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Objective: Electrical deep brain stimulation (DBS) is an established treatment for patients with 

drug-resistant epilepsy. Sleep disorders are common in people with epilepsy, and DBS may 

actually further disturb normal sleep patterns and sleep quality. Novel devices capable of DBS 

and continuous intracranial EEG (iEEG) telemetry enable detailed assessments of therapy efficacy 

and tracking sleep related comorbidities. Here, we investigate the feasibility of automated sleep 

classification using continuous iEEG data recorded from Papez’s circuit in four patients with 

drug resistant mesial temporal lobe epilepsy using an investigational implantable sensing and 

stimulation device with electrodes implanted in bilateral hippocampus (HPC) and anterior nucleus 

of thalamus (ANT).

Approach: The iEEG recorded from HPC is used to classify sleep during concurent DBS 

targeting ANT. Simultaneous polysomnography and HPC sensing were used to train, validate and 

test an automated classifier for a range of ANT DBS frequencies: no stimulation, 2 Hz, 7 Hz, and 

high frequency (>100 Hz).

Main results: We show that it is possible to build a patient specific automated sleep staging 

classifier using power in band features extracted from one HPC sensing channel. The patient 

specific classifiers performed well under all thalamic DBS frequencies with an average F1-

score 0.894, and provided viable classification into awake and major sleep categories, rapid 

eye movement (REM) and non-REM. We retrospectively analyzed classification performance 

with gold-standard polysomnography annotations, and then prospectively deployed the classifier 

on chronic continuous iEEG data spanning multiple months to characterize sleep patterns in 

ambulatory patients living in their home environment.

Significance: The ability to continuously track behavioral state and fully characterize sleep 

should prove useful for optimizing DBS for epilepsy and associated sleep, cognitive and mood 

comorbidities.
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1. Introduction

Electrical deep brain stimulation (DBS) is an established therapy for drug-resistant focal 

epilepsy [1–4], but the effects of DBS on sleep are poorly understood. A small study 

of responsive neurostimulation (RNS) with only hippocampal or cortical stimulation did 

not find evidence for sleep disruption [5], but thalamic DBS targeting anterior nucleus of 

thalamus (ANT) has been reported to cause sleep disruption [6].

With the high prevalence of sleep disturbances in people with epilepsy [7–12], and the 

potential for seizures to follow sleep related circadian patterns [13–16], the precise impact 

of DBS on sleep is of significant clinical importance. Morevoer, sleep is known to play 

an important role in the cognitive [8,17] and mood [18,19] comorbidities of epilepsy. 

Unfortunately, objectively assessing sleep in patients undergoing DBS has been difficult due 

to the absence of longitudial data and the unreliability of patient sleep self reporting [20]. A 

quantiative assessment of sleep architecture using ambulatory intracranial EEG (iEEG) data 
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in patients with epilepsy allows investigation of long-term behavioral state dynamics and the 

complex interplay of epilepsy, sleep and DBS that should ultimately increase the precision 

of adaptive DBS [21].

Although clinical gold standard polysomnography involves trained experts reviewing scalp 

EEG recordings, prior research has shown the feasibility of automated behavioral state 

classification utilizing invasively recorded iEEG signals. These studies demonstrated the 

feasibility of classification of wakefulness and non-Rapid-Eye-Movement (non-REM: N2 & 

N3) sleep stages [22–25]. However, the feasibility of iEEG based REM classification, and 

the impact of DBS induced iEEG artifacts on automated sleep scoring remains unclear.

Our understanding of the chronic effects of DBS on sleep has been limited by the 

recording capabilities of current DBS devices [26–28]. Recent advances in DBS devices 

have included rechargeable batteries that support the energy demands of continuous iEEG 

data telemetry. One such system, the investigational Medtronic Summit RC+S™, currently 

in use under an investigational device exemption enables continuous iEEG streaming during 

therapeutic DBS [28,29]. With continuous iEEG streaming and bidirectional connectivity 

the investigational Medtronic Summit RC+S™ system provides a unique opportunity for 

long-term, ambulatory monitoring and quantitative evaluation of sleep during DBS therapy 

[28,29].

We collected ambulatory iEEG recordings from four patients with drug resistant epilepsy 

implanted with the investigational Medtronic Summit RC+S™ to investigate novel 

stimulation paradigms and to track long term behavioral state dynamics. The patients 

received therapeutic ANT DBS during concurrent, bilateral hippocampal (HPC) iEEG 

recording. We evaluated the feasibility and accuracy of automated behavioral state 

classification under different ANT stimulation frequencies (2 Hz, 7 Hz, high frequency >100 

Hz) [2,30–34] during three days of simultanous iEEG and polysomnography (PSG) with 

expert sleep annotations. A Naïve Bayes classifier [35,36] was used for classifying iEEG 

signals into Awake, Rapid-Eye-Movement (REM), and non-REM (non-REM: N2 & N3). 

Subsequently, we deployed the trained classifiers in four ambulatory patients over 6 months.

Previous studies investigating automated behavioral state classification with iEEG have 

not explored the impact of concurrent DBS on classifier performance, and have only 

utilized semi-gold standard annotations [22], or performed leave-out cross validation testing 

[24]. Furthermore, to our knowledge automated behavioral state classifiers have not been 

deployed in ambulatory subjects living in their natural environments. Here we obtained 

simultaneous polysomnography and iEEG during both low- and high- frequency ANT 

DBS using a novel investigational implantable neural sensing and stimulation device to 

create gold-standard behavioral state labels for training, validation and testing of automated 

behavioral state classifiers that were then deployed in ambulatory subjects during therapeutic 

ANT DBS.
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2. Methods

2.1 Experimental Protocol

This human subjects research study was carried out under a Food and Drug Administration 

investigational device exemption (IDE-G180224) and Mayo Clinic institutional review board 

(IRB: 18–005483 “Human Safety and Feasibility Study of Neurophysiologically Based 

Brain State Tracking and Modulation in Focal Epilepsy”) approvals. The study is registered 

at https://clinicaltrials.gov/ct2/show/NCT03946618. The patients provided written consent 

in accordance with the IRB and FDA requirements. Four subjects with drug resistant 

mesial temporal lobe epilepsy (mTLE) (H1–4) were consented and implanted with the 

investigational Medtronic Summit RC+S™ device [29,37,38], with four 4-contact leads, 

targetting the HPC and ANT) bilaterally. See supplementary data for additional surgical and 

clinical information.

We collected simultaneous polysomnography and iEEG data in the hospital setting to 

obtain gold standard sleep classifications based on expert review of scalp EEG (EKS) 

for subsequent traning, validation and testing of the iEEG-based automated classifier. 

Subsequently, continuous prospective automated classifications were made in naturalistic 

settings in ambulatory patients, without concurrent scalp recordings.

The overnight hospital and long-term experiments were conducted within a broader clinical 

study in temporal lobe epilepsy investigating the effect of multiple stimulation frequencies 

on interictal epileptiform discharges and seizures. The stimulation parameters were selected 

based on current clinical practice and experimental studies investigating the therapuetic 

effect of ANT DBS [2,30–34]. The HPC sensing parameters, including sampling freqency, 

were determined as a compromise between data quality and battery life-cycle duration.

2.1.1 Intracranial EEG Data Acquisition—Intracranial EEG data were continuously 

collected using wireless streaming to a tablet computer with 250 Hz or 500 Hz sampling 

frequency as previously described [37–39]. Data acquired at 500 Hz was downsampled to 

250 Hz using an antialiasing finite response filter (101th order) with cutoff frequency at 100 

Hz. Impedance between the implanted device and electrode contacts was below 2 kΩ for all 

contacts during all experiments. The long term iEEG data from four patients spanned over 

1,000 days, and here we analyzed at least 30 days for each subject, H1–4.

2.1.2 Simultaneous Polysomnography (PSG) and Intracranial EEG (iEEG) 
Streaming During Electrical Brain Stimulation—Simultaneous HPC iEEG and PSG 

(scalp EEG, eye leads, chin leads) recording was conducted at different ANT DBS 

parameters (no DBS, 2 Hz, 7 Hz and high frequency (>100 Hz) DBS; 3 – 4 mA; 90 

and 200 μs pulse width) over the course of three consecutive nights in the hospital epilepsy 

monitoring unit. This provided standard reference labels for training, validation and testing 

of the behavioral state classifier. The Natus Medical Inc. Xltek electrophysiology system 

was used to acquire all PSG data with a common reference on the scalp, midline between 

the international 10–20 Cz and Fz electrode positions. The scalp data were acquired 

at a sampling rate of 512 Hz. The effect of ANT stimulation (2 Hz, 7 Hz, and high 

frequency (>100 Hz)) on HPC iEEG recordings, behavioral state classification based on 
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HPC recordings, and sleep architecture was investigated. The details of the stimulation 

protocol are shown in Table S1 in the Supplementary Materials.

2.1.3 Sleep Scoring Using Scalp EEG—For visual expert sleep stage scoring, all 

the PSG recordings were bandpass filtered between 0.3 and 75 Hz with a 60 Hz notch 

filter using six-order zero-phase Butterworth filters. We used electrodes that were placed in 

the standard 10–20 system locations. This included eye and chin electrodes for evaluation 

of eye movements and muscle activity for REM sleep scoring. Visual sleep scoring was 

done manually by an expert reviewer (EKS) in accordance with guidelines of American 

Association of Sleep Medicine [40] using a visualisation and analytical software tool 

CyberPSG (Certicon a.s.). Wakefulness was determined by the presence of eye blinks 

visualized in frontal scalp and eye leads, accompanied by posteriorly dominant alpha rhythm 

(8–12 Hz), comprising >50% of the epoch. N2 sleep was scored when low frequency delta 

activity was present accompanied by K-complexes or spindles. Slow-wave sleep (N3) was 

scored when high-voltage (>75 μV), delta (0.5 – 4 Hz) activity on scalp EEG was present 

in at least 20 % (6 sec) of the epoch in the frontal electrode derivations. A similar approach 

was used in previous studies [22,23,41]. In total, 12,182 sleep epochs were annotated by 

an expert reviewer using the available PSG recordings. The distribution between individual 

sleep stages was Awake - 29.4 %, N1 – 4.8 %, N2 37.7 %, N3 – 15.7 % and REM - 12.32 %. 

The block diagrams for experiment setup and data pipelines are shown in Figure 1.

2.1.4 Selection of an Intracranial Electrode for Sleep Scoring—The 

investigational Medtronic Summit RC+S™ enables iEEG data streaming from a total of 4 

bipolar sensing channels at a time, that can be selected from the 16 total electrode contacts. 

The fact that some electrode contacts are placed in the epileptic focus, a region with a 

propensity to show pathological activity such as interictal epileptiform discharges (IEDs), 

led us to investigate models for behavioral state classification using a single bipolar iEEG 

channel. Our approach uses a single selectable sensing channel that has a minimum of 

pathological activity and is optimal for sleep scoring. Individual channels were evaluated for 

each subject based on the following factors: rate of IEDs, rate of subclinical seizures, and 

magnitude of DBS artifacts. For the automated classifier we select the HPC electrode with 

the fewest of all the above.

The impact of ANT stimulation on HPC iEEG signal spectrum for cases of 2 and 7 Hz 

low frequency stimulation shows that the power spectrum is disrupted with peaks in bands 

of stimulation frequency and its harmonics (Figure 2). Within the PIB features used in this 

study the high frequency stimulation (HF>100 Hz) has little impact. To illustrate the variable 

IED-rate within a single subject, patient H1 exhibited 500 – 5,200 IEDs per hour across 

different recording channels (Figure 3) and behavioral states [38]. DBS-induced artifacts are 

also an important factor to consider during electrode selection.

2.2 Automated Sleep Classification

We implemented a classification model utilizing a Naïve Bayes Classifier [35,36,42] with 

relative power in band (PIB) features extracted from a single iEEG channel to classify 30 

second long epochs into the standard sleep categories Awake, N2, N3, REM. The sleep 
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state N1 was excluded due to the insufficient number of samples among the available gold 

standard data (Table 1).

2.2.1 Data Processing—The iEEG and PSG recordings were stored in the Multi-Scale 

Electrophysiology Format (MEF) [43] and imported into Python using a Python library 

“pymef” available on GitHub https://github.com/msel-source/pymef. The sleep scoring gold 

standard annotations were exported from the CyberPSG software and imported into Python 

using software package “Python Invasive Electrophysiology Signal Processing Toolbox” 
(PiesPro).

The iEEG signals used for automated sleep scoring were filtered using 3rd order IIR 

Butterworth zero-phase filter with a 40 Hz cutoff frequency. Subsequently, the iEEG signals 

were segmented into 30-second-long epochs with gold standard annotations. All epochs 

with more than 15% of samples missing due to packet drops in the wireless data iEEG 

streaming were excluded, leaving a total of 11,091 epochs from all subjects. The segments 

were distributed across all sleep stages (Awake – 35 %; N 1 – 5%; N 2 – 34%; N 3 – 15%; 

REM – 11 %), and across different stimulation frequencies (no-DBS – 52%; 2 Hz DBS – 34 

%; 7 Hz DBS – 7 %; high-frequency DBS - 22 %). Additional details are provided in Table 

S2 in the Supplementary Materials.

Missing iEEG samples within short packet drops were replaced by the average value of 

the corresponding 30-second epoch. The iEEG data were then filtered by a 0.5–40 Hz 

band-pass filter and power spectral density (PSD) estimated using Welch’s method for each 

30-second-long epoch using a 10-second window with 5 second overlap.

We extracted two sets of PIB features from the following bands: 0.5–5 Hz, 4–9Hz, 8–

14Hz, 11–16Hz, 14–20Hz (low beta) and 20–30Hz (high beta) for each 30-second epoch 

corresponding to the gold standard sleep score. Frequency bands were selected based on 

prior automated sleep classification work using intracranial and scalp EEG [22–25,37,38,40] 

and preliminary analysis of patient H1. The first set of features was PIB relative to the 

power of the whole spectrum from 0.5 – 30 Hz. The second set of features consisted of 

the relative PIB calculated as a ratio of frequency bands. The PIB ratio was estimated for 

all non-repeating two-sample ascending combinations within the set of all frequency bands. 

Subsequently, a decadic logarithm transformation was applied to all features introduced 

above.

2.2.2 Cancelling of Band Power at Stimulation Frequencies—DBS-induced 

artifacts alter the PIB features as evident in Figure 2. To reduce the impact of DBS-induced 

artifacts on extracted features, and thus on classification performance, we applied PIB 

cancelling - setting to zero the PIBs most effected by DBS artifact. In this way, we removed 

frequency bands significantly impacted by the DBS-induced stimulation artifacts – 2 & 7 

Hz and higher harmonic frequencies. Based on a preliminary data inspection, we eliminated 

the frequency band 1.5 – 2.5 Hz for 2 Hz stimulation, and the 6 – 8 Hz band for the 7 Hz 

stimulation and corresponding higher harmonic frequencies. PIB cancelling was performed 

separately for each stimulation paradigm.
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2.2.3 Modes of Operation: Chronic Automated Classification under Different 
Stimulation Settings—We trained a patient-specific classifier using hippocampal iEEG 

data during stimulation-free periods then tested and validated the classification performance 

using data recorded under different ANT stimulation programs (2 Hz, 7 Hz, HF > 100 Hz 

DBS). There are practical limitations to exposing patients to multiple nights of monitoring 

in the EMU to screen possible stimulation programs and evaluate the impact of thalamic 

stimulation on the precision and stability of the automated sleep classifier. We tested the 

feasibility of transferring classification models (TM) between no DBS and multiple DBS 

frequencies (2 Hz, 7 Hz, HF (>100 Hz)) separately (Figure 4). Therefore, we validated the 

classifiers in a scenario when only a single night of concurrent PSG and iEEG is available. 

We also investigated the impact of PIB cancelling on classification performance by training 

and validating classifiers for all subjects under different PIB cancelling protocols: no PIB 

cancelling and DBS frequency specific PIB cancelling (Table S2 Supplementary Materials, 

Figure 4).

a) No DBS: In the first experiment, we used iEEG data collected from three consecutive 

days of HPC iEEG recording (H1-H4) in the absence of ANT DBS to classify Awake, REM, 

and non-REM (N2 & N3) sleep stages. Expert sleep scoring annotations with and without 

ANT DBS were created for all patients. We used available iEEG data acquired without DBS 

during the first night to train the classifier and data acquired during the second and third 

night for pseudo-prospective testing. The nights without DBS, however, were not consistent 

across patients. If data without DBS were not available for the first night, the data without 

DBS acquired during the second night were used for training and the third night data were 

utilized for testing (Table S2 Supplementary Materials). This experiment was performed for 

all patients (H1–4).

b) Low Frequency DBS: We investigated the feasibility of deploying the classifiers 

trained using iEEG data recorded without DBS present to cases with low frequency (2 & 7 

Hz) ANT DBS and contaminated by DBS-induced artifacts. The experiment was performed 

with and without the stimulation active PIB cancelling for all subjects.

c) High Frequency DBS: Like the previous experiment, we tested the feasibility of 

reusing the stimulation-free classifier for the iEEG data recorded while delivering high 

frequency (>100 Hz) thalamic stimulation.

Additionally, we performed a leave-out cross validation (CV) testing for high frequency 

DBS data in each patient since we hypothesize that high frequency DBS may decrease 

signal-to-noise ratio and alter HPC iEEG beyond simple stimulation artifacts. The CV 

testing was performed in 100 iterations, with 80% of all iEEG data recorded during 

high frequency DBS. The rest of the data was used for testing. The data were sampled 

proportionally in all classification categories.

2.2.4 Classification – Naïve Bayes—We developed a classification model utilizing 

a Naïve Bayes Classifier [35,36,42]. The model uses PIB features extracted in 30-second 

epochs as an input. The Naïve Bayes classification model is based on Bayes’ Theorem, 

predicting a conditional probability P(S|X) of the event S (S is a behavioral state {Awake, 
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N2, N3, REM}) given the feature vector X. P(X |S) is obtained as a Probability Density 

Function of the extracted feature vector for each behavioral state S. The statistical 

distribution for each of the behavioral states is estimated using training data. P(S) is a 

prior probability of a state S and P(∅S) is defined as 1 − P(S). For this work, we used a 

kernel of a multivariate normal distribution with prior probability evenly distributed across 

all classification classes.

P(S ∣ X) = P(X ∣ S)P(S)
P(X) = P(X ∣ S)P(S)

P(X ∣ S)P(S) + P(X ∣ ∅ S)P( ∅ S)

2.2.5 Post-Processing: Hypnogram Correction Rules for Automated Long-
Term Data with Dropouts—In this study the encrypted iEEG data are wirelessly 

transmitted between different hardware devices (implanted neural stimulator, tablet, and 

cloud) [28,39]. Wireless data transmission in the ambulatory environment can suffer from 

data loss in the form of dropped data packets due to poor wireless signal connections 

between individual devices. Both short (< 5 minutes) and long (> 5 minutes) data drops 

were present in our recordings. Short data drops account for up to 2.9 hours of missing data 

every day (patients H1-H4). To address the issue of missing data during different behavioral 

states and transitions we employed a heuristic approach to assign short data drops to specific 

classes:

1. If a short data drop (< 5 minutes) is preceded by at least 5 minutes of a classified 

sleep stage that consistently yielded the same sleep stage, the data drop is 

assigned the sleep stage of the preceding prediction.

2. If a short data drop (< 5 minutes) is preceded by at least 5 minutes of “Awake” 

state predictions and followed by a REM stage prediction, the data drop is 

assigned to “Awake”.

3. Any epoch that is classified as “REM” sleep that follows at least 5 minutes of 

“Awake” is assigned to “Awake”.

4. If a sequence of predicted sleep states with a duration of at least 5 minutes 

consists of any combination of “N2” and “N3” and is followed by a data drop 

with a maximum duration of 5 mins, and the following predicted sleep state is 

either “N2” or “N3”, the void is assigned to a generic non-REM sleep category 

“N”.

5. If a sequence of predicted sleep states with a duration of at least 5 minutes 

consists of any combination of “N2”, “N3” and “REM” and is followed by a data 

drop with a maximum duration of 5 mins, and the following predicted sleep state 

is either “N2”, “N3” or “REM”, the void is assigned to a generic sleep category 

“SLEEP”.
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2.3 Ambulatory Behavioral State Classification in Ambulatory Subjects in Naturalistic 
Environment

The trained models for automated iEEG behavioral state classification were deployed on a 

handheld epilepsy personal assist device (EPAD) and integrated with a cloud infrastructure 

for automated behavioral state classification [38, 39]. Over 190 days was analyzed in four 

people with epilepsy (H1–4).

2.4 Statistics

Remaining cognizant of the unbalanced datasets in this study, we calculated the F1-score 

classification metric for binary classification of each category and weighted the F1-score 

average for multi-class classification. The F1-score was calculated as follows

F1 = 2 ⋅ precision ⋅ recall
precision + recall

Precision, or positive predictive value = TP
TP+FP  and recall, or sensitivity = TP

TP+FN  are defined 

in terms of true positive (TP), false positive (FP) and false negative (FN) classification.

2.5 Reproducible Research – Code Sharing

The Bioelectronics Neurophysiology and Engineering Lab is committed to sharing data 

and code to facilitate reproducible research. All codes are publicly available on Github in 

a Python software package called “Python Invasive Electrophysiology Signal Processing 
Toolbox” (PiesPro) available on https://github.com/mselair/PiesPro. The data are available 

upon request.

3. Results and Discussion

We developed and tested an approach for fully automated behavioral state classification 

using a single bipolar iEEG channel recorded from HPC in patients with epilepsy implanted 

with the investigational Medtronic Summit RC+S™ system.

We recorded continuous iEEG and PSG data in the hospital epilepsy monitoring unit 

for three consecutive days and nights in four patients. We trained, validated, and 

tested the automated behavioral state classification using visually scored, gold standard 

polysomnography. We investigated and verified that the classifier can be trained on data 

from one night and deployed under various ANT DBS paradigms (high and low frequency 

stimulation) with high accuracy classification scores. Thereby, we demonstrated for the first 

time that automated sleep classification based on a single HPC iEEG channel is feasible 

during concurrent low- or high- frequency ANT DBS. We then deployed the classifiers onto 

a patient handheld tablet device [39] to track longitudinal sleep patterns in four patients with 

epilepsy living in their natural environment.
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3.1 Automated Sleep Scoring Using iEEG Recordings without Concurrent Electrical Deep 
Brain Stimulation

In the absence of ANT stimulation, the overall classification performance was 0.858 (Table 

1) and the results suggest that classifying Awake/non-REM/REM states from a single 

hippocampal sensing channel has good precision and sensitivity for each behavioral state, 

with the worst performance for REM sleep with an average F1-score of 0.667. While 

classification of combined N2 & N3 as non-REM slow wave sleep is very reliable with 

F1-score 0.940, classifier performance for N2 and N3 individually, is modest HPC (F1N2 

= 0.600, F1N3=0.635). Detailed results for all subjects are shown in Table 1. The features 

that distinguish N2 from N3 sleep may be difficult to capture in our classification approach 

which relies on 30 second power in band features. We speculate that more prominent IED 

activity in HPC [38] in both N2 and N3 sleep stages might drown out the relatively subtle 

difference of N2 and N3 in PIB features extracted from iEEG signals and create larger 

classification errors between N2 and N3.

We validated the feasibility of automated iEEG sleep classification using a single HPC 

iEEG. Previous studies have investigated classification of long-term iEEG into awake and 

non-REM sleep (N2, N3) [22, 23], but REM sleep classification was not addressed. Chen 

et al. utilized PSG-based annotations to build an automated sleep classifier that was able to 

differentiate REM with some accuracy (sensitivity 65.4% and specificity 57.6%) using iEEG 

from sub-thalamic nucleus in people with Parkinson’s disease [44]. In the future it will be 

interesting to investigate the iEEG correlates of specific brain structures to better understand 

the electrophysiology correlates of different behavioral states.

3.2 Assessment of Automated Sleep Scoring from Hippocampal iEEG During Low 
Frequency and High Frequency Electrical Brain Stimulation

We trained and tested a behavioral state classification model for multiple DBS frequencies 

(2 Hz, 7 Hz, HF > 100Hz) using a single bipolar iEEG channel with available gold standard 

polysomnography annotations acquired during three consecutive nights for the subjects (H1–

4).

ANT stimulation can influence hippocampal background activity and elicit evoked 

hippocampus responses [45]. Despite the potential impact of ANT stimulation on HPC-

based sleep classification, we observed acceptable classifier performance during both high 

and low frequency ANT stimulation. Although 2 Hz DBS, corrupted the iEEG power 

spectrum at the stimulation frequency and its harmonics (2, 4, 6Hz, etc), the average 

performance across all subjects was good (F1ALL = 0.870). Awake (F1Awake = 0.846) 

and non-REM (F1non-REM=0.903) classification precision was superior to REM (F1REM 

= 0.634). Classifier performance was slightly better during 7 Hz stimulation (F1ALL = 

0.919) for Awake (F1Awake = 0.923), and non-REM (F1non-REM = 0.936) states, and notably 

improved for REM (F1REM = 0.789). The results highlight the challenge of differentiating 

Awake from REM and N2 from N3 using a single channel of HPC iEEG (Figure 5). We 

speculate, that the classification challenge between N2 and N3 stages is related to more 

prominent IED spiking during non-REM sleep and the evoked hippocampal response to low 

frequency ANT stimulation (2 and 7Hz). The increased IED rate and evoked HPC response 
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influence PIB features and make N2 and N3 PIB less distinct. Lastly, the sharp transient 

artifact seen during stimulation can elevate high frequency PIB.

Given the clinical use of high frequency ANT DBS to treat epilepsy [33], it was important 

to evaluate the feasibility of reusing a classifier trained on HPC iEEG data without 

concurrent stimulation to HPC iEEG data acquired during high frequency ANT stimulation. 

The automated classifier was able to differentiate Awake, non-REM and REM (F1Awake 

= 0.837, F1non-REM = 940, F1REM = 0.822, and F1ALL = 0.929) behavioral states with 

good classification scores. The differentiation of N2 from N3, using power in band 

features as we did here, was modest. Again, the modest N2 and N3 classification might 

be related to prominent IED spiking activity in non-REM sleep stages. In addition, the 

neuromodulatory effect of high frequency ANT DBS attenuating the power of iEEG signal 

in HPC across all frequencies may play a role [45]. Lastly, HF DBS may impact sleep 

classification performance when stimulation artifacts occur with a frequency close to the 

Nyquist frequency (half of the sampling frequency) due to an insufficient antialiasing filter. 

This applies specifically to signals acquired at 250 Hz with concurrent high frequency (>100 

Hz) DBS. However, this can be mitigated by increasing the sampling frequency to 500 Hz. 

Another possible solution for aliasing caused by the presence of high frequency stimulation 

artifacts is blanking [46,47]. Blanking is a capability of the sensing hardware to disconnect 

the sensing circuit during electrical stimulation to avoid saturation of the sensing circuit 

components.

3.3 Behavioral State Classification in Ambulatory Subjects in Their Natural Environment

After building the patient-specific models using 3 days of inpatient simultaneous iEEG 

and PSG recordings, we then prospectively deployed the behavioral state classifiers on 

continuous, long-term HPC iEEG data totalling over 190 days in four human subjects 

(H1-H4). The algorithms for automated iEEG behavioral state classification were deployed 

onto a handheld epilepsy personal assist device (EPAD) and in a cloud system [28,39]. The 

presentation layer, a web browser interface for long-term iEEG-data (eHealth Dashboard) 

(Figure 6) monitoring was utilized to present automated sleep staging together with patient 

seizure and medication logs for physician review (Figure 6). On average, subjects slept 

7.91±1.96 hours a day with 5.76±1.23 hours spent in non-REM and 2.05±1.18 hours in 

REM sleep. Evaluation of the influence of different stimulation paradigms and seizures on 

sleep architecture remain an interest for future research. The presentation layer providing 

integration of multiple levels of information (seizure rates, interictal epileptiform discharges, 

sleep) is essential for this research.

3.4 Limitations

The main advantage of the proposed method is the ability to continuously track behavioral 

state using HPC iEEG recordings during therapeutic ANT brain stimulation in ambulatory 

subjects living in their natural environment. However, there are limitations with respect to 

classification performance and distinguishing between two non-REM sleep stages, N2 and 

N3. We speculate that the reason for modest differentiation between N2 and N3 is related 

to ongoing epileptiform iEEG activity and, possibly the influence of DBS on HPC iEEG 

activity. Similarly, the differentiation of Awake and REM remains challenging.
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The classification of N2 versus N3 slow-wave sleep and REM and Awake state might 

be improved with additional iEEG channels and other physiologic signals, such as 

accelerometery, electrocardiogram, and core temperature. Accelerometery data can be 

streamed by the investigational Medtronic Summit RC+S™ device and is currently under 

investigation.

Lastly, this study utilizes 3 consecutive nights of simultaneous iEEG and PSG data, 

but the method was not tested against scalp EEG based PSG outside of the controlled 

hospital environment. Significant changes in iEEG activity around the time of seizures and 

with medication changes can impact the electrophysiological data (and related power in 

bands) and may impair classification. In the future, ambulatory PSG should enable a more 

comprehensive investigation of long-term behavioral state changes.

4. Conclusions

Sleep disruption is a common comorbidity of epilepsy, and an important consideration 

for DBS optimization. In fact, sleep, cognitive and mood comorbidities have significant 

impact on quality of life [18]. Therefore, reliable automated behavioral state classification 

in ambulatory subjects during ANT-DBS is needed to track sleep while optimizing DBS 

therapy. Currently, the study of sleep disruption in neurologic disease is challenging given 

the poor correlation between patient reports and gold-standard polysomnograms [20]. The 

overarching importance of sleep for brain health, and the poor correlation between objective 

sleep measures and patient reports, has generated enormous interest in non-invasive devices 

to objectively track sleep in ambulatory subjects. Many non-invasive devices perform poorly 

[48], but some show good performance when compared to gold-standard polysomnograms 

[49,50]. While significant advances have been made in ambulatory PSG, with only a few 

exceptions they are directed at characterizing only a couple of nights of sleep. This does 

not fill the technology gap for chronic sleep tracking needed for optimal management 

of neurologic and psychiatric diseases. Patients with implantable neural sensing devices 

provide a unique platform for long-term sleep investigations and targeting common sleep 

related comorbidities of neurologic disease. Ambulatory sleep monitoring with implanted 

devices are now emerging, and have been explored in Parkinson disease [24] and in epilepsy 

with subscalp sensing [51].

Here we describe an approach for reliable automated behavioral state classification using 

a single HPC bipolar channel during concurrent ANT DBS. The performance of patient 

specific behavioral state classification models trained, validated, and tested on concurrently 

recorded scalp polysomnography and HPC iEEG show good classification of Awake, REM 

and non-REM (N2+N3) sleep, with and without ANT DBS (2Hz, 7Hz, HF > 100Hz). 

Automated classification of behavioral states (Awake, non-REM & REM sleep) was 

deployed on a handheld device integrated with a cloud platform and used to characterize 

long-term sleep profiles in ambulatory human subjects with epilepsy living in their natural 

environment. The results also highlight the relative challenge of differentiating Awake from 

REM and differentiating N2 from N3 using only a single channel of HPC iEEG. The 

challenge for distinguishing N2 from N3 likely reflects the increase in epileptiform activity 

in non-REM sleep, the HPC evoked response from ANT DBS, and possibly the closely 
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spaced DBS electrodes that are poorly suited for measuring widespread delta (1 – 4 Hz) 

activity used for visual sleep scoring with scalp EEG.

This work advances the effort to better understand the bidirectional relationship between 

sleep, epilepsy, and the impact of DBS. The ability to classify behavioral state with 

a compact algorithm embedded in an implantable device, or on local and distributed 

computing resources [21,28,39],enables novel closed-loop stimulation protocols that can 

adaptively respond to changing brain dynamics. Near term applications include circadian 

DBS paradigms where stimulation during sleep and awake states are selected to optimize 

sleep, epilepsy, and comorbidities [52]. The data are mixed as to whether high frequency 

stimulation commonly used for reducing seizures may negatively impact sleep, mood, 

and memory [3,19,53]. For patients who commonly have diurnal seizure patterns, such as 

temporal lobe epilepsy where seizures occur primarily in late morning and early afternoon 

[13–15], they may benefit from different DBS during the night when the physiological 

benefits of sleep are critical to normal brain health. Lastly, the selective application of DBS 

in post-ictal slow wave sleep may prove useful for disrupting pathological seizure related 

consolidation [41,54].
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Figure 1. Block-diagram of the process for training, validation, and testing of an automated sleep 
classifier using simultaneous polysomnography (PSG) and intracranial EEG (iEEG) recordings.
A) Schematic of the simultaneous scalp and iEEG recordings B) The expert gold standard 
sleep scoring from PSG is used to create labeled data to develop the automated sleep 
classifier [38]. The iEEG was reviewed and the channel with the lowest epileptiform activity 

and stimulation related artifacts was selected C) Direct comparison of the expert sleep scores 
are used to evaluate performance of the automated iEEG based classifier.
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Figure 2. The effect of ANT DBS on iEEG signals. Representative data from subject H3
A) The iEEG recorded from right hippocampus (HPC) for different ANT DBS frequencies 

(No DBS, 2, 7 Hz and high frequency (HF >100 Hz) DBS). The ANT stimulation artifact is 

clearly apparent on the HPC iEEG timeseries and at high frequency stimulation obscures the 

iEEG signal B) The power spectral density (PSD) for different ANT DBS frequencies (No 

DBS, 2 Hz, 7 Hz and HF DBS) show DBS artifacts. The figure shows the average of each 

sleep phase spectrum across three nights using 30-second window, estimated by Welch’s 

method (Awake, N2, N3, REM). C) Power in band features (0.5 – 5 Hz; 4 – 9 Hz; 8 – 14 
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Hz; 11 – 16 Hz, 14 – 20 Hz, 20 – 30 Hz) extracted from raw HPC iEEG signals from each 

behavioral state (Awake, N2, N3, REM), over three nights using 30-second window. These 

data from subject H3 are representative of all patients (see supplementary data).
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Figure 3. Intracranial EEG (iEEG) signal changes between different behavioral states (Awake, 
REM, N2 and N3).
A) Spectrograms of iEEG signals recorded from right and left anterior nucleus of thalamus 

(ANT) and hippocampus (HPC), show Awake, REM, and non-REM changes. There are 

differences between iEEG signals recorded from right and left ANT and HPC related 

to the electrophysiological signatures of epilepsy e.g., interictal epileptiform discharges 

are increased in the left HPC (patient H1). B) Simultaneous scalp-EEG (Fz, Cz and Oz 

referenced to TP12) and iEEG (bipolar Left ANT, Right ANT, Left HPC, Right HPC) 

recordings for Awake, REM, N2 and N3.
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Figure 4. An illustrative scheme of iEEG data utilization throughout the training and testing of 
classifiers under multiple ANT stimulation programs. The order of data collection for patients 
varied based on the data collected during the previous nights.
A) Illustration of iEEG data sampling under different ANT stimulation programs. B) 
A scheme for iEEG data utilization during training and testing of automated sleep 

classification under different ANT stimulation programs (No DBS, 2 Hz, 7 Hz, HF > 100Hz 

DBS). Each experiment was performed * - without applying the method of PIB cancelling; † 

- with PIB cancelling specific to 2 Hz stimulation; × - with PIB cancelling specific to 7 Hz 

stimulation. Details are listed in Table S1 and Table S2 in Supplementary Materials.
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Figure 5. 
Samples of 30-second epochs of raw data recorded in right HPC channel during multiple 

behavioral states (gold standard classification): from top to bottom: Awake, REM, N2 and 

N3.
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Figure 6. Web-based Epilepsy Dashboard:
Trained algorithms deployed on a patient handheld tablet and a cloud system with a web 

browser user interface for physician to review technical data, patient annotations, gold-

standard seizure annotations, and monitoring of long-term iEEG-data, epilepsy biomarkers 

(such as interictal epileptiform discharge activity), and automated sleep scoring.
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Table 1.

Results of automated behavioral state classification (F1-score) into Awake, REM, non-REM (N2, N3) sleep 

categories for all subjects under various settings of electrical deep brain stimulation (DBS) in anterior nucleus 

of thalamus (ANT).

DBS Frequency Subject Awake REM N2 N3 Non-REM All

No DBS

H1 .958 .795 .450 .726 .929 .926

H2 .848 .660 .740 .338 .944 .893

H3 .716 .448 .588 .714 .816 .722

H4 .798 .763 .621 .763 .924 .890

Average .830 .667 .600 .635 .903 .858

2 Hz

H1 .991 .848 .364 .721 .932 .931

H2 .960 .714 .552 .440 .960 .940

H3 .735 .484 .799 .717 .932 .826

H4 .696 .491 .169 .522 .788 .781

Average .846 .634 .471 .600 .903 .870

7 Hz

H1 .974 .353* .444 .690 .949 .941

H2 .976 .914 .396 .491 .978 .973

H3 .870 .903 .886 .810 .935 .918

H4 - - - - - -

Average .923 .789 .557 .609 .936 .919

High Frequency (> 100 Hz)

H1 .970 .894 .564 .771 .987 .975

H2 .703 .772 .613 .176 .944 .902

H3 .899 .716* .693 .000* .857 .899

H4 .774 .800 .841 .673 .971 .939

Average .837 .822 .678 .540 .940 .929

*
Values marked by were achieved using fewer than 10 samples and are considered less reliable, however, stated for consistency.
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