8) 0.0055 (3)
O17 0.36261 (9) 0.60759 (15) 0.94154 (8) 0.0061 (3)
O18 0.54495 (10) 0.51674 (15) 0.77235 (9) 0.0072 (3)
O19 0.39504 (9) 0.63135 (15) 0.79227 (8) 0.0070 (3)
O20 0.51633 (10) 0.82531 (16) 0.75840 (9) 0.0107 (3)
N2 0.13802 (14) 0.5436 (2) 0.65462 (12) 0.0091 (4)
H2R 0.0918 (19) 0.476 (3) 0.6319 (17) 0.017 (7)*
H2S 0.176 (2) 0.502 (3) 0.691 (2) 0.024 (8)*
H2T 0.1165 (18) 0.620 (3) 0.6764 (16) 0.019 (7)*
H2Q 0.165 (2) 0.572 (3) 0.618 (2) 0.031 (8)*
O21 0.41424 (12) 0.08923 (19) 0.64987 (12) 0.0191 (4)
H21A 0.446 (2) 0.032 (3) 0.6837 (18) 0.036 (9)*
H21B 0.3783 (19) 0.042 (3) 0.6175 (18) 0.037 (10)*
O22 0.46542 (13) 0.2601 (2) 0.41289 (12) 0.0260 (4)
H22A 0.472 (2) 0.250 (4) 0.3693 (16) 0.040 (10)*
H22B 0.5092 (18) 0.296 (4) 0.4460 (18) 0.039 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.00799 (12) 0.00689 (11) 0.00765 (11) −0.00058 (9) 0.00214 (9) −0.00008 (9)
O1 0.0120 (8) 0.0121 (7) 0.0107 (7) −0.0031 (6) 0.0046 (6) 0.0005 (6)
O2 0.0122 (9) 0.0163 (8) 0.0222 (9) −0.0065 (7) 0.0099 (7) −0.0108 (7)
O3 0.0122 (8) 0.0103 (8) 0.0122 (8) 0.0005 (7) 0.0001 (6) 0.0005 (7)
O4 0.0087 (8) 0.0085 (7) 0.0129 (8) −0.0020 (7) 0.0006 (7) 0.0017 (6)
O5 0.0246 (9) 0.0090 (8) 0.0068 (8) 0.0014 (7) −0.0002 (7) −0.0004 (6)
O6 0.0079 (8) 0.0077 (7) 0.0133 (8) −0.0006 (6) −0.0009 (6) 0.0015 (6)
C1 0.0122 (11) 0.0143 (10) 0.0135 (10) 0.0001 (9) 0.0069 (9) −0.0010 (8)
N1 0.0106 (9) 0.0150 (9) 0.0142 (9) 0.0021 (7) 0.0069 (8) 0.0037 (7)
C2 0.0288 (14) 0.0143 (11) 0.0244 (12) −0.0034 (10) 0.0162 (11) 0.0011 (9)
C3 0.0163 (12) 0.0374 (14) 0.0168 (12) 0.0070 (11) 0.0073 (10) 0.0110 (11)
V1 0.00446 (17) 0.00613 (15) 0.00523 (15) 0.00007 (12) 0.00188 (13) −0.00022 (12)
V2 0.00508 (17) 0.00396 (15) 0.00497 (15) 0.00072 (12) 0.00156 (13) 0.00013 (12)
V3 0.00678 (17) 0.00668 (16) 0.00561 (16) 0.00051 (13) 0.00282 (13) −0.00102 (12)
V4 0.00511 (17) 0.00675 (15) 0.00438 (15) 0.00021 (12) 0.00115 (13) −0.00009 (12)
V5 0.00768 (18) 0.00618 (16) 0.00514 (16) 0.00000 (13) 0.00230 (13) 0.00097 (12)
O7 0.0071 (7) 0.0072 (6) 0.0068 (6) −0.0008 (5) 0.0032 (6) −0.0003 (5)
O8 0.0068 (7) 0.0058 (6) 0.0074 (7) 0.0003 (5) 0.0024 (6) 0.0003 (5)
O9 0.0070 (7) 0.0088 (6) 0.0081 (7) 0.0001 (6) 0.0027 (6) 0.0000 (5)
O10 0.0057 (7) 0.0055 (6) 0.0056 (6) −0.0004 (5) 0.0011 (5) −0.0006 (5)
O11 0.0068 (7) 0.0061 (6) 0.0072 (7) 0.0007 (5) 0.0027 (6) 0.0000 (5)
O12 0.0104 (8) 0.0113 (7) 0.0097 (7) 0.0000 (6) 0.0045 (6) −0.0033 (6)
O13 0.0066 (7) 0.0076 (6) 0.0061 (6) 0.0000 (5) 0.0023 (6) −0.0003 (5)
O14 0.0078 (7) 0.0121 (7) 0.0081 (7) −0.0005 (6) 0.0014 (6) 0.0002 (6)
O15 0.0060 (7) 0.0077 (6) 0.0075 (7) 0.0001 (5) 0.0033 (6) 0.0000 (5)
O16 0.0045 (7) 0.0057 (6) 0.0063 (6) 0.0001 (5) 0.0019 (6) 0.0004 (5)
O17 0.0045 (7) 0.0062 (6) 0.0075 (6) 0.0009 (5) 0.0019 (5) 0.0002 (5)
O18 0.0071 (7) 0.0084 (6) 0.0064 (6) −0.0006 (5) 0.0029 (6) −0.0002 (5)
O19 0.0074 (7) 0.0079 (6) 0.0055 (6) 0.0012 (5) 0.0017 (6) 0.0014 (5)
O20 0.0117 (8) 0.0109 (7) 0.0095 (7) −0.0005 (6) 0.0033 (6) 0.0018 (6)
N2 0.0090 (9) 0.0078 (8) 0.0095 (9) 0.0005 (8) 0.0014 (8) 0.0011 (7)
O21 0.0162 (9) 0.0113 (8) 0.0217 (9) −0.0007 (7) −0.0056 (8) −0.0002 (7)
O22 0.0184 (10) 0.0405 (11) 0.0223 (10) −0.0112 (8) 0.0110 (9) −0.0143 (9)

Geometric parameters (Å, º)

Zn1—O2 2.0482 (16) V2—O11 1.7029 (14)
Zn1—O5 2.0772 (16) V2—O10 1.8700 (14)
Zn1—O3 2.0886 (16) V2—O17 1.9470 (14)
Zn1—O1 2.0926 (14) V2—O16 2.1033 (13)
Zn1—O4 2.1113 (16) V2—O16i 2.1256 (13)
Zn1—O6 2.1273 (16) V2—V3i 3.0726 (5)
O1—C1 1.255 (3) V2—V5 3.0993 (5)
O2—H2O 0.75 (3) V3—O12 1.5929 (14)
O2—H2P 0.74 (3) V3—O13 1.8525 (14)
O3—H3O 0.73 (3) V3—O18 1.8552 (14)
O3—H3P 0.83 (3) V3—O15 1.9067 (14)
O4—H4O 0.74 (3) V3—O11i 2.0310 (14)
O4—H4P 0.79 (3) V3—O16 2.3168 (14)
O5—H5O 0.84 (3) V3—V5 3.0662 (5)
O5—H5P 0.76 (3) V3—V4 3.1066 (5)
O6—H6O 0.82 (2) V4—O14 1.6074 (15)
O6—H6P 0.78 (2) V4—O19 1.8031 (14)
C1—N1 1.313 (3) V4—O13 1.8434 (14)
C1—H1 0.9500 V4—O17 1.9841 (14)
N1—C2 1.455 (3) V4—O10i 2.0101 (14)
N1—C3 1.463 (3) V4—O16 2.2317 (14)
C2—H2A 0.9800 V4—V5 3.1181 (5)
C2—H2B 0.9800 V5—O20 1.6118 (14)
C2—H2C 0.9800 V5—O18 1.8115 (14)
C3—H3A 0.9800 V5—O7 1.8559 (14)
C3—H3B 0.9800 V5—O19 1.8954 (14)
C3—H3C 0.9800 V5—O8 2.0696 (14)
V1—O9 1.6210 (14) V5—O16 2.3337 (13)
V1—O15 1.7939 (14) N2—H2R 0.91 (3)
V1—O7 1.8312 (14) N2—H2S 0.79 (3)
V1—O17i 2.0027 (14) N2—H2T 0.87 (3)
V1—O10 2.0208 (14) N2—H2Q 0.88 (3)
V1—O16 2.2215 (14) O21—H21A 0.79 (2)
V1—V4i 3.0765 (5) O21—H21B 0.76 (2)
V1—V5 3.1011 (5) O22—H22A 0.78 (2)
V1—V3 3.1047 (5) O22—H22B 0.79 (2)
V2—O8 1.6890 (13)
O2—Zn1—O5 173.36 (7) O11i—V3—V2i 31.29 (4)
O2—Zn1—O3 89.40 (7) O16—V3—V2i 43.72 (3)
O5—Zn1—O3 94.90 (7) V5—V3—V2i 92.705 (12)
O2—Zn1—O1 89.57 (7) O12—V3—V1 134.03 (5)
O5—Zn1—O1 85.10 (6) O13—V3—V1 123.55 (4)
O3—Zn1—O1 93.90 (6) O18—V3—V1 81.71 (4)
O2—Zn1—O4 96.37 (7) O15—V3—V1 31.85 (4)
O5—Zn1—O4 88.82 (6) O11i—V3—V1 81.33 (4)
O3—Zn1—O4 88.52 (7) O16—V3—V1 45.57 (3)
O1—Zn1—O4 173.62 (6) V5—V3—V1 60.334 (11)
O2—Zn1—O6 90.11 (7) V2i—V3—V1 62.101 (11)
O5—Zn1—O6 86.20 (6) O12—V3—V4 134.74 (5)
O3—Zn1—O6 173.47 (6) O13—V3—V4 32.71 (4)
O1—Zn1—O6 92.61 (6) O18—V3—V4 81.72 (4)
O4—Zn1—O6 85.06 (6) O15—V3—V4 122.81 (4)
C1—O1—Zn1 118.11 (14) O11i—V3—V4 82.82 (4)
Zn1—O2—H2O 126 (2) O16—V3—V4 45.79 (3)
Zn1—O2—H2P 123 (3) V5—V3—V4 60.676 (11)
H2O—O2—H2P 107 (3) V2i—V3—V4 61.307 (10)
Zn1—O3—H3O 110 (2) V1—V3—V4 91.121 (12)
Zn1—O3—H3P 118 (2) O14—V4—O19 104.99 (7)
H3O—O3—H3P 103 (3) O14—V4—O13 102.14 (7)
Zn1—O4—H4O 121 (2) O19—V4—O13 94.71 (6)
Zn1—O4—H4P 111 (2) O14—V4—O17 99.59 (6)
H4O—O4—H4P 107 (3) O19—V4—O17 91.24 (6)
Zn1—O5—H5O 130 (2) O13—V4—O17 155.11 (6)
Zn1—O5—H5P 121 (2) O14—V4—O10i 97.90 (7)
H5O—O5—H5P 108 (3) O19—V4—O10i 155.58 (6)
Zn1—O6—H6O 123.2 (19) O13—V4—O10i 88.61 (6)
Zn1—O6—H6P 127.5 (19) O17—V4—O10i 76.46 (5)
H6O—O6—H6P 102 (3) O14—V4—O16 172.94 (6)
O1—C1—N1 125.2 (2) O19—V4—O16 81.20 (6)
O1—C1—H1 117.4 O13—V4—O16 80.45 (6)
N1—C1—H1 117.4 O17—V4—O16 76.62 (5)
C1—N1—C2 122.21 (19) O10i—V4—O16 75.50 (5)
C1—N1—C3 120.29 (19) O14—V4—V1i 88.21 (5)
C2—N1—C3 116.75 (19) O19—V4—V1i 130.95 (4)
N1—C2—H2A 109.5 O13—V4—V1i 128.99 (4)
N1—C2—H2B 109.5 O17—V4—V1i 39.72 (4)
H2A—C2—H2B 109.5 O10i—V4—V1i 40.38 (4)
N1—C2—H2C 109.5 O16—V4—V1i 85.11 (4)
H2A—C2—H2C 109.5 O14—V4—V3 134.99 (5)
H2B—C2—H2C 109.5 O19—V4—V3 83.90 (4)
N1—C3—H3A 109.5 O13—V4—V3 32.89 (4)
N1—C3—H3B 109.5 O17—V4—V3 124.63 (4)
H3A—C3—H3B 109.5 O10i—V4—V3 85.94 (4)
N1—C3—H3C 109.5 O16—V4—V3 48.08 (3)
H3A—C3—H3C 109.5 V1i—V4—V3 119.349 (14)
H3B—C3—H3C 109.5 O14—V4—V5 138.20 (5)
O9—V1—O15 104.24 (7) O19—V4—V5 33.46 (4)
O9—V1—O7 103.57 (7) O13—V4—V5 83.20 (4)
O15—V1—O7 96.26 (6) O17—V4—V5 88.66 (4)
O9—V1—O17i 98.45 (6) O10i—V4—V5 123.81 (4)
O15—V1—O17i 90.58 (6) O16—V4—V5 48.31 (3)
O7—V1—O17i 154.50 (6) V1i—V4—V5 120.716 (13)
O9—V1—O10 97.95 (6) V3—V4—V5 59.021 (11)
O15—V1—O10 155.49 (6) O20—V5—O18 104.25 (7)
O7—V1—O10 88.44 (6) O20—V5—O7 103.77 (7)
O17i—V1—O10 75.81 (5) O18—V5—O7 94.15 (6)
O9—V1—O16 171.99 (6) O20—V5—O19 101.19 (7)
O15—V1—O16 81.84 (6) O18—V5—O19 91.23 (6)
O7—V1—O16 80.63 (6) O7—V5—O19 152.28 (6)
O17i—V1—O16 76.05 (5) O20—V5—O8 100.13 (6)
O10—V1—O16 75.19 (5) O18—V5—O8 155.54 (6)
O9—V1—V4i 87.61 (5) O7—V5—O8 81.94 (6)
O15—V1—V4i 129.85 (4) O19—V5—O8 81.98 (6)
O7—V1—V4i 128.56 (4) O20—V5—O16 173.31 (6)
O17i—V1—V4i 39.28 (4) O18—V5—O16 82.22 (5)
O10—V1—V4i 40.12 (4) O7—V5—O16 77.15 (5)
O16—V1—V4i 84.47 (4) O19—V5—O16 76.68 (5)
O9—V1—V5 136.35 (5) O8—V5—O16 73.35 (5)
O15—V1—V5 83.63 (5) O20—V5—V3 137.94 (5)
O7—V1—V5 32.99 (4) O18—V5—V3 33.71 (4)
O17i—V1—V5 124.67 (4) O7—V5—V3 85.86 (4)
O10—V1—V5 87.51 (4) O19—V5—V3 83.66 (4)
O16—V1—V5 48.63 (3) O8—V5—V3 121.86 (4)
V4i—V1—V5 120.389 (14) O16—V5—V3 48.51 (3)
O9—V1—V3 138.31 (5) O20—V5—V2 130.78 (5)
O15—V1—V3 34.12 (4) O18—V5—V2 124.94 (5)
O7—V1—V3 85.11 (4) O7—V5—V2 76.63 (4)
O17i—V1—V3 86.96 (4) O19—V5—V2 78.01 (4)
O10—V1—V3 123.27 (4) O8—V5—V2 30.65 (4)
O16—V1—V3 48.13 (4) O16—V5—V2 42.72 (3)
V4i—V1—V3 118.865 (14) V3—V5—V2 91.233 (12)
V5—V1—V3 59.218 (11) O20—V5—V1 136.08 (5)
O8—V2—O11 106.98 (7) O18—V5—V1 82.44 (5)
O8—V2—O10 98.98 (6) O7—V5—V1 32.50 (4)
O11—V2—O10 98.61 (6) O19—V5—V1 122.27 (4)
O8—V2—O17 96.31 (6) O8—V5—V1 81.48 (4)
O11—V2—O17 94.96 (6) O16—V5—V1 45.59 (3)
O10—V2—O17 155.59 (6) V3—V5—V1 60.448 (11)
O8—V2—O16 87.47 (6) V2—V5—V1 60.851 (11)
O11—V2—O16 165.32 (6) O20—V5—V4 132.78 (5)
O10—V2—O16 81.25 (6) O18—V5—V4 82.01 (5)
O17—V2—O16 80.53 (5) O7—V5—V4 122.67 (4)
O8—V2—O16i 165.68 (6) O19—V5—V4 31.63 (4)
O11—V2—O16i 87.09 (6) O8—V5—V4 79.96 (4)
O10—V2—O16i 81.02 (6) O16—V5—V4 45.57 (3)
O17—V2—O16i 79.50 (5) V3—V5—V4 60.303 (11)
O16—V2—O16i 78.36 (6) V2—V5—V4 60.938 (10)
O8—V2—V3i 145.25 (5) V1—V5—V4 90.971 (12)
O11—V2—V3i 38.27 (5) V1—O7—V5 114.51 (7)
O10—V2—V3i 89.35 (4) V2—O8—V5 110.69 (7)
O17—V2—V3i 88.85 (4) V2—O10—V4i 108.53 (6)
O16—V2—V3i 127.24 (4) V2—O10—V1 107.55 (6)
O16i—V2—V3i 48.87 (4) V4i—O10—V1 99.50 (6)
O8—V2—V5 38.66 (5) V2—O11—V3i 110.45 (7)
O11—V2—V5 145.64 (5) V4—O13—V3 114.40 (7)
O10—V2—V5 90.27 (4) V1—O15—V3 114.03 (7)
O17—V2—V5 89.87 (4) V2—O16—V2i 101.64 (6)
O16—V2—V5 48.82 (4) V2—O16—V1 93.07 (5)
O16i—V2—V5 127.18 (4) V2i—O16—V1 94.24 (5)
V3i—V2—V5 176.038 (14) V2—O16—V4 93.27 (5)
O12—V3—O13 102.07 (7) V2i—O16—V4 92.58 (5)
O12—V3—O18 104.42 (7) V1—O16—V4 169.57 (7)
O13—V3—O18 91.28 (6) V2—O16—V3 170.95 (7)
O12—V3—O15 102.19 (7) V2i—O16—V3 87.41 (5)
O13—V3—O15 154.51 (6) V1—O16—V3 86.30 (5)
O18—V3—O15 90.18 (6) V4—O16—V3 86.13 (5)
O12—V3—O11i 98.81 (6) V2—O16—V5 88.46 (5)
O13—V3—O11i 84.97 (6) V2i—O16—V5 169.89 (7)
O18—V3—O11i 156.74 (6) V1—O16—V5 85.77 (5)
O15—V3—O11i 83.72 (6) V4—O16—V5 86.12 (5)
O12—V3—O16 173.76 (6) V3—O16—V5 82.50 (4)
O13—V3—O16 77.99 (5) V2—O17—V4 106.64 (6)
O18—V3—O16 81.80 (5) V2—O17—V1i 107.55 (6)
O15—V3—O16 77.04 (5) V4—O17—V1i 101.01 (6)
O11i—V3—O16 74.96 (5) V5—O18—V3 113.48 (7)
O12—V3—V5 137.23 (5) V4—O19—V5 114.91 (7)
O13—V3—V5 84.58 (4) H2R—N2—H2S 110 (3)
O18—V3—V5 32.81 (4) H2R—N2—H2T 108 (2)
O15—V3—V5 82.95 (4) H2S—N2—H2T 109 (3)
O11i—V3—V5 123.94 (4) H2R—N2—H2Q 112 (3)
O16—V3—V5 48.99 (3) H2S—N2—H2Q 104 (3)
O12—V3—V2i 130.07 (5) H2T—N2—H2Q 114 (2)
O13—V3—V2i 78.67 (4) H21A—O21—H21B 109 (3)
O18—V3—V2i 125.52 (4) H22A—O22—H22B 111 (3)
O15—V3—V2i 79.82 (4)
Zn1—O1—C1—N1 160.84 (16) V1i—V4—O13—V3 −84.80 (8)
O1—C1—N1—C2 −3.0 (3) V5—V4—O13—V3 39.62 (6)
O1—C1—N1—C3 −172.8 (2) O12—V3—O13—V4 −177.51 (8)
O9—V1—O7—V5 174.37 (7) O18—V3—O13—V4 −72.47 (8)
O15—V1—O7—V5 68.06 (8) O15—V3—O13—V4 20.64 (18)
O17i—V1—O7—V5 −36.62 (17) O11i—V3—O13—V4 84.54 (7)
O10—V1—O7—V5 −87.82 (7) O16—V3—O13—V4 8.87 (7)
O16—V1—O7—V5 −12.58 (7) V5—V3—O13—V4 −40.31 (6)
V4i—V1—O7—V5 −87.71 (8) V2i—V3—O13—V4 53.56 (6)
V3—V1—O7—V5 35.75 (6) V1—V3—O13—V4 8.43 (9)
O20—V5—O7—V1 −174.70 (8) O9—V1—O15—V3 −177.41 (7)
O18—V5—O7—V1 −68.93 (8) O7—V1—O15—V3 −71.66 (8)
O19—V5—O7—V1 31.69 (17) O17i—V1—O15—V3 83.73 (7)
O8—V5—O7—V1 86.78 (7) O10—V1—O15—V3 28.39 (18)
O16—V5—O7—V1 12.11 (7) O16—V1—O15—V3 7.90 (7)
V3—V5—O7—V1 −36.23 (6) V4i—V1—O15—V3 83.63 (8)
V2—V5—O7—V1 56.03 (6) V5—V1—O15—V3 −41.12 (6)
V4—V5—O7—V1 14.23 (9) O20—V5—O18—V3 −178.51 (8)
O11—V2—O8—V5 −179.02 (6) O7—V5—O18—V3 76.15 (8)
O10—V2—O8—V5 79.05 (7) O19—V5—O18—V3 −76.64 (8)
O17—V2—O8—V5 −81.86 (7) O8—V5—O18—V3 −3.5 (2)
O16—V2—O8—V5 −1.67 (7) O16—V5—O18—V3 −0.26 (7)
O16i—V2—O8—V5 −9.8 (3) V2—V5—O18—V3 −0.44 (10)
V3i—V2—O8—V5 −178.97 (3) V1—V5—O18—V3 45.77 (6)
O8—V2—O10—V4i −178.45 (6) V4—V5—O18—V3 −46.29 (6)
O11—V2—O10—V4i 72.71 (7) O12—V3—O18—V5 −179.26 (8)
O17—V2—O10—V4i −50.33 (16) O13—V3—O18—V5 77.94 (8)
O16—V2—O10—V4i −92.44 (6) O15—V3—O18—V5 −76.62 (8)
O16i—V2—O10—V4i −12.94 (6) O11i—V3—O18—V5 −2.3 (2)
V3i—V2—O10—V4i 35.44 (5) O16—V3—O18—V5 0.27 (7)
V5—V2—O10—V4i −140.62 (5) V2i—V3—O18—V5 0.97 (10)
O8—V2—O10—V1 −71.68 (7) V1—V3—O18—V5 −45.80 (6)
O11—V2—O10—V1 179.48 (6) V4—V3—O18—V5 46.56 (6)
O17—V2—O10—V1 56.44 (16) O14—V4—O19—V5 −174.03 (7)
O16—V2—O10—V1 14.33 (6) O13—V4—O19—V5 −70.12 (8)
O16i—V2—O10—V1 93.83 (6) O17—V4—O19—V5 85.69 (8)
V3i—V2—O10—V1 142.21 (5) O10i—V4—O19—V5 26.93 (18)
V5—V2—O10—V1 −33.84 (5) O16—V4—O19—V5 9.44 (7)
O8—V2—O11—V3i 179.95 (7) V1i—V4—O19—V5 85.04 (8)
O10—V2—O11—V3i −77.85 (7) V3—V4—O19—V5 −39.01 (6)
O17—V2—O11—V3i 81.80 (7) O20—V5—O19—V4 177.33 (8)
O16—V2—O11—V3i 10.5 (3) O18—V5—O19—V4 72.55 (8)
O16i—V2—O11—V3i 2.61 (7) O7—V5—O19—V4 −28.78 (17)
V5—V2—O11—V3i 178.87 (3) O8—V5—O19—V4 −83.86 (8)
O14—V4—O13—V3 177.55 (8) O16—V5—O19—V4 −9.16 (7)
O19—V4—O13—V3 71.10 (8) V3—V5—O19—V4 39.64 (6)
O17—V4—O13—V3 −32.15 (18) V2—V5—O19—V4 −52.98 (6)
O10i—V4—O13—V3 −84.67 (8) V1—V5—O19—V4 −9.28 (9)
O16—V4—O13—V3 −9.14 (7)

Symmetry code: (i) −x+1, −y+1, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2O···O15ii 0.75 (3) 1.98 (3) 2.722 (2) 167 (3)
O3—H3P···O18 0.83 (3) 2.07 (3) 2.892 (2) 173 (3)
O4—H4O···O17iii 0.74 (3) 1.97 (3) 2.710 (2) 177 (3)
O5—H5O···O19 0.85 (3) 1.82 (3) 2.659 (2) 169 (3)
O5—H5P···O9iv 0.76 (3) 2.10 (3) 2.842 (2) 164 (3)
O6—H6O···O7iv 0.82 (3) 1.95 (3) 2.771 (2) 173 (3)
O6—H6P···O11iii 0.78 (2) 2.00 (2) 2.769 (2) 170 (3)

Symmetry codes: (ii) x+1/2, −y+1/2, z−1/2; (iii) −x+1/2, y−1/2, −z+3/2; (iv) x−1/2, −y+3/2, z−1/2.

Funding Statement

The authors are grateful for support from the Scientific Grant Agency of the Ministry of Education of Slovak Republic and Slovak Academy of Sciences VEGA, Project No. 1/0669/22.

References

  1. Amanchi, S. R. & Das, S. K. (2018). Front. Chem., 6, Article No. 469. [DOI] [PMC free article] [PubMed]
  2. Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2019). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2021). Instrument Service. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Gorzsás, A., Andersson, I. & Pettersson, L. (2009). J. Inorg. Biochem. 103, 517–526. [DOI] [PubMed]
  6. Graia, M., Ksiksi, R. & Driss, A. (2008). J. Chem. Crystallogr. 38, 855–859.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Huang, X., Gu, X., Zhang, H., Shen, G., Gong, S., Yang, B., Wang, Y. & Chen, Y. (2021). J. CO2 Util. 45, Article No. 101419.
  9. Jin, K. P., Jiang, H. J., Wang, Y., Zhang, D. P., Mei, J. & Cui, S. H. (2018). J. Clust Sci. 29, 785–792.
  10. Klištincová, L., Rakovský, E. & Schwendt, P. (2010). Transition Met. Chem. 35, 229–236.
  11. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  12. Luo, X., Li, F., Xu, B., Sun, Z. & Xu, L. (2012). J. Mater. Chem. 22, 15050–15055.
  13. Nohra, B., El Moll, H., Rodriguez Albelo, L. M., Mialane, P., Marrot, J., Mellot-Draznieks, C., O’Keeffe, M., Ngo Biboum, R., Lemaire, J., Keita, B., Nadjo, L. & Dolbecq, A. (2011). J. Am. Chem. Soc. 133, 13363–13374. [DOI] [PubMed]
  14. Pang, H., Meng, X., Ma, H., Liu, B. & Li, S. (2012). Z. Naturforsch. Teil B, 67, 855–859.
  15. Pettersson, L., Hedman, B., Nenner, A. M. & Andersson, I. (1985). Acta Chem. Scand. A, 39, 499–506.
  16. Rakovský, E. & Krivosudský, L. (2014). Acta Cryst. E70, m225–m226. [DOI] [PMC free article] [PubMed]
  17. Rehder, D. (2015). J. Inorg. Biochem. 147, 25–31. [DOI] [PubMed]
  18. Schmidt, H., Andersson, I., Rehder, D. & Pettersson, L. (2001). Chem. Eur. J. 7, 251–257. [DOI] [PubMed]
  19. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  20. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  21. Slebodnick, C. & Pecoraro, V. L. (1998). Inorg. Chim. Acta, 283, 37–43.
  22. Udomvech, A., Kongrat, P., Pakawatchai, C. & Phetmung, H. (2012). Inorg. Chem. Commun. 17, 132–136.
  23. Wang, L., Sun, X. P., Liu, M. L., Gao, Y. Q., Gu, W. & Liu, X. (2008). J. Clust Sci. 19, 531–542.
  24. Wang, X., Sun, J., Lin, H., Chang, Z. & Liu, G. (2016). Inorg. Chem. Commun. 73, 152–156.
  25. Xu, W., Jiang, F., Zhou, Y., Xiong, K., Chen, L., Yang, M., Feng, R. & Hong, M. (2012). Dalton Trans. 41, 7737–7745. [DOI] [PubMed]
  26. Yerra, S. & Das, S. K. (2017). J. Mol. Struct. 1146, 23–31.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989022003449/yz2017sup1.cif

e-78-00481-sup1.cif (919.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989022003449/yz2017Isup2.hkl

e-78-00481-Isup2.hkl (390.2KB, hkl)

CCDC reference: 2156016

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES