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Abstract

Purpose: To develop a new 3D generative adversarial network that is designed and optimized for 

the application of multimodal 3D neuroimaging synthesis.

Methods: We present a 3D conditional generative adversarial network (GAN) that uses spectral 

normalization and feature matching to stabilize the training process and ensure optimization 

convergence (called SC-GAN). A self-attention module was also added to model the relationships 

between widely separated image voxels. The performance of the network was evaluated on the 

data set from ADNI-3, in which the proposed network was used to predict PET images, fractional 

anisotropy, and mean diffusivity maps from multimodal MRI. Then, SC-GAN was applied on a 

multidimensional diffusion MRI experiment for superresolution application. Experiment results 

were evaluated by normalized RMS error, peak SNR, and structural similarity.

Results: In general, SC-GAN outperformed other state-of-the-art GAN networks including 3D 

conditional GAN in all three tasks across all evaluation metrics. Prediction error of the SC-GAN 

was 18%, 24% and 29% lower compared to 2D conditional GAN for fractional anisotropy, 

PET and mean diffusivity tasks, respectively. The ablation experiment showed that the major 

contributors to the improved performance of SC-GAN are the adversarial learning and the 

self-attention module, followed by the spectral normalization module. In the superresolution 

multidimensional diffusion experiment, SC-GAN provided superior predication in comparison to 

3D Unet and 3D conditional GAN.

Conclusion: In this work, an efficient end-to-end framework for multimodal 3D medical image 

synthesis (SC-GAN) is presented. The source code is also made available at https://github.com/

Haoyulance/SC-GAN.
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1 | INTRODUCTION

Medical image synthesis is a technique for generating new parametric images from other 

medical image modalities that contain a degree of similarity or mutual information. In 

recent years, deep learning methods have been vastly used in medical image synthesis or 

medical image transformation tasks, which are similar from a methodological point of view. 

These tasks include MR image reconstruction from k-s pace,1 image superresolution to 

improve image resolution from low resolution,2 image denoising by generating low-noise 

images from high-noise images,3 and image synthesis by generating one image modality 

from one or multiple different image modalities.4 Sparse reconstruction from k-s pace could 

potentially save scanning time; image denoising and superresolution can benefit diagnosis 

by improving image quality; PET modality synthesis from MRI modalities can reduce the 

patient’s radiant dose; and synthetic, image-b ased data augmentation can improve lesion 

segmentation accuracy.5–10 In this work, the goal was to propose a generalized deep-l 

earning algorithm for neuroimage transformation across image domains (eg, between MRI 

and PET). Generative adversarial network (GAN),11 in particular, has been shown to be one 

of the effective and reliable deep-l earning algorithms for image synthesis.12 Variants of 

GAN, such as conditional GAN13 and cycle GAN,14 have also been proposed to generalize 

GAN to different tasks and circumstances, including medical image synthesis.

Medical image synthesis with deep convolutional neural networks is often implemented 

using encoder-decoder networks, GAN, or its variants. For example, Nie et al15 proposed 

a deep convolutional adversarial network to synthesize CT images from MR images. Chen 

et al16 implemented an encoder-decoder convolutional neural network to synthesize PET 

from ultralow-dose PET and MRI. Ouyang et al17 used conditional GAN with task-specific 

perceptual loss to synthesize PET from ultralow-dose PET. However, using a 2D approach 

on 3D data is suboptimal and inefficient because it does not incorporate the 3D spatial 

information in the image, and/or because it requires multiple independent implementations 

of the same network along different image axes.

To the best of our knowledge, Wang et al4 first expanded the medical image synthesis GAN 

from 2D to 3D by using 3D convolution and transposed convolution to achieve high-quality 

PET image estimation from low-dose PET images. The 3D network was proposed to address 

the limitations of the 2D and 2.5D networks for the purpose of image synthesis. The 3D 

implementation of conditional GAN with no specific modification/addition to the network 

elements or its optimizers, however, creates an inconsistency problem due to the large 

differences in feature distributions,4 negatively affecting network reliability and sometimes 

network fails to converge. We anticipate that a self-attention module18 could ameliorate 

these limitations and further improve the performance of 3D GAN.

Here, we proposed a 3D self-attention conditional GAN (SC-GAN) constructed as follows: 

First, we extended 2D conditional GAN into 3D conditional GAN. Next, we added a 3D 
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self-attention module to generate 3D images with preserved brain structure and reduced 

blurriness in the synthesized images. We also introduced spectral normalization,19 feature 

matching loss9 and brain area RMS error (RMSE) loss to stabilize the network training 

process and prevent overfitting. To further test the effectiveness of our proposed method, 

SC-GAN was then tested on a challenging application of multidimensional diffusion MRI 

superresolution, and displayed superior performance to conventional GANs. The SC-GAN 

network is an end-t o-end medical image synthesis network that can be applied to high-

resolution, multimodal input images (eg, 256 × 256 × 256). The SC-GAN source code is 

made available at https://github.com/Haoyulance/SC-GAN.

The main novelties of this technique are as follows:

i. It combines 3D self-attention module into 3D conditional GAN to generate 

high-accuracy synthesis results with stable training process. A smooth training is 

then achieved by using of a series of stabilization techniques and a modified loss 

function; and

ii. The SC-GAN code was tested on multiple data sets across different synthesis 

tasks and enables multimodal input, which can be generalized to a wide range of 

image synthesis applications.

2 | THEORY

In this section, we introduce the 3D SC-GAN and present the relevant theory.

2.1 | Three-dimensional conditional GAN

For the main body of the SC-GAN, we used conditional GAN, which is shown to be 

the optimum choice of GAN for medical image synthesis and reconstruction with paired 

images.3,4,17,20 A conditional GAN uses the following loss function:

LcGAN(G, D) = E(x, y) logD(x, y) + E(x, z) log(1 − D(x, G(x, z))) , (1)

where x is the input modality image (also the conditional image for the conditional GAN); 

y is target image; and z is the noise vector. We also use G for generator and D for 

discriminator in the following text. As stated in Isola et al21 and Ouyang et al,17 noise vector 

z does not explicitly affect the results, and the generator would easily learn to ignore the 

noise vector z. We followed the same implementation principle as Isola et al21 did, where 

noise vector z is no longer provided to the generator. The loss function is formulated as

LcGAN(G, D) = E(x, y)[logD(x, y)] + E(x)[log(1 − D(x, G(x)))] . (2)

We adopted the pix2pix network21 as the network structure of 3D conditional GAN. The 

objective function is as follows:

argmin
G

argmax
D

LcGAN(G, D) + μL1(G) , (3)
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where L1(G) = E(x, y) ∥ y − G(x) ∥1  is the L1 loss between the ground truth and generated 

image, and μ is the regularization term for the L1 loss.

Generator and discriminator forward and backward propagate alternately until the training 

process reaches the Nash equilibrium and the network converges.22

2.2 | Three-dimensional self-attention

Self-attention allows GAN to efficiently model relationships between widely separated 

spatial regions,18 to ensure that generated images contain realistic details. The image feature 

map x ∈ RC × ℎ ∗ w ∗ d from one intermediate hidden layer of 3D cGAN was transformed into 

two feature spaces, f(x) = W fx and g(x) = W gx, to calculate attention. Next, the third feature 

space ℎ(x) = W ℎx was used to calculate the attention feature map. Because the purpose of 

using self-attention is to measure the similarity of each voxel to the target voxel, we used the 

similarity scores (attentions) as weights to calculate the weighted sum representation of each 

target voxel. The 3D self-attention module structure is presented in Figure 1. The similarity 

score (attention) was calculated as follows:

βj, i = exp Sj, i
∑i = 1

N exp Sj, i
, whereSj, i = f xj

Tg xi , (4)

where βj,i is voxel j’s attention to voxel i. We then calculated the attention feature for each 

voxel j as follows:

Oj = v ∑
i = 1

N
βj, iℎ xi , where v(x) = W vx . (5)

The final output of the attention layer is

yj = αOj + xj . (6)

In these formulations,

W f ∈ RC × C, W g ∈ RC × C, W ℎ ∈ RC × C,

W v ∈ RC × C, O ∈ RC × ℎ * w * d,
(7)

where Wf,Wg,Wh,Wv are learned weight matrices by 1 × 1 × 1 3D convolutions; C is the 

number of original channels; C equals C/8 for memory efficiency; h * w * d is the number of 

voxels in one feature map; and α is a learnable scalar initialized to 0.

In our network, self-attention is implemented in both the generator and the discriminator, as 

shown in Figure 2. When comparing our results with U-net, we added self-attention at both 

the encoder and the decoder of the generator to improve the synthesis performance.
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2.3 | Feature matching loss

To stabilize the training, we incorporated a feature matching loss.9 Feature matching loss is 

described as follows:

LFM(G, D) = E(x, y) ∑
i = 1

T 1
Ni

Di(x, y) − Di(x, G(x)) 1, (8)

where Di is the ith layer’s feature map; T is the total number of layers of discriminator; and 

Ni is the number of elements in ith layer’s feature map.

Feature matching loss was added only to the generator loss, because only the LFM is 

required to be minimized at generator’s optimization. The objective function with feature 

matching loss is

argmin
G

argmax
D

LcGAN(G, D) + μL1(G) + λLFM(G, D) , (9)

where regularization term (λ) controls the importance of the feature matching loss.

2.4 | Brain area RMSE loss

Error calculation was performed on brain voxels and the background was excluded. We 

calculated the RMSE between masked G and masked y and subsequently added the RMSE 

to the generator loss. We obtained the brain area (masky) from the ground-truth y; this was 

then used to calculate brain-area RMSE (B-rmse) loss as follows:

LB − rmse(G) = 1
N ∑

i = 1

N
masky(y)i − masky(G(x))i 2, (10)

where masky (y)i is the ith voxel of masky (y), and N is the number of total voxels. The 

objective function of B-rmse loss is

argmin
G

argmax
D

LcGAN(G, D) + μL1(G) + λLFM(G, D) + γLB − rmse G , (11)

where γ controls the regularization term for the brain-a rea RMSE loss. In the ablation 

study, we found that B-rmse loss contributed to the improvement of the network 

performance and improved the accuracy of the synthesis. Note that B-rmse loss is not 

the only loss for the generator; there are combinations of L1 loss, B-rmse loss, and feature-

matching loss as well. The L1 loss focuses on the difference between whole output and the 

target, whereas B-rmse loss focuses only on the brain-area difference between output and 

target.
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2.5 | Spectral normalization

Spectral normalization is first implemented in GAN as in Miyato et al,19 which is 

implemented in each layer g:hin → hout of the neural networks to normalize the weight 

matrix between two connected layers. Under the definition of Lipschitz continuity,23 the 

Lipschitz norm g Lip = supℎσ ∇g ℎ , where σ(·) is the spectral norm (the largest singular 

value).

Suppose a neural network f(x, W , a) = W L + 1aL W L aL − 1 W L − 1 …a1 W 1x … , where 

W 1, W 2, …, W L + 1  is the weights set and a1, a2, …, aL  is the element-wise nonlinear 

activation functions. For the linear layer g (h) = Wh, the norm is given by

g Lip = supℎσ(∇g(ℎ)) = supℎσ(W) = σ(W) . (12)

If the Lipschitz norm of the activation function aL Lip is equal to 1, based on the inequality 

g1 ∘ g2 Lip ≤ g1 Lip ⋅ g2 Lip, the following bound can be ‖derived:

f
Lip

≤ gL + 1 Lip ⋅ aL Lip ⋅ gL Lip⋯ a1 Lip ⋅ g1 Lip = ∏
l = 1

L + 1
gl Lip

= ∏
l = 1

L + 1
σ W l .

(13)

The spectral normalization normalizes the spectral norm of the weight matrix Wl to obtain 

W SN = W l/σ W l . Thus, if Wl is normalized as WSN, then ∥ f ∥Lip ≤ ∏l = 1
L + 1σ W SN = 1, 

which means that f Lip is bounded by 1. Miyato et al19 showed the importance of 

Lipschitz continuity in assuring the boundness of statistics. We used spectral normalization 

in both the generator and the discriminator of SC-GAN.

2.6 | Regularization

To prevent overfitting, we added L2 norm regularizations to the generator and the 

discriminator, resulting in a final objective function of SC-GAN:

argmin
G

argmax
D

LcGAN(G, D) − vDL2(D) + μL1(G) + λLFM(G, D)

+ γLB − rmse(G) + vGL2(G) ,
(14)

where νD and νG control the importance of L2 regularization. Because during the training 

process we minimize the negative discriminator loss for the discriminator training, this 

objective function uses - νDL2 (D) to regularize the discriminator. Note that L2 (D) and L2 

(G) are the constraints on trainable values of discriminator and generator; however, L1 (G) is 

the L1 distance between generated output and ground truth.
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3 | METHODS

3.1 | Study data

Data used in the preparation of this article were obtained from the Alzheimer’s Disease 

Neuroimaging Initiative 3 (ADNI-3) database (http://adni.loni.usc.edu).24 We downloaded 

de-identified MRI and PET data from ADNI-3 participants. All of the available data 

from ADNI-3 at the time this study was conducted were used (ADNI-3 is an ongoing 

project). For the PET synthesis task, 265 subjects were selected and randomly split into 

207 training subjects and 58 testing subjects. For FA and MD synthesis tasks, 497 subjects 

were selected and randomly split into 398 training subjects and 99 testing subjects. For 

MRI data, T1-weighted (T1w) and fluid-attenuated inversion-recovery (FLAIR) structural 

MRI and diffusion-weighted MRI were used. For PET data, we used amyloid PET. For PET 

synthesis, an input data set with complete T1w, FLAIR, and a target amyloid PET data 

set—of acceptable quality based on ADNI guidelines—were included in the analysis. For 

diffusion-weighted MRI synthesis, an input data set with complete T1w, FLAIR, and target 

diffusion-weighted MRI data set were used (all images were visually inspected).

3.2 | Magnetic resonance imaging data collection and preprocessing

Magnetic resonance imaging of the ADNI-3 was performed exclusively on 3T scanners 

(Siemens [Munich, Germany], Philips Healthcare [Amsterdam, Netherlands, and General 

Electric [Boston, MA]) using a standardized protocol. Three-dimensional T1w with 1-mm3 

resolution was acquired using an MPRAGE sequence (on Siemens and Philips scanners) 

and fast spoiled gradient echo (on GE scanners). For FLAIR images, a 3D sequence with 

similar resolution to the T1w images was acquired, providing an opportunity for accurate 

intrasubject intermodal co-registration. The MPRAGE T1w MRI scans were acquired using 

the following parameters: TR = 2300 ms, TE = 2.98 ms, FOV = 240 × 256 mm2, matrix = 

240 × 256 (variable slice number), TI = 900 ms, flip angle = 9, and effective voxel resolution 

= 1 × 1 × 1 mm3. The fast spoiled gradient-echo sequence was acquired using sagittal slices, 

with TR = 7.3 ms, TE = 3.01 ms, FOV = 256 × 256 mm2, matrix = 256 × 256 (variable slice 

number), TI = 400 ms, flip angle = 11, and effective voxel resolution = 1 × 1 × 1 mm3. The 

3D FLAIR images were acquired using sagittal slices, TR = 4800 ms, TE = 441 ms, FOV = 

256 × 256 mm2, matrix = 256 × 256 (variable slice number), TI = 1650 ms, flip angle = 120, 

and effective voxel resolution = 1 × 1 × 1.2 mm3.

The T1w preprocessing and parcellation were performed using the freely available 

FreeSurfer (ver. 5.3.0) software package,25 and data processing was conducted using the 

Laboratory of Neuro Imaging pipeline system (http://pipeline.loni.usc.edu),26–29 similar 

to Sta Cruz et al30 and Sepehrband et al.31 Field-corrected, intensity-normalized images 

were filtered using nonlocal mean filtering to reduce noise, and the outputs were 

used for the analysis. The FLAIR images for each individual were corrected for 

nonuniform field inhomogeneity using the N4ITK module32 of Advanced Normalization 

Tools (ANTs).33 The FLAIR images were then co-registered to T1w images using the 

antsIntermodalityIntrasubject ANTs module.
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Diffusion MRI is a quantitative modality and contains microstructural information about 

brain tissues.34–36 Thus, it is challenging to predict quantitative voxel-level information 

from the structural data, which contain only relative signal intensity values (as opposed 

to per-voxel quantitative values). Diffusion MRI data were acquired using the following 

parameters: 2D echo-planar axial imaging, with a slice thickness of 2mm, in-plane 

resolution of 2 × 2 mm2 (matrix size of 1044 × 1044), flip angle of 90º, 48 diffusion-

weighted images with 48 uniformly distributed diffusion encodings with b-value = 1000 

s/mm2 and 7 non-diffusion-weighted images. Diffusion MRI preprocessing and DTI fitting 

were performed as described in Sepehrband et al.37,38 In brief, images were corrected 

for eddy current distortion and for involuntary movement using FSL TOPUP and EDDY 

tools.39,40 The DTI was then fitted to diffusion data using the Quantitative Imaging 

Toolkit.41 The FA and MD maps were used for the synthesis task.

3.3 | Positron emission tomography data collection and preprocessing

Amyloid PET analysis was performed according to the UC Berkeley PET methodology for 

quantitative measurement.42–45 Participants were imaged with florbetapir (18F-AV-45; Avid 

Radiopharmaceuticals, Philadelphia, PA) or 18F-Florbetaben (NeuraCeq; Piramal Pharma 

Solutions, Mumbai, India). Six 5-minute frames of PET images were acquired 30–60 

minutes following injection. Each extracted frame was co-registered to the first extracted 

frame and then combined into a single image, which lessened subject motion artifacts. 

The combined image had the same image resolution as did the original PET image 

(2-mm isotropic voxels). All PET images were co-registered on T1w MRI. Quantitative 

measurement was performed based on the standard uptake value ratio (SUVR). The brain 

mask, which was obtained from T1w analysis, was applied on co-registered T1w, FLAIR, 

and PET images. Examples of a set of input and target images are presented in Figure 3.

3.4 | Implementation, baseline models

To rigorously assess the performance of SC-GAN, we have compared it with current, 

well-developed medical image synthesis networks, including 2D cGAN, 3D cGAN, and 

attention cGAN (Att cGAN). The 2D cGAN was adopted from Ouyang et al,17 who 

proposed the technique for the PET synthesis task. The 3D cGAN was initially proposed 

by Wang et al4 for PET image synthesis from low-dose PET images. Attention cGAN was 

designed based on the attention module proposed by Oktay et al,46 who incorporated the 

3D attention module in the U-net architecture for applying pancreas segmentation (assisted 

by the image synthesis task). The same 3D attention module was also adopted by Liu et 

al47 in the CycleGAN medical image synthesis network. To produce a fair comparison, 

we incorporated the aforementioned 3D attention module in conditional GAN (referred 

to here as Att cGAN) and compared it with SC-GAN. The main difference between Att 

cGAN and SC-GAN is that Att cGAN uses gated attention46 at each skip connection of 

the generator, whereas SC-GAN uses self-attention in the down-sampling and up-sampling 

paths of the generator as well as in the discriminator. Another difference between the two 

techniques is that gated attention has two different inputs (ie, input features and gating signal 

[Supporting information Figure S1]), whereas self-attention contains only input features. 

All three baseline models and SC-GAN were implemented using TensorFlow (1.12.2) and 

deployed training on an NVIDIA GPU cluster (Santa Clara, CA) equipped with eight V100 
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GPUs (Cisco UCS C480 ML, San Jose, CA). All four sets of results are used to analyze and 

compare different networks’ performances.

3.5 | Training and testing

The PET and DTI were up-s ampled to have the same resolution as the T1w and FLAIR 

(ie, 256 × 256 × 256). Synthesis results generated by convolutional neural networks could 

be improved by adding an intensity normalization preprocessing step before training, but 

the synthesis results are robust for the different choices of the normalization methods.48 We 

implemented Z-score normalization for all four tasks, then applied min-max rescaling to 

scale the voxels’ intensity from between 0 to 1 before the training. The T1w and FLAIR 

were used as inputs for MD, FA, and PET synthesis tasks.

The 2D cGAN was implemented similar to Ouyang et al.17 The 3D cGAN was implemented 

similar to Wang et al,4 and Att cGAN was implemented similar to Oktay et al46 and Liu.47 

We performed 5-fold cross-validation during the hyperparameter tuning phase for all four 

networks to obtain the optimal hyperparameters.

For SC-GAN, the optimal result was obtained with the following hyperparameters: μ = 200, 

γ = 200, λ = 20, νG = 0.001, νD = 0.001, and batch size = 1. The learning rate began at 

0.001, and cosine decay was used to continuously shrink the learning rate during the training 

process. For 2D cGAN, the hyperparameters were μ = 100, νG = 0.01, νD = 0.01, batch 

size = 4, and learning rate = 0.0002; for 3D cGAN, the hyperparameters were μ = 200, 

νG = 0.001, νD = 0.001, batch size = 1, and learning rate = 0.002; and for Att cGAN, the 

hyperparameters were μ = 200, νG = 0.001, νD = 0.001, batch size = 1, and learning rate = 

0.001.

3.6 | Evaluation criteria

Three image-quality metrics were used to evaluate the performance of the synthesis task: 

normalized RMSE (NRMSE), peak SNR, and structural similarity. The NRMSE reflects the 

normalized error without being affected by the range of the voxel values. Thus, NRMSE 

could be used to compare the performances of the network on different tasks directly. To 

enable a direct comparison between 2D cGAN and 3D networks, we evaluated the 3D output 

of the 2D network directly.

3.7 | Ablation study

To analyze the contribution of each component of SC-GAN, we performed an ablation study 

and evaluated results on the test data set of PET synthesis task. Five ablation tests were 

conducted for the proposed network: SC-GAN (1) without self-attention module, (2) without 

adversarial learning, (3) without brain area RMSE loss, (4) without spectral normalization, 

and (5) without feature matching loss.

3.8 | Evaluating synthesized PET

A secondary analysis was performed to compare SC-GAN results against ground-truth PET. 

Amyloid-b (Aβ) uptake was estimated from PET and synthesized PET. The Aβ uptake 

values were then compared across clinically relevant regions. Although the focus of the 
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study was primarily on proposing and optimizing a neuroimage synthesis technique, this 

evaluation was performed to examine whether PET synthetization from MRI data can 

substitute for actual PET imaging. The SUVR of the Aβ was calculated across subcortical 

and cortical regions of 10 randomly selected individuals from the ADNI-3 cohort. The 

SUVR values for 110 regions per participant were compared between PET and synthesized 

PET. The SUVRs across these regions of interest were derived using the Desikan-Killiany 

atlas, which was parcellated on T1w images using the FreeSurfer pipeline, as explained in 

the section 3.2. The PET images used for training were normalized using the min-max 

normalization approach; thus, test PET images were also normalized using the same 

approach before comparison.

3.9 | Superresolution application

The utility of SC-GAN in a practical application was tested for superresolution of 

multidimensional diffusion MRI (MUDI) as part of the Computational Diffusion MRI 

Workshop 2020.49,50 multidimensional diffusion MRI enables additional sensitivity and 

specificity toward tissue microstructure, but is time-consuming to obtain. As such, a 

computational technique that allows reliable superresolution of accelerated low-resolution 

MUDI would be valuable. The challenge consists of two tasks: isotropic down-s ampled 

image superresolution and anisotropic down-sampled image superresolution. As for the 

acquisition protocol of the data set from the challenge, each data set contains 1344 volumes 

distributed over four b-shells b ∈{500, 1000, 2000, 3000} s/mm2 with 106 uniformly spread 

directions; three TEs TE ∈ {80,105,130} ms; 28 TIs TI ∈ [20,7322] ms; TR = 7.5 seconds; 

resolution = 2.5 mm isotropic; FOV = 220 × 230 × 140 mm; SENSE = 1.9; half-scan = 

0.7; multiband factor 2; and a total acquisition time of 52 minutes. Our proposed solution 

was developed based on SC-GAN, with additional DTI acquisition protocol information as 

an adaptive manner to superresolve the low-resolution DTI image to a specific resolution 

of DTI image. Here we describe the method we developed for this challenge and the 

comparison experiments using different backbone modules among 3D Unet, 3D cGAN, and 

SC-GAN.

In our proposed method, adaptive instance normalization (AdaIN),51 was used to incorporate 

acquisition protocol information. Protocol information was added as a one-dimensional 

vector with six elements, including gradient-encoding directions (three elements: x, y, and 

z), b-value, TE, and TI. We assumed that each protocol vector had a one-to-one mapping 

to each volume of the MUDI. Thus, adding protocol information to the discriminator 

could potentially strengthen the discriminator during the adversarial process and force the 

generator to minimize prediction error. The AdaIN method was added to each feature map of 

the discriminator as follows:

AdaIN(x, y) = σ(affine(y)) x−μ(x)
σ(x) + μ(affine(y)),

where x is the feature map of the discriminator; μ(x) is the mean and σ(x) is the SD of 

the feature maps, computed across the spatial dimension independently for each sample 

and feature channel; and y is the protocol vector from the vector space and trained affine 
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transformations map protocol vector to affine(y). The values of σ and μ were then extracted 

to normalize the feature maps.

Training was performed using a batch size of 4 and a learning rate of 0.001 with cosine 

decay. Four MUDI image data sets each with image size 41 × 46 × 28 × 1344 were used 

for training data, and 1 subject with the same image size was used for validation data. The 

training patch we used is the independent volume of the subsampled MUDI image with size 

41 × 46 × 28, which provides the requisite sample size to train a deep neural network. The 

target resolution was 82 × 92 × 56 We followed a progressive training strategy in two steps: 

(1) Train the first SC-GAN to superresolve the low-resolution data to high-resolution data, 

and (2) train the second SC-GAN to refine the reconstructed high-resolution data from the 

previous step to further reduce the mean squared error.

To facilitate a fair comparison between SC-GAN and other GAN models, we replaced 

SC-GAN with 3D Unet and 3D cGAN using this presented method.

4 | RESULTS

The learning curves of the GANs that were used for the PET, FA, and MD synthesis 

tasks are presented in Figure 4. Learning curves demonstrate the performance of different 

networks across training epochs. The average performance when applying the trained 

network on the test data is presented in Table 1, and the qualitative assessments are 

presented in Figure 5.

4.1 | Quantitative assessment

The learning curves demonstrate that all networks were successfully optimized, reaching 

a plateau within the range of the study epochs (Figure 4). The 3D cGAN and SC-GAN 

networks showed smooth and stable patterns in their optimization curves, whereas 2D cGAN 

and Att cGAN demonstrated a degree of fluctuation during their learning. The learning-

curve pattern across tasks was similar in structural similarity and NRMSE. However, the 

peak SNR was slightly different across tasks, with PET tasks resulting in the highest peak 

SNR (Figure 4).

Regardless of the evaluation metric or synthesis task used, SC-GAN outperformed other 

networks, resulting in the lowest NRMSE and the highest peak SNR and structural similarity 

of any technique (Table 1). The NRMSE results showed that SC-GAN’s error was 18%, 

24%, and 29% lower than that of 2D cGAN across FA, PET and MD tasks, respectively. 

Across all tasks, the 2D network produced the lowest performance. We also displayed 

difference maps for the FA and MD synthesis task in Figure 5. To understand the synthesis 

performance in various brain regions, we measured the NRMSE of the FA task results in 

white matter, gray matter, and CSF regions using anatomical masks generated by ANTs.33 

The whole-brain NRMSE (mean/SD) of SC-GAN results was 0.078/0.012, and white matter, 

gray matter, and CSF NRMSEs were 0.088/0.012, 0.062/0.01 and 0.073/0.014, respectively.

All 3D networks outperformed the 2D network. We compared the 2D version of SC-GAN 

with other networks and displayed the results in Supporting Information Table S1 to 
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highlight the importance of incorporating 3D information into deep learning networks. The 

SC-GAN outperformed 3D cGAN and Att cGAN in all three tasks across all evaluation 

metrics. The increased performance of SC-GAN was more evident in the PET task, followed 

by smaller performance increases in the FA and MD tasks.

The ablation test showed that the major contributors to SC-GAN’s improved performance 

were the adversarial learning and the self-attention module, followed by the B-rmse and 

spectral normalization modules (Figure 6 and Table 2). Spectral normalization and feature 

matching contributed to the stabilization of the SC-GAN training loss at multiples scales.

The time costs of SC-GAN and baseline models are as follows: 2D cGAN: 40 minutes per 

epoch and 800 minutes to reach plateau; 3D cGAN: 60 minutes per epoch and 1200 minutes 

to reach plateau; Att cGAN: 65 minutes per epoch and 1300 minutes to reach plateau; and 

SC-GAN: 65 minutes per epoch and 1300 minutes to reach plateau.

4.2 | Qualitative assessment

Figure 5 compares the studied networks qualitatively. To assess the quality of 3D synthesis 

images, results were presented in different planes: axial images for PET synthesis (Figure 

5A), coronal images for FA synthesis (Figure 5B), and sagittal images for MD (Figure 5C). 

Because 2D cGAN was trained on the sagittal images, the sagittal view of the synthesized 

result returned the best result for the 2D network (eg, MD task) (Figure 5C), whereas the 

axial and coronal views showed visual discontinuity and distortion (eg, PET and FA tasks) 

(Figure 5A,B). Even in the sagittal view, 2D GAN generated sharp artificial boundaries (eg, 

ventricle boundaries in Figure 5C). The 3D networks did not suffer from either of these 

shortcomings, returning stable results across image dimensions.

The SC-GAN results were also visually closest to the ground-truth data in comparison with 

those of other networks. In particular, SC-GAN was able to capture certain image details 

that were hidden to other networks. For example, structural boundaries at the brainstem 

in the FA images were captured by SC-GAN (green dotted circle in Figure 5B), but these 

details were smoothed out by other networks. Cingulum bundle (blue arrows, Figure 5B) 

and superficial white matter (red arrow, Figure 5B) were not generated with 3D cGAN and 

2D cGAN, respectively; however, these details were successfully generated by SC-GAN. We 

also noticed that Att cGAN failed to capture high-intensity FA across white matter (yellow 

arrows, Figure 5B), whereas SC-GAN demonstrated a similar intensity profile to the ground 

truth. It should be noted that SC-GAN also did not generate an exact match to the ground 

truth; artificial and incorrect features were still observed. Results from MD synthesis (Figure 

5C) also showed that SC-GAN resulted in the generation of a map closer to the ground truth 

than those of other networks, and the map contained a higher degree of detail and fewer 

artifacts.

We noticed a significant correlation between PET and synthesis PET across subcortical and 

cortical regions (Figure 7; P < .0001 across all 10 tested participants). The results were 

consistent across all test data, with correlation coefficients ranging from r = 0.67 to r = 0.95 

(all at P < .0001). Although synthesis PET SUVR values were significantly correlated with 

those of ground-truth PET, we observed that the error rate was higher when the SUVRs of 
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the PET images were high. These SUVR ranges correspond to regions with high clinical 

value, reflecting neurodegenerative pathology (high Aβ uptake).

4.3 | Application: MUDI superresolution

Figure 8 summarizes the performance of three deep neural network techniques for the 

application of MUDI superresolution: 3D Unet, 3D cGAN, and SC-GAN. We measured 

the mean squared error between output and target with the brain mask. The SC-GAN 

performance was superior to that of 3D Unet and 3D cGAN. The outputs of the experiments 

had average mean squared errors of 2.52 for 3D Unet, 2.41 for 3D cGAN, and 2.15 for 

SC-GAN. The inference time of these three networks on the test data was less than 3 

minutes. The learning curve (Figure 8B) also demonstrated that SC-GAN can reach a lower 

mean RMSE across 1344 volumes compared with 3D Unet and 3D cGAN. The absolute 

difference maps of the generated images (one volume output of 1344 volumes; Figure 

8A) showed that areas with high error rates are related to image regions affected by EPI 

distortion (eg, the top of the axial slice), which are therefore more challenging to predict 

using GAN. From a qualitative perspective, SC-GAN was also superior to 3D Unet and 3D 

cGAN, with lower quantities of noise and higher spatial homogeneity.

5 | DISCUSSION

Here we presented an efficient end-to-end framework for multimodal 3D medical 

image synthesis (SC-GAN) and validated its usefulness in PET, FA, and MD synthesis 

applications. To design and optimize the network, we added a 3D self-attention module 

to conditional GAN (cGAN), which models the similarity between adjacent and widely 

separated voxels of a 3D image. We also used spectral normalization and feature matching 

to stabilize the training process and ensure that SC-GAN could generate image details. 

The SC-GAN was designed to handle multimodal (multichannel) 3D images as inputs. 

We showed that SC-GAN significantly outperformed state-of-the-art techniques, enabling 

reliable and robust deep learning–based medical image synthesis for a wide range of 

applications.

Recent work has shown that 3D GAN can be used to improve the accuracy of medical 

imaging synthesis.4,47 To evaluate the benefits of 3D implementation, we compared the 

performances of 2D cGAN and 3D networks. We observed intensity discontinuity and 

distortion in the synthesis results of 2D cGAN, highlighting the importance of using 

3D neural network implementation for medical image applications. To rigorously assess 

SC-GAN, two existing 3D synthesis methods (3D cGAN and Att cGAN) were compared 

with SC-GAN. The SC-GAN technique achieved the highest performance and most stable 

learning curves.

Although adding the attention gate module improved 3D cGAN, the technique nevertheless 

returned less accurate results than SC-GAN, which uses the self-attention module. The Att 

cGAN method used the attention gate that filters the features propagated through the skip 

connections to enhance the feature maps in the up-sampling phase. Because the training 

process of Att cGAN is also guided by the attention gate module, the network performance 
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was superior to that of 3D cGAN. Qualitative results also showed that Att cGAN can 

generate better results compared with 3D cGAN.

The self-attention feature provided the SC-GAN network with context awareness, granting 

an additional degree of freedom to the synthesis process. Spectral normalization was used 

to stabilize the training process and prevent the training from collapsing. The ablation 

experiment conducted in this study, meanwhile, showed that the self-attention module 

contributed most to the improvement of 3D cGAN. Previous studies have shown that the 

self-attention module can be effective in other medical image analysis applications. Zhao 

et al20 combined an object recognition network and self-attention-guided GAN into a 

single training process to handle the tumor detection task, whereas Li et al3 incorporated 

self-attention and autoencoder perceptual loss into a convolutional neural network to denoise 

low-dose CT.

Three-dimensional medical image processing tasks often face dimensionality challenges, 

and GAN is no exception.52 For example, 3D cGAN resulted in oversmoothed images in 

the FA synthesis task and created a large quantity of striping artifacts that blurred the image 

edges in PET and MD synthesis tasks. The SC-GAN method uses a series of regularization 

and stabilization techniques, namely, feature matching loss, spectral normalization loss, L1 

loss, and brain-area RMSE loss. This permits stable training on high-d imensional input data 

(eg, the input image size of N × 256 × 256 × 256 × 2 that was used in this study).

It should be noted that while neuroimaging synthesis has dramatically improved over the 

past 5 years, our qualitative results suggest that synthesis PET cannot substitute for PET 

imaging yet, as pathological and clinically relevant molecular information revealed by PET 

may not be detected by synthesizing PET obtained from MRI data (which primarily contains 

structural information). This limitation does not dampen the significance of medical image 

synthesis, but rather calls for careful design/application when image synthesis is used. 

For example, studies have shown that a reliable transformation can be achieved when 

incorporating low-dose PET as synthesis input.4,16,17

The application of SC-GAN for MUDI superresolution showed that SC-GAN has 

the potential to be easily extended to other deep learning–based 3D medical image 

transformation and reconstruction tasks. The SC-GAN backbone outperformed other 3D 

GAN and Unet networks, resulting into a reliable MUDI superresolution that could shorten 

acquisition time or improve image quality through careful use of the redundant information 

in high-dimensional images. For the superresolution application, we lacked the additional 

acquisition protocol data required to perform further experiments and analyses. Correlation 

analysis between acquisition protocol data and DTI superresolution performance could be a 

future study.

Computational cost is the main limitation of SC-GAN; it requires lengthy training and heavy 

computational resources, such as GPU memory. Sparse attention matrix computation could 

be a potential solution. A future research direction could focus on generalizing SC-GAN, 

such as by adopting knowledge distillation mechanism into SC-GAN. As for the DTI image 

synthesis tasks, target images were normalized to between 0 and 1 for stable training in 
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the experiments, but given the quantitative nature of the DTI metrics, the normalization 

negatively affects the quantitative value of the metrics. Therefore, for synthesizing 

quantitative modalities, the normalization step should be avoided. Our in-house test 

suggested no normalization dependency in SC-GAN (results are not presented); therefore, 

the normalization was included in the DTI experiment for methodology consistency among 

experiments.

6 | CONCLUSIONS

The focus of this work was on enabling multimodal 3D neuroimage synthetization with 

GAN. The proposed method (SC-GAN) was evaluated on the challenging tasks of PET 

and DTI synthesis as well as MUDI superresolution, to aid in rigorous optimization 

of the network. The SC-GAN method was designed and assessed to enable robust and 

stable multimodal 3D neuroimaging synthesis. Future work could explore other SC-GAN 

applications; for example, SC-GAN may be used to combine MRI with low-dose PET 

to improve the efficacy of existing techniques.16,17 We also expect that neuroimaging 

techniques with high numbers of repetitions, such as functional and diffusion MRI,53 may 

benefit from SC-GAN; this is a future direction of our work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENT

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) database (www.adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design 
and implementation of ADNI and/or provided data but did not participate in the analysis or writing of this 
report. A complete listing of ADNI investigators can be found at http://adni.loni.usc.edu/wp-content/uploads/
how_to_apply/ADNI_Acknowledgement_List.pdf. ADNI: Data collection and sharing for this project was funded 
by the ADNI (National Institutes of Health Grant No. U01 AG024904) and DOD ADNI (Department of Defense 
Award No. W81XWH-12-2-0012). The ADNI is funded by the National Institute on Aging, the National 
Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: 
AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica; Biogen; 
Bristol-Myers Squibb Company; CereSpir; Cogstate; Eisai; Elan Pharmaceuticals; Eli Lilly and Company; 
EuroImmun; F. Hoffmann-La Roche and its affiliated company Genentech; Fujirebio; GE Healthcare; IXICO; 
Janssen Alzheimer Immunotherapy Research & Development; Johnson & Johnson Pharmaceutical Research & 
Development; Lumosity; Lundbeck; Merck & Co; Meso Scale Diagnostics; NeuroRx Research; Neurotrack 
Technologies; Novartis Pharmaceuticals Corporation; Pfizer; Piramal Imaging; Servier; Takeda Pharmaceutical 
Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support 
ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National 
Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and 
Education, and the study is coordinated by the Alzheimer’s Therapeutic Research Institute at the University of 
Southern California. The ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of 
Southern California.

Funding information

National Institutes of Health; Grant/, Award Nos. 2P41EB015922-2 1, 1P01AG052350-01, U54EB020406, and 
USC ADRC 5P50AG005142

Lan et al. Page 15

Magn Reson Med. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.adni.loni.usc.edu/
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://www.fnih.org/


REFERENCES

1. Lee J, Kim H, Chung HJ, Ye JC. Deep learning fast MRI using channel attention in magnitude 
domain. In: Proceedings of the International Symposium on Biomedical Imaging, Iowa City, Iowa, 
2020. pp 917–920.

2. Pham CH, Ducournau A, Fablet R, Rousseau F. Brain MRI superresolution using deep 3D 
convolutional networks. In: Proceedings of the International Symposium on Biomedical Imaging, 
Melbourne, Australia, 2017. pp 197–200.

3. Li M, Hsu W, Xie X, Cong J, Gao W. SACNN: self-attention convolutional neural network for 
low-dose CT denoising with self-supervised perceptual loss network. IEEE Trans Med Imaging. 
2020;39:2289–2301. [PubMed: 31985412] 

4. Wang Y, Biting Y, Wang L, et al. 3D conditional generative adversarial networks for high-quality 
PET image estimation at low dose. Physiol Behav. 2019;176:139–148.

5. Shin H-C, Tenenholtz NA, Rogers JK, et al. Medical image synthesis for data augmentation 
and anonymization using generative adversarial networks. In: Proceedings of the International 
Workshop on Simulation and Synthesis Medical Imaging, Granada, Spain, 2018. pp 1–11.

6. Hiasa Y, Otake Y, Takao M, et al. Cross-modality image synthesis from unpaired data using 
CycleGAN. In: Proceedings of the International Workshop on Simulation and Synthesis Medical 
Imaging, Granada, Spain, 2018. pp 31–41.

7. Roy S, Carass A, Jog A, Prince JL, Lee J. MR to CT registration of brains using image synthesis. In: 
Proceedings of SPIE International Society for Optics and Photonics, San Diego, California, 2014. p 
903419.

8. Nie D, Trullo R, Lian J, et al. Medical image synthesis with context-a ware generative adversarial 
networks. In: Proceedings from the International Conference on Medical Image Computing and 
Computer-Assisted Intervention, Québec City, Canada, 2017. pp 417–425.

9. Wang TC, Liu MY, Zhu JY, Tao A, Kautz J, Catanzaro B. High-resolution image synthesis and 
semantic manipulation with conditional GANs. In: Proceedings of the Conference on Computer 
Vision and Pattern Recognition, Salt Lake City, Utah, 2018. pp 8798–8807.

10. Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: a review. Med Image 
Anal. 2019;58:101552. [PubMed: 31521965] 

11. Goodfellow IJ, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. Adv Neural Inf 
Process Syst. 2014;3:2672–2680.

12. Huang H, Yu PS, Wang C. An Introduction to Image Synthesis with Generative Adversarial Nets. 
2018. arXiv:1803.04469v2 [cs.CV].

13. Mirza M, Osindero S. Conditional Generative Adversarial Nets. 2014. arXiv:1411.1784v1 [cs.LG].

14. Zhu JY, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent 
adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, 
Venice, Italy, 2017. pp 2242–2251.

15. Nie D, Trullo R, Lian J, et al. Medical image synthesis with deep convolutional adversarial 
networks. IEEE Trans Biomed Eng. 2018;65:2720–2730. [PubMed: 29993445] 

16. Chen KT, Gong E, Bezerra F, Macruz DC, Xu J. Ultra-low-dose 18 F-Florbetaben amyloid 
PET imaging using deep learning with multi-contrast MRI inputs. Radiology. 2019;290:649–656. 
[PubMed: 30526350] 

17. Ouyang J, Chen KT, Gong E, Pauly J, Zaharchuk G. Ultra-low-dose PET reconstruction using 
generative adversarial network with feature matching and task-specific perceptual loss. Med Phys. 
2019;46:3555–3564. [PubMed: 31131901] 

18. Zhang H, Goodfellow I, Metaxas D, Odena A. Self-attention generative adversarial networks. 
2018. arXiv:180508318.

19. Miyato T, Kataoka T, Koyama M, Yoshida Y. Spectral normalization for generative adversarial 
networks. 2018. arXiv:1802.05957.

20. Zhao J, Li D, Kassam Z, et al. Tripartite-G AN: synthesizing liver contrast-enhanced MRI to 
improve tumor detection. Med Image Anal. 2020;63:101667. [PubMed: 32375101] 

Lan et al. Page 16

Magn Reson Med. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



21. Isola P, Zhu JY, Zhou T, Efros AA. Image-to-image translation with conditional adversarial 
networks. In: Proceedings of the 30th IEEE Conference on Computer Vision and Pattern 
Recognition, Honolulu, Hawaii, 2017. pp 5967–5976.

22. Nash JF. Equilibrium points in n-person games. Proc Natl Acad Sci USA. 1950;36:48–49. 
[PubMed: 16588946] 

23. Hager WW. Lipschitz-continuity for constrained processes. SIAM J Control Optim. 1979;17:321–
338.

24. Weiner MW, Veitch DP, Aisen PS, et al. The Alzheimer’s disease neuroimaging initiative 3: 
continued innovation for clinical trial improvement. Alzheimer’s Dement. 2017;13:561–571. 
[PubMed: 27931796] 

25. Fischl B FreeSurfer. Neuroimage. 2012;62:774–781. [PubMed: 22248573] 

26. Dinov I, Lozev K, Petrosyan P, et al. Neuroimaging study designs, computational analyses and data 
provenance using the LONI pipeline. PLoS One. 2010;5:e13070.

27. Dinov ID, Van Horn JD, Lozev KM, et al. Efficient, distributed and interactive neuroimaging data 
analysis using the LONI pipeline. Front Neuroinform. 2009;3:22. [PubMed: 19649168] 

28. Moon SW, Dinov ID, Kim J, et al. Structural neuroimaging genetics interactions in Alzheimer’s 
disease. J Alzheimer’s Dis. 2015;48:1051–1063. [PubMed: 26444770] 

29. Torri F, Dinov ID, Zamanyan A, et al. Next generation sequence analysis and computational 
genomics using graphical pipeline workflows. Genes (Basel). 2012;3:545–575. [PubMed: 
23139896] 

30. Sta Cruz S, Dinov ID, Herting MM, et al. Imputation strategy for reliable regional MRI 
morphological measurements. Neuroinformatics. 2020;18:59–70. [PubMed: 31054076] 

31. Sepehrband F, Lynch KM, Cabeen RP, et al. Neuroanatomical morphometric characterization 
of sex differences in youth using statistical learning. Neuroimage. 2018;172:217–227. [PubMed: 
29414494] 

32. Tustison NJ, Avants BB, Cook PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med 
Imaging. 2010;29:1310–1320. [PubMed: 20378467] 

33. Avants BB, Tustison N, Song G. Advanced normalization tools (ANTS). In: OR Insight. London, 
United Kingdom: Palgrave Macmillan; 2009. pp 1–35.

34. Sepehrband F, Clark KA, Ullmann JFP, et al. Brain tissue compartment density estimated using 
diffusion-weighted MRI yields tissue parameters consistent with histology. Hum Brain Mapp. 
2015;36:3687–3702. [PubMed: 26096639] 

35. Sepehrband F, O’Brien K, Barth M. A time-efficient acquisition protocol for multipurpose 
diffusion-weighted microstructural imaging at 7 Tesla. Magn Reson Med. 2017;78:2170–2184. 
[PubMed: 28191681] 

36. Le Bihan D, Mangin J-F, Poupon C, et al. Diffusion tensor imaging: concepts and applications. J 
Magn Reson Imaging. 2001;13:534–546. [PubMed: 11276097] 

37. Sepehrband F, Cabeen RP, Choupan J, Barisano G, Law M, Toga AW. Perivascular space fluid 
contributes to diffusion tensor imaging changes in white matter. Neuroimage. 2019;197:243–254. 
[PubMed: 31051291] 

38. Sepehrband F, Cabeen RP, Barisano G, et al. Nonparenchymal fluid is the source of increased mean 
diffusivity in preclinical Alzheimer’s disease. Alzheimer’s Dement Diagnosis, Assess Dis Monit. 
2019;11:348–354.

39. Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-
planar images: application to diffusion tensor imaging. Neuroimage. 2003;20:870–888. [PubMed: 
14568458] 

40. Andersson JLR, Xu J, Yacoub E, Auerbach E, Moeller S, Ugurbil K. A comprehensive Gaussian 
process framework for correcting distortions and movements in diffusion images. In: Proceedings 
of the 20th Annual Meeting of ISMRM-ESMRMB, Melbourne, Australia, 2012. p 2426.

41. Cabeen RP, Laidlaw DH, Toga AW. Quantitative imaging toolkit: software for interactive 
3D visualization, data exploration, and computational analysis of neuroimaging datasets. In: 
Proceedings of the Joint Annual Meeting of ISMRM-E SMRMB, Paris, France, 2018. pp 12–14.

Lan et al. Page 17

Magn Reson Med. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



42. Landau SM, Thomas BA, Thurfjell L, et al. Amyloid PET imaging in Alzheimer’s disease: a 
comparison of three radiotracers. Eur J Nucl Med Mol Imaging. 2014;41:1398–1407. [PubMed: 
24647577] 

43. Schöll M, Lockhart SN, Schonhaut DR, et al. PET imaging of tau deposition in the aging human 
brain. Neuron. 2016;89:971–982. [PubMed: 26938442] 

44. Baker SL, Lockhart SN, Price JC, et al. Reference tissue–based kinetic evaluation of 18F-AV-1451 
for tau imaging. J Nucl Med Soc Nuclear Med. 2017;58:332–338.

45. Landau SM, Fero A, Baker SL, et al. Measurement of longitudinal β-amyloid change with 
18F-florbetapir PET and standardized uptake value ratios. J Nucl Med Soc Nuclear Med. 2015;56: 
567–574.

46. Oktay O, Schlemper J, Folgoc LL, et al. Attention U-Net: learning where to look for the pancreas. 
2018. arXiv:1804.03999v3 [cs. CV].

47. Liu X, Wei X, Yu A, et al. Unpaired data based cross-domain synthesis and segmentation using 
attention neural network. In: Proceedings of the 11th Asian Conference on Machine Learning, 
Nagoya, Japan, 2019. pp 987–1000.

48. Reinhold JC, Dewey BE, Carass A, Prince JL. Evaluating the impact of intensity normalization on 
MR image synthesis. 2019. arXiv:1812.04652.

49. Pizzolato M, Palombo M, Bonet-C arne E, et al. Acquiring and predicting multidimensional 
diffusion (MUDI) data: an open challenge. In: Bonet-Carne E, Hutter J, Palombo M, Pizzolato 
M, Sepehrband F, Zhang F, eds. Computational Diffusion MRI. Cham, Switzerland: Springer 
International Publishing; 2020:195–208.

50. Hutter J, Slator PJ, Christiaens D, et al. Integrated and efficient diffusion-relaxometry using 
ZEBRA. Sci Rep. 2018;8:1–13. [PubMed: 29311619] 

51. Huang X, Belongie S. Arbitrary style transfer in real-time with adaptive instance normalization. 
In: Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 2017. pp 
1510–1519.

52. Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on 
MRI. Z Med Phys. 2019;29:102–127. [PubMed: 30553609] 

53. Ning L, Bonet-Carne E, Grussu F, et al. Muti-shell diffusion MRI harmonisation and enhancement 
challenge (MUSHAC): progress and results. In: Proceedings of the International Conference on 
Medical Image Computing and Computer-Assisted Intervention, Granada, Spain, 2018. pp 217–
224.

Lan et al. Page 18

Magn Reson Med. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 1. 
Schematic view of the self-attention conditional generative adversarial network (SC-GAN). 

The first layer represents the input data. The attention map exploits the similarity of each 

pair of convolved images and combines it with the input data to generate the output of the 

self-attention module. Abbreviation: conv, convolution
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FIGURE 2. 
The SC-GAN structure with 3D self-attention module. The network structure of SC-GAN 

consists of two parts: generator and discriminator. The generator is a Unet-like eight-layer 

encoder-decoder with a 3D self-attention module in the middle of the encoder and decoder. 

The discriminator is a five-layer patch GAN with 3D self-attention. The self-attention 

module empowers both generator and discriminator in the adversarial learning strategy
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FIGURE 3. 
Multimodal (multichannel) input. Examples of different neuroimaging data from single 

individual are presented. T1-weighted (T1w) and fluid-attenuated inversion recovery 

(FLAIR) were used as input for different synthesis tasks. For each the study tasks, a different 

target was used, shown as outputs 1–3: mean diffusivity (MD), fractional anisotropy (FA), 

and amyloid-beta (Aβ) PET. Data were preprocessed and co-registered (see section 2 for 

details) and are shown from three anatomical views (from left to right: axial, coronal, and 

sagittal)
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FIGURE 4. 
Learning-curve SC-GANs compared with other synthesis GANs across different tasks. Plots 

demonstrate learning curves of four convolutional neural networks that were evaluated in 

this study: 2D GAN, 3D GAN, 3D conditional GAN with attention gate (Att cGAN), and 

SC-GAN. The T1w and FLAIR data were used for three tasks: (1) synthesizing AβPET (n 

= 242, first column); (2) synthesizing FA (n = 480, second column); and (3) synthesizing 

MD (n = 480, third column). Three different evaluation metrics were used: First row shows 

normalized RMS error (NRMSE); second row shows peak SNR (PSNR); and third row 

shows structural similarity (SSIM). Note that all networks reached their plateau around 

epoch 20
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FIGURE 5. 
Qualitative assessment of three tasks. Images are the result of applying different GANs 

on T1w and FLAIR input images to predict Aβ PET (A), FA (B), MD (C), and absolute 

value error maps between synthesis results and target for FA (D) and MD (E) tasks. Target 

PET/FA/MD are also illustrated for comparison. Target image is normalized to the [0 1] 

range for training, and an equal color range of [0 1] is used for visualization. Note that 

SC-GAN was able to synthesize the most similar results in comparison with other networks. 

In the FA task (B), a 2D network demonstrated continuous distortion (red arrow), and 3D 

cGAN resulted in an oversmoothed image (see blue arrow showing partial-volume effect 

between fiber bundles of cingulum and corpus callosum). Attention cGAN failed to capture 

high-intensity FA across the white matter (yellow arrows). Green dotted circle shows that, 

unlike other networks, SC-GAN was able to capture brainstem details. In the MD task 

(C), 2D generated artificial sharp boundaries (red arrow) and 3D cGAN resulted in a large 

amount of striping artifact (blue arrow). D, The absolute value error maps for FA synthesis 

task. E, The absolute error maps for MD synthesis task. High error rates at brain boundaries 

are related to the regions affected by the EPI distortion and caused by imperfect brain masks 

used in the experiment. The figure shows that the result generated by SC-GAN has the 

lowest intensity error compared with other networks’ results
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FIGURE 6. 
Ablation study on test data across modules of SC-GAN. The SC-GAN with and without 

different network modules were assessed on the Aβ PET synthesis task, and learning 

curves across different evaluation criteria are presented here. Plots demonstrate NRMSE, 

PSNR, and SSIM. The self-attention module appeared to have the highest contribution to 

the achieved improvement, followed by spectral normalization and non–brain-loss function 

exclusion
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FIGURE 7. 
Correlation between PET and synthesis PET. Plot shows the correlation between Aβ 
standard uptake value ratio (SUVR) across subcortical and cortical regions of 10 test 

participants (each color represents regions of each participants). The PET images that were 

used for training were normalized using the min-max normalization approach. Therefore, 

test PET images were also normalized using the same approach before comparison. Note 

that on the region with high load of Aβ (shown with red arrow), the synthesis error is higher, 

suggesting that synthesis PET could not substitute PET imaging
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FIGURE 8. 
Qualitative assessment of MUDI superresolution. A, Images show axial slices of outputs of 

3D Unet, 3D cGAN and SC-GAN, and absolute difference map between output and target 

for each of them. Axial slice of input (size 41 × 46 × 28) and target (size 82 × 92 × 56) 

data are also presented here. B, Learning curves on the validation data of the second step of 

progressive training
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