
Super U-Net: a modularized generalizable architecture

Cameron Beeche1, Jatin P Singh1, Joseph K Leader1, Sinem Gezer1, Amechi P Oruwari1, 
Kunal K Dansingani2, Jay Chhablani2, Jiantao Pu1,3

1Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213, USA

2Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA

3Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA

Abstract

Objective: To develop and validate a novel convolutional neural network (CNN) termed “Super 

U-Net” for medical image segmentation.

Methods: Super U-Net integrates a dynamic receptive field module and a fusion upsampling 

module into the classical U-Net architecture. The model was developed and tested to segment 

retinal vessels, gastrointestinal (GI) polyps, skin lesions on several image types (i.e., fundus 

images, endoscopic images, dermoscopic images). We also trained and tested the traditional U-Net 

architecture, seven U-Net variants, and two non-U-Net segmentation architectures. K-fold cross-

validation was used to evaluate performance. The performance metrics included Dice similarity 

coefficient (DSC), accuracy, positive predictive value (PPV), and sensitivity.

Results: Super U-Net achieved average DSCs of 0.808±0.0210, 0.752±0.019, 0.804±0.239, and 

0.877±0.135 for segmenting retinal vessels, pediatric retinal vessels, GI polyps, and skin lesions, 

respectively. The Super U-net consistently outperformed U-Net, seven U-Net variants, and two 

non-U-Net segmentation architectures (p < 0.05).

Conclusion: Dynamic receptive fields and fusion upsampling can significantly improve image 

segmentation performance.
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1. Introduction

Accurate segmentation of regions of interest depicted on medical images is critical for 

quantitative analysis of the presence or progression of disease as well as the identification of 

important landmarks [1, 2]. Manual segmentation is time-consuming and requires a clinical 

expert to visually interpret the images and carefully outline the regions of interest. There 

are often significant intra- and inter-reader variances associated with manual segmentation 

[3, 4]. Hence, significant research effort has been dedicated to developing automated 

segmentation algorithms for various image modalities [5–7].

Traditional segmentation algorithms are primarily based on computer vision technologies, 

and their performance depends heavily on hand-crafted features. It is difficult for a limited 

number of manually drafted features to accurately and fully characterize specific regions 

of interest. Recently, convolutional neural networks (CNN) have demonstrated consistently 

superior performance compared to the traditional computer vision technologies in image 

segmentation and other image processing procedures [8–11]. Performance gains were 

obtained through the unique ability of CNNs to extract millions of features with stacked 

convolutional layers. These sequential layers generate complex feature maps that allow a 

CNN to automatically “learn” and “organize” image features relative to the segmentation 

task. U-Net is a CNN architecture formed by a symmetrical encoder-decoder backbone 

with skip connections that is widely used for automated image segmentation and has 

demonstrated remarkable performance [12]. However, the U-Net architecture has some 

limitations, which, if overcome, may improve performance. First, the use of static kernel 

sizes prevents the U-Net from adapting to spatial differences between images. Networks 

limited to a specific kernel size may be unable to extract all the meaningful features 

from datasets with varying spatial contexts [13]. Second, the use of sequential pooling 

operations in the encoder decreases image resolution and may sacrifice essential information 

for generating segmentation maps. When downsampled feature maps are upsampled and 

concatenated onto the accompanying feature maps from the encoder, they are commonly 

semantically dissimilar [14]. The dissimilarity caused by skip connections places an 

increased burden on the decoder to bring the feature maps into spatial alignment. Third, 

although convolutional layers can extract millions of features, they struggle at differentiating 

“noisy” background features from ROIs, especially when the edge between classes is hard to 

differentiate.

There have been attempts to improve the U-Net by appending additional encoder-decoder 

modules. Zhou et al. [14] expanded the U-Net with distinctive nested skip pathways across 

every level of the network and termed it as U-Net++. Their premise was that dense skip 

connections would allow the network to generate semantically similar feature maps when 

concatenated onto the decoder. Furthermore, several U-Net variations have been developed 

to incorporate features from state-of-the-art classification networks, such as Szegedy et 

al. [15] inclusion of inception blocks and He et al. [16] use of residual units. Oktay et 

al. [17] proposed attention gates to improve the U-Net’s ability to focus on structures of 

interest while simultaneously suppressing irrelevant background noise. Alom et al. [18] 

created the Recurrent Residual U-Net (R2 U-Net) by including residual units in both the 

encoder and decoder that allows the network to have multiple paths of varying length. 
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Based on these established U-Net variants, several additional variations have been developed 

by incorporating modules from multiple models. The Attention Residual U-Net (Attn. Res 

U-Net) employed modules from both the Residual U-Net [19] and the attention module 

[17] to improve performance. Jha et al. [20] proposed Residual U-Net++ that leveraged 

residual units [16], attention gates [17], and squeeze and excitation [21] to improve the 

performance of polyp segmentation. Despite exhaustive efforts, U-Net variants can still 

struggle at providing generalized performance gains across varying segmentation tasks.

In this study, we developed a novel U-Net variant termed “Super U-Net.” To enhance 

the decoder’s ability to integrate concatenated feature maps, we implemented a fusion 

upsampling module inspired by the squeeze and excitation module developed by Hu et al. 

[21]. To address spatial variability between images, we incorporated a dynamic receptive 

field module that allowed the network to determine the correct kernel size at each level of 

the network. The inclusion of these modules improved the ability of the U-Net architecture 

to handle spatial variance and information loss based on our analysis of four datasets. 

The developed architecture outperformed eight variations of the U-Net and two non-U-Net 

segmentation architectures.

2. Materials and Methods

2.1 Super U-Net Architecture

Super U-Net was designed by modifying each U-Net core component (i.e., encoder, decoder, 

and skip connections) to extract detailed spatial information and integrate the concatenated 

feature maps from the encoder (Fig.1). The Super U-net encoder block is a modified version 

of the Residual units developed by He et al. [16]. It employs residual blocks to minimize the 

degradation problem occurring in deep networks. Fusion upsampling and dynamic receptive 

field modules were developed as part of Super U-net. Fusion upsampling leverages squeeze 

and excitation [21] to aggregate divergent feature maps into similar feature representations. 

The fusion upsampling module was used to modify skip connections. The dynamic 

receptive field module allows the network to determine the best kernel size for the current 

segmentation task at each iteration in training. Dynamic kernel selection grants the network 

parallel paths of varying kernel size and allows for the extraction of multiscale spatial 

information. After integrating each module, essential semantic and spatial information is 

preserved. Super U-net is designed to have a moderate number of network parameters (4.2 

million) when compared to the typical million network parameters of other U-Nets.

2.2 Residual Block

Super U-Net uses the residual connections proposed by He et al. [16] as the central 

convolution component. The first layer is a convolutional operation with a kernel size of 

3×3 pixels. After the convolution layer, a batch normalization layer is applied and followed 

by the nonlinear rectified linear unit (ReLU) activation function. Next, the feature map 

undergoes an additional convolutional layer prior to having the initial feature map added to 

the image. Thereafter, the combined feature map receives batch normalization and a ReLU 

activation function. As the feature maps cascade down each layer of the encoder, the number 

of filters doubles on every successive layer (i.e., 8, 16, 32, 64, 128). After the residual 
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operations, the feature map is then recalibrated by implementing a squeeze and excitation 

module [21] to form one branch of the fusion upsampling module.

2.3 Fusion upsampling and concatenation module

The recalibrated feature map from the encoder immediately passes across the long skip 

connection to form the encoded branch of the upsampled fusion module (Fig. 2). This 

module is used to integrate the feature maps from the encoder with the upsampled feature 

maps of the decoder. The encoder and decoder feature maps are fed into a squeeze and 

excitation module [21] before concatenation. The encoded feature map undergoes a squeeze 

and excitation operation prior to the skip connection, which allows for the recalibrated 

feature map to assist the lower levels of the encoder network with the extraction of 

meaningful features. The decoded feature map is recalibrated and then upsampled to allow 

for a better distribution of features. The feature maps are “squeezed” with a global average 

pooling operation, and then the features are “excited,” allowing for an adaptive recalibration 

of channel-wise dependencies. Next, the features enter a multilayer perceptron (MLP), 

where the first layer contains more nodes than the input layers. A ReLU activation function 

is applied to the aggregated features before the features pass through an additional fully 

connected layer. Next, a sigmoid activation function is applied to the features followed by 

reshaping and multiplying the output channel-wise across the input. As the features flow 

upward in the decoder, the number of feature channels is reduced. After each reduction, 

fewer feature maps are retained. Adaptive recalibration allows the interaction between 

channels to be better represented when upsampled and concatenated with the corresponding 

feature map. Squeeze and excitation operations ensure that meaningful features are retained 

as the number of channels is reduced. After concatenation, the fused feature maps enter a 

residual block.

2.3 Dynamic receptive field module

The dynamic receptive field module creates three independent paths of unique kernel sizes 

and allows the network to determine the optimal path (Fig. 3). Specifically, the receptive 

field module has three parallel routes with kernel sizes of 1×1, 3×3, and 5×5. After this 

initial convolutional layer, each path goes through another convolutional layer with kernel 

sizes equal to the previous layer. Each convolution path proceeds to dilated convolution layer 

with a dilation rate equivalent to their kernel size (i.e., Conv3×3 has a dilation rate of 3). 

The kernel size of 1 provides a baseline for the network to refine its feature maps. Each path 

is then concatenated before undergoing a final convolutional layer. Thereafter, the output is 

concatenated onto the initial feature map. By granting the network the freedom of choice in 

its path, the network can optimally learn multiscale contextual information [13].

The fusion upsampling module and the dynamic receptive field module enable Super U-Net 

to integrate the feature maps of the encoder with the decoder as compared to the traditional 

U-Net. Feature similarity is prioritized between encoder and decoder feature maps by 

decreasing the number of channels across the decoder. Decreasing the number of channels 

forces multiple channels to be represented by a single channel; divergent channels forced 

into a single channel will create irregular features. Reducing the number of channels in the 

feature map to the number of segmentation channels requires that the remaining feature 
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maps have semantic similarities and generalizable features. Divergent feature maps prevent 

the network from being able to optimize performance. Upsampled fusion and dynamic 

receptive fields are two mechanisms that attempt to extract and retain significant features, 

which ensures that meaningful features are leveraged for the segmentation map.

2.4 Training and validation datasets

Super U-Net was trained and evaluated using four publicly available datasets: (1) Digital 

Retinal Images for Vessel Extraction (DRIVE) and (2) Kvasir-SEG, (3) Child Heart and 

Health Study in England (CHASE DB1), and (4) International Skin Imaging Collaboration 

(ISIC).

1. DRIVE: This dataset was collected from a diabetic retinopathy screening 

program in the Netherlands [22]. The dataset contained 40 color fundus images, 

among which 33 images were negative for diabetic retinopathy and seven images 

were diagnosed with diabetic retinopathy. The images were acquired using a 

Canon CR5 non-mydriatic 23CCD camera with a 45-degree field of view (FOV). 

When released to the public, the images were cropped to only include the FOV. 

The retinal vessels depicted in the images were manually segmented by an 

ophthalmologist. The retinal images were randomly sampled to create image 

“patches” that were 48×48 pixels.

2. Kvasir-SEG: This dataset was generated by the Vestre Viken Health Trust in 

Norway [23] and consisted of 1000 GI tract endoscopic images depicting polyps 

[24]. Certified radiologists outlined the polyps on all the images. Image matrices 

varied from 720×576 to 1920×1080. All the images in this dataset contained 

polyps, and their locations were known. In other words, the algorithm did not 

need to detect the polyps.

3. CHASE DB1: This dataset was collected during cardiovascular health screening 

of primary school children in three different UK cities [25]. The dataset contains 

28 color retina images taken from the left and right eye of 14 pediatric subjects. 

Each image was annotated by two trained specialists. The fundus images were 

taken with a Nidek NM-200D handheld fundus camera and processed with a 

Computer-Assisted Image Analysis of the Retina (CAIAR) program.

4. ISIC: This dataset contains 2,000 images of cancerous skin lesions collected by 

the International Skin Imaging Collaboration [26]. Each image contains a lesion 

diagnosis of either melanoma, nevus, or seborrheic keratosis. An experienced 

clinician used a semi-automated or manual process to segment the lesions on the 

images.

The Dice similarity coefficient (DSC) was used as the loss function to train Super U-net 

on both datasets. The Adam optimizer was used with initial learning rates of 0.001, 0.0001, 

0.01, and 0.01 for DRIVE, Kvasir-SEG, CHASE DB1, and ISIC databases, respectively. 

Learning rates were determined empirically based upon a specific task. The training epochs 

for the DRIVE, CHASE DB1, Kvasir-SEG, and ISIC datasets were 40, 40, 30, and 100, 

respectively. Due to the limit of GPU memory, the batch size was set at 32 (image patches) 

for the DRIVE and CHASE DB1 datasets and 4 (images) for the ISIC and Kvasir-SEG 
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datasets. The training procedure stopped if the DSC loss did not improve for 15 continuous 

epochs. When training the networks on the Kvasir-SEG and ISIC dataset, each image was 

resized to 512×512 pixels by nearest neighbor sampling. When training the networks on the 

DRIVE and CHASE DB1 dataset, we employed random patch generation. This procedure 

involves randomly selecting 48×48 pixel subsections of the original image for training, 

which increases the size and diversity of the training data. When testing occurred, sliding 

window patch generation was used to create predictions. After all patches for a testing image 

were generated, they were “stitched” together to create the complete segmentation map. 

Training data was augmented using a collection of geometric and image transformations 

(e.g., scale, rotation, translation, Gaussian noise, smoothing, and brightness perturbations). 

Pixels that were predicted at or above 0.5 were classified as the regions of interest during 

the testing phase. All networks were implemented in Keras TensorFlow and trained on an 

NVIDIA GeForce Titan XP.

2.5. Performance assessment

The segmentation performance of the Super-U-Net was evaluated using DSC, accuracy, 

positive predictive value (PPV), and sensitivity (Eq. 1 – 4). These metrics are based on 

if a pixel is correctly or incorrectly identified by the computer software compared to 

the manual segmentation. True positive correlates to a pixel correctly being classified as 

a segmented region of interest, while false positive corresponds to a correctly identified 

background pixel. The DSC evaluates the amount of agreement (or overlap) between two 

segmentation approaches, which in this study were the CNN algorithms versus the manual 

segmentation. Eight U-Net variants, including U-Net [12], Res U-Net [19], Inception U-Net 

[27], Recurrent Residual U-Net (R2U-Net) [18], U-Net++ [14], Attention U-Net [17], Res 

U-Net++ [20], and Attention Res U-Net, were trained and tested against Super U-Net. 

We performed additional experimental validation against two non-U-Net segmentation 

architectures, namely SegNet [29] and LinkNet [30]. The k-fold cross-validation (k=5) 

method was used to evaluate the performance of the CNN models on the DRIVE, CHASE 

DB1, and Kvasir-SEG datasets. During each fold, the data was split into a unique training 

and testing set. With a k value of 5, DRIVE had a train/test split of 32/8, while Kvasir-SEG 

had a train/test split of 800/200. CHASE DB 1 had a train/test split of 23/5 with one unique 

split of 25/3 due to the number of images. K-fold cross-validation was not performed on the 

ISIC dataset due to the size of the dataset (n=2000). ISIC had a train/test split of 1800/200. 

After training and testing were completed, the network’s weights were randomized before 

the next fold was trained. This process ensured that performance metrics are representative 

of the entire dataset. The mean performance between the different CNN architectures was 

tested using T-test statistics with a p-value less than 0.05 considered statistically significant.

Dice Similarity Coefficient
= 2 * True Positive

2 * True Positive + False Positve + False Negative
(1)

Accuracy = True Positive+True Negative
All Pixels (2)
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Positive Predictive V alue = True Positive
True Positive + False Positive (3)

Sensitivity = True Positive
True Positive + False Negative (4)

An ablation study with the dynamic receptive field and the upsampling fusion modules was 

performed to test the individual impact of the two modules. The DRIVE dataset (retinal 

vessels) was split into 20 images for training and different 20 images for testing. The patch 

strategy and data augmentation were used in this analysis.

3. Results

(1) DRIVE segmentation results

Super U-Net achieved better performance segmenting retinal vessels on fundus images 

based on DSC, and accuracy with average values of 0.808 and 0.966, respectively (Table 

1). The DSC for Super U-net was significantly higher than the traditional U-Net and seven 

U-Net variants (p < 0.05). Although there are trade-offs in segmentation performance (“hits” 

and “misses”), visual inspection demonstrated the overall better performance of Super U-Net 

compared to other U-Net variations for segmenting retinal vessels (Figs. 4 and 5).

(2) CHASE DB1 segmentation results

Super U-Net’s performance segmenting retail vessels on pediatric fundus images based 

on average DSC, accuracy, PPV, and sensitivity was 0.752(±0.019), 0.966(±0.003), 

0.967(±0.003), and 0.769(±0.040), respectively. Super U-Net significantly outperformed 

the other U-Net networks and SegNet based on DSC and sensitivity (p < 0.05) and had 

comparable performance in terms of accuracy and PPV (Table 2). LinkNet had the second 

best performance with a DSC of 0.745±0.023 and the best performance on sensitivity 

(0.773±0.03). Super U-Net demonstrated the ability to segment retinal vessels when trained 

separately with only 20 images based on visual inspection (Fig. 6).

(3) Kvasir-SEG segmentation results

In segmenting GI polyps, the Super U-Net achieved an average DSC, accuracy, and 

sensitivity of 0.804(±0.239), 0.946(±0.000), and 0.809(±0.256), which were significantly 

higher (p < 0.05) than the traditional U-Net, seven U-Net variants and SegNet (Table 3), 

with the exception of LinkNet that had superior performance in sensitivity (0.830±0.221). 

Visual inspection again demonstrated the overall better performance of Super U-Net 

compared to other state-of-art CNN-based segmentation architectures (Figs.7 and 8).

(4) ISIC Segmentation Results

The Super U-Net achieved a DCS, accuracy, PPV, and sensitivity of 0.877(±0.135), 

0.956(±0.038), 0.963(±0.029), and 0.910(±0.169), respectively, for segmenting skin lesions 

(Table 4). Super U-Net significantly outperformed all other networks in DSC (p < 0.05). 
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Super U-Net demonstrated the ability to segment skin lesions when the gradient between the 

lesion and normal skin was low and in the presence of background noise (Figs. 9 and 10).

(5) Ablation Experiment

The Super U-Net showed the best performance in the ablation analysis with an average 

DSC, accuracy, PPV and sensitivity of 0.794 (±0.026), 0.967(±0.004), 0.882(±0.034), and 

0.726(±0.058) respectively for segmenting retinal vessels in the DRIVE testing dataset 

(Table 5). DSC and sensitivity were significantly greater (p < 0.05) than the DSC and 

sensitivity for U-Net (Table 6). The traditional U-Net, U-Net with the dynamic receptive 

field module, and U-Net with the fusion upsampling had an average DSC of 0.769 (±0.349), 

0.778 (±0.030), and 0.787 (±0.026), respectively, for segmenting retinal vessels (Table 5). 

The Super U-Net outperformed the traditional U-Net on all (20/20) of test images based on 

DSC (Table 7).

4. Discussion

We developed a CNN model termed Super U-Net to improve image segmentation of 

the published U-Net models. The performance of the Super U-Net was significantly 

better than the traditional U-Net architecture and seven U-Net variants for segmenting 

retinal vessels, GI polyps, and skin lesions. The unique characteristic of the Super U-

Net is the incorporation of multiscale spatial features and semantically dissimilar skip 

connections. The novel dynamic receptive field module and the fusion upsampling module 

allow Super U-Net to adapt to a segmentation task across each training iteration. Super 

U-Net incorporates multiscale spatial features and can unify feature maps across the skip 

connection. Super U-Net’s spatial awareness was demonstrated by its ability to adapt to 

the GI polyp and skin lesion segmentation tasks, which offered spatial variability between 

each of the different types of images. The network selected the appropriate kernel size 

within the dynamic receptive field module by using spatial feature adaption. Improving the 

skip connection with the fusion upsampling module allows Super U-Net to differentiate 

semantically vague segmentation boundaries. Proper fusion of the encoder and decoder 

protected Super U-Net from losing valuable information during upsampling. The motivation 

of applying channel-wise squeeze and excitation operations is to emphasize the significant 

aspects of the upsampled features from the decoder layer prior to being concatenated with 

the encoder’s feature maps. Upsampling after recalibration allows for an improved fusion of 

low-level encoder feature maps with high-level decoder feature maps because it emphasizes 

feature relationships before upsampling occurs.

These modules allowed Super U-Net to significantly improve segmentation performance 

compared to the traditional U-Net and seven U-Net variants when segmenting retinal vessels 

(Tables 1 and 2) and GI polyps (Table 3) and skin lesions (Table 4). Although Super 

U-Net had significantly better performance at segmenting retinal vessels (Table 1), the 

performance improvement was relatively small. We attribute the small performance gains in 

segmenting retinal vessels to scale-invariant and self-similarity characteristics of the vessels, 

which simplifies the segmentation task. This lack of variability caused the network to not 

require assistance from the dynamic receptive field module. However, this demonstrates that 
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Super U-Net can still perform well on uniform datasets. Super U-Net demonstrated a DSC 

improvement of greater than 2% as compared to all other networks for segmenting skin 

lesions (Table 4). Furthermore, the Super U-Net had the largest performance gains with 

a DSC 5% greater than the next best model (U-Net++ w/ DSC of 0.746) for segmenting 

polyps (Table 3), which suggests that the inclusion of fusion upsampling and dynamic 

receptive fields improves general performance without increasing parameters. Super U-Net 

also outperformed U-Net++ with less than half the parameters (4.2 million vs. 9.0 million).

Patch generation was used to train Super U-Net to segment retinal vessels based on: (1) the 

size of the dataset, (2) the detail level of the target object, and (3) the importance of global 

features required for the segmentation task. First, the DRIVE and CHASE DB1 datasets 

only included 40 and 28 images, respectively, and required the use of multiple approaches 

to increase the size of trainable data. While augmentation allowed us to greatly increase 

the diversity of the data, random patch generation enabled us to generate a large number of 

unique patches from a single image. Second, small vessels depicted on retinal images are 

critical to assess early disease, but can be difficult to segment accurately. The patch-based 

strategy retained the original resolution of the images, which facilitated the segmentation 

of small retinal vessels. Third, retinal vessel segmentation does not heavily rely on global 

spatial contexts when generating ROIs. This enables the accurate segmentation of local 

patches. In contrast, polyp and lesion segmentation relied heavily on global spatial features. 

It is desirable to visualize the entire polyp or lesion in the image under analysis to allow the 

network to understand unique segmentation boundaries. Finally, testing the Super U-Net on 

both the patch and the entire images may enable a better understanding of its potential in 

image segmentation.

The optical techniques of fundus imaging can create images whose appearance and 

characteristics may vary significantly due to a number of factors, which include imaging 

devices, ambient light, patient cooperation, and camera focus. This often results in 

significant performance variation across datasets. The CHASE DB1 dataset allowed us to 

study the segmentation performance of Super U-Net on a small dataset acquired on children. 

When training a segmentation model on a small dataset, a significant number of image 

patches have to be sampled. Despite the limited number of images in this dataset, Super 

U-Net showed significant performance gains in segmenting retinal vessels on pediatric 

images compared to the other networks based on DSC and sensitivity (p < 0.05) (Table 2).

The addition of individual modules to the traditional U-Net architecture did not uniformly 

correlate to improved performance on all datasets (Tables 1, 2, 3, 4). Some networks (Attn. 

Res U-Net, Res U-Net++) employed additional modules to increase performance on a single 

dataset, but these models failed to show generalizable performance gains. Furthermore, the 

two non-U-Net segmentation architectures, SegNet and LinkNet, demonstrated reasonable 

performance when compared to Super U-Net in certain segmentation tasks. LinkNet was 

the most capable model out of all architectures we compared, demonstrating second best 

performance on the CHASE-DB1 dataset, as well as the best performance in the metric 

sensitivity on two datasets. This result suggests that using skip connections with summation 

rather than concatenation could yield better results in certain segmentation tasks, which is 

a topic for future research. SegNet performed well on RGB images but failed to converge 
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on single-channel fundus images. We attribute this to SegNet being designed for traditional 

computer vision tasks rather than medical imaging. Our results suggest that all networks 

had worse performance when segmenting retinal vessels on pediatric images that had large 

spatial variability between images (Table 2). The images depicting polyps had unique spatial 

and semantic differences creating a more challenging segmentation task. The retinal images 

were more uniform. Consequently, the DSC performance of the traditional U-Net and seven 

U-Net variants had a larger range of performance for segmenting polyps compared to retinal 

vessels. However, the Super U-Net was able to maintain stable performance for segmenting 

polyps, skin lesions, or retinal vessels with DSC values of 0.808, 0.877, 0.804, and 0.752, 

respectively. We attribute this stability to the Super U-Net’s ability to adapt to individual 

segmentation tasks.

When the dynamic receptive field and the fusion upsampling modules were separately 

added to the basic U-Net CNN, there were slight performance gains for segmenting the 

retinal vessels (Table 5). The average DSC for retinal vessel segmentation for U-Net, U-Net 

with dynamic receptive fields, U-Net with fusion upsampling, and Super U-Net were 0.769 

(±0.035), 0.778 (±0.030), 0.787 (±0.026), and 0.794 (±0.026), respectively. Additionally, 

on the 20 test images, Super U-Net outperformed U-Net on each image, demonstrating 

consistent segmentation improvement (Table 6). The inclusion of the dynamic receptive 

fields or the fusion upsampling modules demonstrated the ability to significantly improve 

the performance of the traditional U-Net architecture.

There are limitations with this study. First, the size of publicly annotated medical 

image datasets was small. However, this small size may more faithfully demonstrate 

the contribution of a CNN architecture to the segmentation performance. Super U-net’s 

ability to achieve improved performance with limited data suggests that the architecture 

is generalizable across image types and segmentation tasks. Second, the GI polyp and 

skin lesion images were resized to 512×512 pixels due to hardware limits (e.g., GPU 

memory). This resizing operation might affect the performance of an individual CNN model, 

but it should not affect the performance differences between the CNN models. All of 

the models were trained using the same datasets under the same training conditions or 

parameters. Third, the Super U-Net and other CNN models were developed and tested on 

four segmentation tasks; however, we believe that size and breadth of the datasets were 

sufficient to compare the performance of the Super U-Net to other U-Net architectures.

5. Conclusion

We described a novel CNN architecture termed Super U-Net in this study. Its unique 

characteristic is the incorporation of two novel modules, namely the dynamic receptive field 

module and the fusion upsampling module, which are used to generate multiscale spatial 

features and semantically dissimilar skip connections. We tested the performance of Super 

U-Net by applying it to the segmentation of retinal vessels, polyps, and skin lesions on four 

different datasets. Our experiments showed that integrating the two modules improved the 

segmentation performance significantly compared to state-of-the-art CNN models, including 

the classical U-Net, seven U-Net variants, and two non-U-Net architectures. At this moment, 

we only validated the segmentation performance of Super U-Net on 2-D images. In the 
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future, we will implement its 3-D version and validate its segmentation performance on 

radiological images (e.g., computed tomography (CT) and magnetic resonance imaging 

(MRI)). In addition, we will explore the potential of Super U-Net for other medical image 

analysis tasks (e.g., classification and registration).
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Highlights

• A novel convolutional neural network termed „Super U-Net” for medical 

image segmentation.

• A fusion upsampling module that recalibrates feature maps prior to 

concatenation.

• A dynamic receptive field module that allows the network to determine the 

correct kernel size for the current segmentation task.

• Comparative experiments were performed on the Super U-Net, seven U-Net 

variants, and two non-U-Net segmentation architectures on the DRIVE, 

CHASE DB1, Kvasir-SEG, and ISIC 2017 datasets.
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Fig. 1. 
Super U-Net Architecture
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Fig. 2. 
Fusion upsampling and concatenation module
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Fig. 3. 
Dynamic Receptive Field module
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Fig 4. 
Retinal vessel segmentation: Original image (A), Manual segmentation (B), U-Net (C), 

Res U-Net (D), Attention U-Net (E), U-Net++ (F), Attn. Res U-Net (G), R2 U-Net (H), 

Inception U-Net (I), Res U-Net++ (J), LinkNet (K), Super U-Net (L)
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Fig 5. 
Retinal vessel segmentation: Original image (A), Manual segmentation (B), U-Net (C), 

Res U-Net (D), Attention U-Net (E), U-Net++ (F), Attn. Res U-Net (G), R2 U-Net (H), 

Inception U-Net (I), Res U-Net++ (J), LinkNet (K), Super U-Net (L)
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Fig 6. 
Retinal vessel segmentation results for 8 validation images generated by Super U-Net 

(outlined in blue) compared to the manual outline (outlined in green) on the CHASE DB1 

dataset when trained on a 20/8 train/test split.
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Fig 7. 
GI polyp segmentation results: Original image (A), Manual segmentation (B), U-Net (C), 

Res U-Net (D), LinkNet (E), U-Net++ (F), Attn. Res U-Net (G), R2 U-Net (H), Inception 

U-Net (I), Res U-Net++ (J), SegNet (K) Super U-Net (L)
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Fig. 8. 
GI polyp segmentation results for Super U-Net (outlined in blue) compared to manual 

segmentation (outlined in green).
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Fig 9. 
Skin lesion segmentation results: Original image (A), Manual segmentation (B), U-Net (C), 

Res U-Net (D), Attention U-Net (E), U-Net++ (F), LinkNet (G), R2 U-Net (H), Inception 

U-Net (I), Res U-Net++ (J), SegNet (K) Super U-Net (L)
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Fig. 10. 
Examples demonstrating the ability of Super U-Net in segmenting cancerous skin lesions. 

The computerized segmentations were outlined in green, and the manual segmentations were 

outlined in red.
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Table 1.

The average performance metrics for segmenting retinal vessels in the DRIVE testing dataset (n=40).

Architecture Dice Coefficient Accuracy PPV Sensitivity

U-Net 0.678±0.026 0.872±0.000 0.659±0.052 0.808±0.045

SegNet 0.191±0.018 0.270±0.009 0.901±0.010 0.117±0.013

LinkNet 0.765±0.034 0.961±0.007 0.961±0.006 0.821±0.056

Inception U-Net 0.659±0.026 0.949±0.000 0.781±0.052 0.576±0.034

Attention U-Net 0.780±0.029 0.960±0.000 0.758±0.061 0.816±0.037

Res U-Net 0.798±0.026 0.965±0.000 0.815±0.048 0.790±0.043

R2 U-Net 0.798±0.025 0.965±0.000 0.808±0.052 0.794±0.036

Attn. Res U-Net 0.797±0.025 0.965±0.000 0.802±0.054 0.801±0.0364

U-Net++ 0.770±0.035 0.962±0.000 0.810±0.069 0.742±0.047

Res U-Net++ 0.755±0.030 0.956±0.000 0.742±0.059 0.780±0.042

Super U-Net 0.808±0.021 0.966±0.000 0.803±0.045 0.818±0.036
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Table 2.

The average performance metrics for segmenting retinal vessels in the CHASE DB1 testing dataset of 

pediatric fundus images (n=28).

Architecture Dice Coefficient Accuracy PPV Sensitivity

U-Net 0.581±0.043 0.955±0.004 0.951±0.004 0.470±0.054

SegNet 0.719±0.020 0.962±0.004 0.962±0.003 0.724±0.039

LinkNet 0.745±0.023 0.967±0.003 0.966±0.003 0.773±0.03

Inception U-Net 0.519±0.074 0.954±0.006 0.951±0.006 0.378±0.081

Attention U-Net 0.640±0.269 0.752±0.229 0.905±0.068 0.751±0.229

Res U-Net 0.739±0.048 0.968±0.004 0.967±0.004 0.702±0.081

R2 U-Net 0.347±0.038 0.601±0.004 0.572±0.005 0.669±0.049

Attn. Res U-Net 0.675±0.034 0.953±0.007 0.959±0.004 0.717±0.066

U-Net++ 0.731±0.039 0.968±0.002 0.967±0.002 0.673±0.073

Res U-Net++ 0.529±0.034 0.769±0.009 0.927±0.014 0.738±0.035

Super U-Net 0.752±0.019 0.966±0.003 0.967±0.003 0.769±0.040
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Table 3.

The average performance metrics for segmenting GI polyps in the Kvasir-SEG testing dataset (n=1000).

Architecture Dice Coefficient Accuracy Sensitivity

U-Net 0.621±0.310 0.905±0.000 0.626±0.335

SegNet 0.643±0.225 0.889±0.090 0.658±0.264

LinkNet 0.781±0.223 0.940±0.080 0.830±0.221

Inception U-Net 0.590±0.306 0.882±0.000 0.659±0.328

Attention U-Net 0.545±0.303 0.868±0.000 0.619±0.336

Res U-Net 0.696±0.272 0.919±0.000 0.717±0.276

R2 U-Net 0.512±0.256 0.851±0.000 0.634±0.288

Attn. Res U-Net 0.559±0.262 0.880±0.000 0.620±0.289

U-Net++ 0.746±0.231 0.930±0.000 0.769±0.245

Res U-Net++ 0.704±0.293 0.913±0.000 0.726±0.301

Super U-Net 0.804±0.239 0.946±0.000 0.809±0.256
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Table 4.

Performance metrics for segmenting skin lesions in the ISIC dataset (n=200)

Architecture Dice Coefficient Accuracy PPV Sensitivity

U-Net 0.826±0.158 0.928±0.050 0.943±0.067 0.877±0.170

SegNet 0.619±0.283 0.763±0.250 0.895±0.078 0.694±0.313

LinkNet 0.821±0.166 0.925±0.074 0.943±0.053 0.853±0.187

Inception U-Net 0.677±0.289 0.813±0.201 0.909±0.075 0.826±0.285

Attention U-Net 0.640±0.269 0.752±0.229 0.905±0.068 0.917±0.172

Res U-Net 0.665±0.252 0.787±0.192 0.914±0.058 0.787±0.193

R2 U-Net 0.837±0.175 0.936±0.066 0.951±0.044 0.871±0.212

Attn. Res U-Net 0.704±0.280 0.857±0.171 0.919±0.068 0.803±0.299

Res U-Net++ 0.846±0.140 0.942±0.060 0.954±0.037 0.853±0.170

Super U-Net 0.877±0.135 0.956±0.038 0.963±0.029 0.910±0.169
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Table 5.

The mean performance metrics of U-Net, dynamic receptive fields, fusion upsampling, and Super U-Net for 

segmenting retinal vessels in the DRIVE testing dataset (n=20).

Architecture Dice accuracy PPV sensitivity

U-Net 0.769±0.035 0.965±0.005 0.904±0.036 0.673±0.065

U-Net w/ dynamic receptive fields 0.778±0.030 0.965±0.005 0.875±0.035 0.705±0.059

U-Net w/ fusion upsampling 0.787±0.026 0.966±0.004 0.879±0.039 0.718±0.063

Super U-Net 0.794±0.026 0.967±0.004 0.082±0.034 0.726±0.058
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Table 6.

Individual DSC values for U-Net and Super U-Net for segmenting retinal vessels in the training dataset.

Image Names U-Net DSC Super U-Net DSC

01_test 0.808 0.821

02_test 0.808 0.833

03_test 0.779 0.795

04_test 0.780 0.807

05_test 0.751 0.776

06_test 0.730 0.769

07_test 0.752 0.784

08_test 0.710 0.745

09_test 0.695 0.744

10_test 0.763 0.789

11_test 0.766 0.791

12_test 0.775 0.797

13_test 0.742 0.783

14_test 0.790 0.808

15_test 0.773 0.794

16_test 0.776 0.807

17_test 0.741 0.776

18_test 0.786 0.797

19_test 0.854 0.859

20_test 0.790 0.806

Average 0.769 0.794

Std. Dev 0.035 0.026
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