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Abstract

We compare the complexity of human gait time series from healthy subjects under different 

conditions. Using the recently developed multiscale entropy algorithm, which provides a way to 

measure complexity over a range of scales, we observe that normal spontaneous walking has the 

highest complexity when compared to slow and fast walking and also to walking paced by a 

metronome. These findings have implications for modeling locomotor control and for quantifying 

gait dynamics in physiologic and pathologic states.
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1. Introduction

Quantifying the complexity of physiologic time series has been of considerable interest. 

Algorithms developed for this purpose have potential applications both to the evaluation of 

dynamical models of physiologic control mechanisms and to bedside diagnostics.

There is no formal definition of complexity. Intuitively, complexity is related to 

understanding, i.e., to our ability to provide a short description of a phenomenon. The 

mathematical definition of complexity follows from information theory and it applies to 

a string of characters. Mathematical complexity has been defined as the length of the 

shortest binary input to a universal Turing machine such that the output is the initial string 

[1,2]. This definition may be extended to apply to physical systems in which case the 

states of the systems are mapped into strings of characters. However, with the exception 
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of some theoretical applications, the mathematical complexity of a system cannot be easily 

calculated. For practical applications, several entropy-based measures have been proposed, 

although there is no straightforward correspondence between entropy and complexity. These 

traditional algorithms may lead to misleading results because an increase in the entropy of 

a system is usually but not always associated with an increase of complexity. For example, 

these algorithms may indicate higher entropy/complexity values for randomized surrogate 

time series compared to original time series even when the original series represent the 

output of complex systems and incorporate correlations over multiple spatio-temporal scales. 

However, the processes of generating surrogate data are designed to destroy correlations 

and degrade the information content of a signal. In these cases a higher entropy value only 

reflects an increase in the degree of randomness and not an increase in the complexity of the 

time series. Uncorrelated random signals (white noise) may be highly unpredictable even in 

cases where the past history is fully known but, at a global level, they admit a very simple 

description and, therefore, are not really “complex”.

One possible reason why traditional entropy-based algorithms may fail to correctly quantify 

the complexity of a time series is the fact that these measures are single-scale based. 

However, time series derived from complex systems are likely to present structures on 

multiple spatio-temporal scales. In contrast, time series derived from simpler systems are 

likely to present structures on just a single scale. Therefore, a meaningful measure of 

complexity should take into account multiple time scales. Recently, we introduced a new 

method [3], multiscale entropy (MSE) analysis, to calculate entropy over multiple scales.

In 1991, Zhang [4,5] proposed a new complexity measure that takes into account multiple 

scales. His measure is defined as a weighted summation of scale-dependent entropies. 

In contrast to the traditional definition of entropy for time series, it has the desirable 

property of yielding higher complexity for long-range correlated noise (1/f noise) than for 

uncorrelated noise (white noise). However, Zhang’s complexity measure does not apply to 

“real world” time series because, being based on Shannon’s definition of entropy, it requires 

a huge amount of almost noise-free data points. The method we proposed is motivated by 

Zhang’s idea of computing entropy for multiple scales. However, instead of using Shannon’s 

definition of entropy, it uses sample entropy (SampEn) [6], a refinement of the approximate 

entropy (ApEn) family of parameters [7,8] introduced by Pincus to quantify the regularity of 

finite length time series.

Consider the distance between two vectors as the maximum of the absolute differences 

between their components and fix a threshold value r for determining when these vectors 

are close to each other. ApEn reflects the likelihood that sequences that are close to each 

other, i.e., within r, for m consecutive data points remain close when one more data point 

is known. Mathematically, ApEn is computed as follows: Let {Xi} = {x1, …, xi, …, xN} 

represent represent a time series of length N. Consider the m-length vectors: um (i) = 

{xi, xi+1, …, xi+m−1}. Let nim (r) represent the number of vectors um(j) within r of um(i). 

Ci
m(r) = nim(r)/(N − m + 1) is the probability that any vector um(j) is within r of um(i). Define, 

Φm(r) = 1/(N − m + 1)∑i = 1
N − m + 1  ln Ci

m(r). ApEn is defined as ApEn(m, r) = limN→∞ Φm(r) 

− Φm+1(r). For finite N, it is estimated by the statistics, ApEn(m, r, N) = Φm(r) − Φm+1(r). 

Costa et al. Page 2

Physica A. Author manuscript; available in PMC 2022 May 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Lower values of ApEn reflect more regular time series while higher values are associated 

with less predictable (more complex) time series.

Here, we apply the MSE method to the analysis of human gait time series obtained 

under different conditions [9] and compare the results with those obtained with traditional 

complexity algorithms and detrended fluctuation analysis [10–13]. We compare the 

complexity of normal spontaneous walking with slow and fast walking, and with walking 

timed by a metronome, in which case supra-spinal control mechanisms and the intrinsic 

free-running pacemakers are overridden. The results give insight into the physiologic control 

mechanisms of human gait above and below the spinal cord.

2. Material and methods

We briefly describe the MSE method.

Given a time series, {x1, …, xi, …, xN}, we first construct consecutive coarse-grained time 

series by averaging a successively increasing number of data points in non-overlapping 

windows (Fig. 1). Each element of the coarse-grained time series, yj
(τ), is calculated 

according to the equation:

yj
(τ) = 1/τ ∑

i = (j − 1)τ + 1

jτ
xi, (1)

where τ represents the scale factor and 1 ⩽ j ⩽ N/τ. The length of each coarse-grained time 

series is N/τ. For scale 1, the coarse-grained time series is simply the original time series. 

Then we calculate SampEn [6] for each one of the coarse-grained time series plotted as a 

function of the scale factor.

SampEn quantifies the regularity of a time series. It reflects the conditional probability that 

two sequences of m consecutive data points which are similar to each other will remain 

similar when one more consecutive point is included. Being “similar” means that the value 

of a specific measure of distance is less than r. Therefore, SampEn is a function of m and r 
parameters. For all cases presented here, m = 2 and r = 0.15. In general, Pincus suggested 

m = 2 and r = 0.2 for the analysis of heart rate data. Previous studies of physiologic time 

series analysis have used an r value between 0.1 and 0.25. The values we chose fall within 

this range. More importantly, empirically, we found that our results were not very dependent 

on the specific values of m or r.

We applied MSE to the study of the stride interval times series derived from 10 young, 

healthy men (ages 18–29 yrs). The stride interval is a measure of the gait rhythm and is 

typically defined as the time interval between consecutive heel strikes of the same foot. To 

measure the stride interval, the output of ultra-thin, force sensitive switches was recorded on 

an ambulatory recorder and heel strike timing was automatically determined [12]. Subjects 

walked continuously on level ground for 1 h at their self-determined usual, slow and fast 

paces around an obstacle free outdoor track (Fig. 2).
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In order to get further insight into the control mechanisms of human gait, the subjects were 

also asked to walk in time to a metronome that was set to each subject’s mean stride interval, 

computed from each of the three unconstrained walks (Fig. 2).

3. Results and discussion

We first applied the MSE method to compare the complexity of white and 1/f noise “control 

datasets”, i.e., uncorrelated and correlated fluctuations. Numerical simulations and analytic 

solutions are shown in Fig. 3a. The entropy for white noise time series monotonically 

decreases with the scale factor while the entropy for 1/f noise remains constant for all scales. 

Therefore, although for small scales white noise time series are assigned higher entropy 

values than 1/f noise time series, the opposite is true for scales larger than 5. These results 

are consistent with the fact that 1/f noise has structure on multiple scales and, therefore, is 

more complex than white noise.

SampEn is largely independent of the time series length when the total number of data 

points is larger than approximately 750 [6]. For smaller time series, error bars due to finite 

size effects grow very fast as the total number of data points is reduced. Since the length 

of coarse-grained time series depends on the scale factor, the magnitude of the error bar for 

each SampEn value of the MSE curves also depends on the scale factor. To quantify this 

source of error, we considered a white noise time series and 20 surrogate data time series 

obtained by random shuffling of the original data point sequences. We calculated the MSE 

curves for all 20 surrogate time series and then, for each scale, we calculated the mean value 

of entropy ±SD (Fig. 3b). Next, we measured the area between the lower (mean value −SD) 

and the upper (mean value +SD) curves and used this value, (6), to determine whether two 

MSE curves were significantly different: MSE curves such that the area between them is ⩽ δ 
were considered not significantly different.

We next applied the MSE method to the analysis of the stride interval time series 

derived from subjects who walked freely at different speeds (Fig. 2). Previous studies, 

using detrended fluctuation analysis (DFA) [11,13] indicated that fluctuations of human 

gait cycle under free walking conditions do not represent uncorrelated random noise but, 

instead, exhibit long-range correlations with a power-law decay. This means that, at least in 

statistical terms, the value of any stride interval depends not only on the values of the most 

recent stride intervals but also on the values of those at relatively remote times (“memory 

effect”). These findings are indicative of very complex dynamics. We used the MSE method 

to quantify the complexity of the stride interval time series obtained from unconstrained 

walking at slow, normal and fast rates. We further tested the hypothesis that the complexity 

of these time series is encoded in the sequential ordering of the stride intervals and does not 

result from stride interval histograms. Therefore, for each physiologic time series, we built 

a surrogate time series by shuffling (randomly reordering) the sequence of data points. In 

this way, we destroyed correlations among the stride intervals while preserving the statistical 

properties of the distribution, particularly, the first and second moments.

In Fig. 4, the MSE results for unconstrained walking time series and their corresponding 

snuffled time series are presented. The curves shown are not the MSE curves for some 
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particular time series but represent lines connecting the mean values of SampEn for all 

physiologic and surrogate time series. Of note, for scale 1, corresponding to traditional 

(single scale) SampEn, physiologic time series are assigned the lowest values of entropy. 

However, while the entropy for shuffled time series monotonically decreases with increasing 

scale factor, similar to white noise, the entropy for physiologic time series tends to stabilize 

between scales 2 and 4 for normal walking speed, and between scales 3 and 5 for slower and 

faster walking speeds. Therefore, for larger scales, the entropy for all unconstrained walking 

time series is larger than the entropy for the corresponding shuffled time series. The δ-values 

measuring the areas between original and surrogate time series for slow, normal and fast 

walking rates are 1.18, 0.68 and 0.89, respectively. These results show that physiologic 

time series are more complex than surrogate ones. Therefore, a model based on random 

fluctuations super-imposed on a constant value representing the mean walking speed does 

not account for all properties of the physiologic dynamical process. In addition, the results 

show (Fig. 4d) that during usual gait, normal free walking has the most complex dynamics 

followed by fast walking and finally slow walking. We note that the shuffled data in Figs. 4 

and 5 are highly reproducible. Notice that these values are approximately the same as those 

presented in Fig. 3 corresponding to uncorrelated noise. Furthermore, Fig. 3 shows both 

analytic and numerical results of MSE for correlated and uncorrelated noise. Both agree and 

are quite robust.

In Fig. 5, we present the MSE results for metronomically-paced walking time series and 

their corresponding surrogate time series. Once again, the curves connect mean values 

of SampEn for all physiologic and surrogate time series. In contrast to the findings for 

spontaneous walking, there is no qualitative difference between MSE curves corresponding 

to physiologic and surrogate time series for all the paced walking speeds. MSE curves 

monotonically decrease with scale factor similar to the MSE curve of white noise time 

series (Fig. 3a). We measured the areas between physiologic and surrogate MSE curves 

for the three walking speeds. For normal paced walking time series, the area between the 

two MSE curves was 0.28, which is below the established level of statistical significance, 

0.36 (Fig. 3 caption). Therefore, we concluded that they were not significantly different. 

For slow and fast paced walking time series, the areas between MSE curves were 0.41 

and 0.40, respectively. These values are slightly larger than that corresponding to normal 

speed, but still very close to the minimum value of statistical significance. These results 

indicate that, in the case of paced walking, both physiologic and surrogate time series share 

a common random underlying dynamics. Since walking in time to a metronome has the 

effect of constraining supra-spinal pacesetters, these results indicate that control mechanisms 

above the level of the spinal cord are essential for the complex structure of free walking 

stride interval time series.

Finally, we note that our findings complement those obtained from previously reported DFA 

analysis of human gait data [10,13]. DFA revealed the presence of long-range correlations 

in free walking stride interval time series and their breakdown with metronomically-paced 

walking. To quantify the relationship between these two measures, we compared the results 

of MSE for scale 4 with the DFA results for the three different walking rates under free 

(non-metronomic) conditions. The correlation coefficients were lower than 0.46, indicating 

that the two methods, MSE and DFA, are not closely related.
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In summary, we find that the spontaneous output of the human locomotor system during 

usual walking is more complex than walking under slow, fast or metronomically-paced 

protocols. The results obtained using the MSE technique are notable because they probe a 

dynamical property not identified by other statistics and have implications for quantifying 

and modeling gait control under physiologic and pathologic conditions.
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Fig. 1. 
Schematic illustration of the coarse-graining procedure for scales 2 and 3.
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Fig. 2. 
Representative stride interval time series obtained from a healthy subject who walked freely 

and in time to a metronome at slow, normal (usual) and fast rates. The last two time series 

are examples of randomized surrogate time series. They were generated by shuffling the 

values of the normal walking rate time series presented here.
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Fig. 3. 
(a) MSE analysis of Gaussian distributed white noise (mean zero, variance one) and 

1/f noise. On the y-axis, the value of SampEn [4] for the coarse-grained time series 

is plotted. Original time series have 3 × 104 data points. The value of parameters m 
and r, defined in Ref. [7] are 2 and 0.15, respectively. The scale factor specifies the 

number of data points averaged to obtain each element of the coarse-grained time series. 

Symbols represent results of simulations and dotted lines represent analytic results. SampEn 

for coarse-grained white noise time series is analytically calculated by the expression: 

− ln∫−∞
+∞ 1

2 (τ /2π)[erf((x + r)/ (2/τ)) − erf((x − r)/ (2/τ))]e−(1/2)x2τ dx (for any m ⩾ 1). τ and 

erf refer to the scale factor and to the error function, respectively. For 1/f noise time series, 

the analytic value of SampEn is a constant. Adapted from Ref [3]. (b) MSE analysis of a 

Guassian distributed white noise time series and 20 corresponding shuffled time series. The 

symbols refer to mean values of sample entropy (SampEn) for all time series and the broken 

lines to mean values ±SD. MSE curves for all time series should coincide with the analytic 

solution obtained for uncorrelated random noise. This is the case for scale one; but for larger 

scales, the dispersion of values around the analytic solution progressively increases due to 

the shortening of the length of the coarse-grained time series. To quantify these finite size 

effects, we calculated the area between the upper and lower curves, δ = 0.36. Two MSE 

curves were then considered significantly different if the area between them was > δ.
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Fig. 4. 
(a-d) MSE analysis of unconstrained walking time series derived from healthy subjects 

who walked for 1 h at slow, normal and fast rates (original time series), and of the 

corresponding surrogate shuffled time series. Curves represent lines connecting mean values 

of sample entropy (SampEn). The differences between mean MSE curves for physiologic 

and surrogate time series are all statistically significant. In all cases, physiologic time series 

are assigned higher entropy values than surrogate time series at larger scales. These results 

indicate that physiologic time series are more complex than surrogate ones. In addition, 

panel(d) shows that normal free walking dynamics are more complex than fast free walking 

dynamics, which in turn are more complex than slow free walking.
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Fig. 5. 
(a-d) MSE analysis of metronomically paced walking time series obtained from healthy 

subjects who walked at slow, normal and fast rates for 30 min, and of the corresponding 

surrogate time series. There is no qualitative difference between MSE curves corresponding 

to physiologic and surrogate time series. In all cases, the values of entropy monotonically 

decrease with the scale factor similar to white noise time series (Fig. 3), which indicates that 

all time series share a common random underlying dynamics.
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