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Analysis of 71 ciprofloxacin-resistant (MIC > 4 mg/ml) Streptococcus pneumoniae clinical isolates revealed
only 1 for which the quinolone resistance-determining regions of the parC, parE, and gyrB genes were
genetically related to those of viridans group streptococci. Our findings support the occurrence of interspecies
recombination of type II topoisomerase genes; however, its contribution to the emergence of quinolone
resistance among pneumococci appears to have been minimal.

Fluoroquinolone resistance in Streptococcus pneumoniae
and the viridans group streptococci (VGS) is increasing (1, 3,
7, 8, 11–14, 16, 17). Resistance to the fluoroquinolones has
been associated with specific chromosomal mutations in the
genes that encode the type II topoisomerase enzymes DNA
gyrase and topoisomerase IV (12, 22, 25). In S. pneumoniae
and VGS, these heterotetrameric enzymes are of the form
GyrA2GyrB2 for DNA gyrase and ParC2ParE2 for topoisom-
erase IV (18, 24). Amino acid substitutions in the quinolone
resistance-determining region (QRDR) of either the ParC sub-
unit of topoisomerase IV or the GyrA subunit of DNA gyrase
contribute to low-level resistance, depending on the quinolone
used for selection (22, 23, 26). Higher levels of resistance are
achieved with additional amino acid substitutions in either
ParC or GyrA. Amino acid substitutions in the ParE and GyrB
subunits have also been reported; however, their role in resis-
tance is unclear (20, 25).

The exchange of chromosomal DNA between VGS and
pneumococci has given rise to penicillin binding proteins
(PBPs) with decreased affinity for penicillin and has contrib-
uted significantly to the spread and worldwide prevalence of
penicillin resistance (9). However, it is only recently that flu-
oroquinolone-resistant pneumococcal isolates whose type II
topoisomerase genes are genetically related to VGS have been
reported (10)—this despite several in vitro studies which have
reported the frequency of interspecies recombination of these
genes to be 106 times that of spontaneous mutation (12, 15, 19,
27).

In this study, we found only 1 (isolate SPN1506) of 71 pre-
viously described (2, 3, 7) ciprofloxacin-resistant pneumococcal
isolates whose QRDR nucleotide sequences had more than
expected dissimilarity with pneumococcal sequences. Specifi-
cally, we show that the parC, parE, and gyrB sequences are

genetically more closely related to the corresponding regions
of selected VGS isolates than to S. pneumoniae.

The QRDR sequences of 71 pneumococcal isolates for
which the ciprofloxacin MIC was $4 mg/ml (7) and 19 VGS
blood isolates (6 S. sanguis, 8 S. mitis, and 5 S. oralis) for which
the ciprofloxacin MIC was #2 mg/ml (8) were analyzed using
the CLUSTAL multiple sequence alignment function of Vec-
tor NTI Suite 5.5 software (InforMax Inc., Bethesda, Md.).
Phylogenetic analysis and tree construction were performed
with the TREEVIEW software program using default param-
eters (21).

The QRDRs of the parCE and gyrAB genes were amplified
from genomic DNA by PCR, as described previously (3). The
following oligonucleotide primers, based on published se-
quences, were used for PCR and sequencing: M0363 and
M4271 for parC (22); VGA3 and VGA4 for gyrA (22); H4025
and H4026 for gyrB (22); and SPPARE7 and SPPARE8 (25),
as well as parE398 and parE483 (12), for parE. Due to the
nucleotide sequence dissimilarities between the different spe-
cies examined, not all VGS QRDRs could be amplified. In
order to sequence the parC open reading frame of SPN1506, a
2.4-kb fragment was amplified by PCR using Taq polymerase
and subsequently cloned into the pCR2.1-TOPO TA cloning
vector (Invitrogen Corporation, Carlsbad, Calif.). The open
reading frame was sequenced by “DNA walking” with a com-
bination of primers specific for the vector and SPN1506.

All isolates were tested for active efflux of ciprofloxacin by
the agar dilution-reserpine method, as previously described (3,
6). Only isolates for which the ciprofloxacin MIC decreased by
fourfold or greater in the presence of reserpine were consid-
ered positive for reserpine-inhibited efflux.

Of the 71 pneumococcal isolates examined in this study, only
1 (SPN1506) had QRDR nucleotide variations similar to VGS
compared with SPNR6 (parC, 27 of 322 bp [8.4%]; parE, 15 of
185 bp [8.1%]; gyrB, 18 of 430 bp [4.2%]). This is in contrast to
the relatively low nucleotide variation (#1%) found in the
QRDRs of the remaining 70 pneumococcal isolates and in the
QRDR of gyrA from SPN1506. To determine whether the
QRDR variations noted in SPN1506 were the result of recom-
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FIG. 1. Cladograms of pneumococcal and VGS parC (a), parE (b), gyrA (c), and gyrB (d) QRDR nucleotide sequences. QRDRs are as follows:
parC, 322 bp encoding residues 49 to 155; parE, 185 bp encoding residues 429 to 489; gyrA, 318 bp encoding residues 55 to 160; gyrB, 430 bp
encoding residues 375 to 517. VGS species are indicated as follows: O, S. oralis; S, S. sanguis; M, S. mitis.
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binational events between VGS and S. pneumoniae, a compar-
ison of the QRDR nucleotide sequences of selected pneumo-
coccal and VGS isolates was performed (Fig. 1). We
demonstrate that the parC, parE, and gyrB QRDR sequences
of SPN1506 are more closely related to those of VGS, while
the gyrA sequence is more closely related to that of S. pneu-
moniae. Incidentally, no amino acid substitutions known to
confer quinolone resistance among pneumococci were identi-
fied in SPN1506. This, in conjunction with this isolate’s nega-
tive-efflux phenotype, makes it difficult to speculate on the
mechanism of resistance. Further work is required to deter-
mine whether any of the 27 amino acid substitutions within the
ParC subunit contribute to the elevated MIC of ciprofloxacin
for SPN1506 (Fig. 2).

The frequency of horizontal gene transfer between S. pneu-
moniae and VGS in natural streptococcal populations is un-
known. However, such DNA exchanges are known to perpet-
uate diversity and have contributed to the emergence and
spread of penicillin resistance (9). In contrast, interspecies
recombination has had little impact on the emergence of quin-
olone resistance among pneumococcal isolates despite high
frequencies of recombination demonstrated in vitro (12, 15, 19,
27). Consistent with the reported low prevalence of quinolone-
resistant pneumococcal isolates that likely evolved as a result
of homologous recombination with variant alleles from VGS,
we identified only 1 of 71 pneumococcal isolates with homol-

ogy to VGS. The reason for this discrepancy between the
expected in vitro frequency and the reported clinical frequency
of recombination is unknown.

We speculate, however, that the difference between the
prevalence of pneumococcal isolates that harbor PBPs of VGS
origin and the prevalence of pneumococcal isolates that harbor
topoisomerase genes of VGS origin is due in part to the mul-
timeric nature of the DNA gyrase and topoisomerase IV en-
zymes. For example, only certain combinations of parC-parE
and gyrA-gyrB alleles may encode functional tetrameric en-
zymes. Therefore, horizontal transfer of compatible alleles that
results in viable isolates could be a rare occurrence. In con-
trast, the PBPs are encoded by a single gene and therefore do
not require the association of multiple subunits to form a
functional enzyme.

Interestingly, the sequence diversity of the QRDRs among
the VGS isolates characterized in this study suggests that hor-
izontal transfer may have played a significant role in their
evolution. However, it is equally possible that the poor classi-
fication of VGS may have contributed to this observed se-
quence diversity among the type II topoisomerase genes. For
these reasons, it is not possible to speculate on the origin of the
variant parC, parE, and gyrB alleles identified in SPN1506.
Nevertheless, it is apparent that the nucleotide variations iden-
tified in SPN1506 were likely the result of recombination with
VGS DNA and not the result of spontaneous mutation. Fur-

FIG. 2. Alignment of the predicted amino acid sequence of the parC open reading frame from SPN1506 with the published SPNR6 parC
sequence (10). The QRDR used for analysis of genetic relatedness is underlined. Only the SPNR6 amino acids that differ from those of SPN1506
are shown; identical amino acids are indicated by dashes.
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thermore, since the average length of DNA that is integrated
in a single recombination event is often greater than 8 kb (4),
the proximity of the parCE genes of SPN1506 to each other
suggests that they were replaced in a single event (5). However,
since over 40 kb separates parE from gyrB on the S. pneu-
moniae chromosome, it is likely that gyrB has recombined in-
dependently of parEC. We speculate that a third recombina-
tion event would have had to occur if gyrA had shown
variations consistent with VGS, given that a distance of ap-
proximately 344 kb separates the gyrA gene from parC (The
Institute for Genomic Research, personal communication).

In conclusion, our findings indicate that interspecies recom-
bination of type II topoisomerase genes between VGS and S.
pneumoniae has minimal impact on pneumococcal quinolone
resistance. However, it is possible that as quinolone resistance
continues to increase among these streptococcal species, so
will the number of quinolone resistance-conferring alleles
available for horizontal transfer. Hence, in due course we may
see greater numbers of pneumococcal isolates that harbor to-
poisomerase genes of VGS origin. It is important therefore to
provide sequence data on quinolone-resistant pneumococcal
isolates so as to better monitor the role of interspecies transfer
in the spread of resistance.

Nucleotide sequence accession number. The open reading
frame of the parC gene from isolate SPN1506 has been as-
signed GenBank accession no. AY035995.
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