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Abstract
In this paper, a new responsive-green-cold vaccine supply chain network during the
COVID-19 pandemic is developed for the first time. According to the proposed network,
a new multi-objective, multi-period, multi-echelon mathematical model for the distribution-
allocation-location problem is designed. Another important novelty in this paper is that it
considers an Internet-of-Things application in the COVID-19 condition in the suggested
model to enhance the accuracy, speed, and justice of vaccine injection with existing pri-
orities. Waste management, environmental effects, coverage demand, and delivery time of
COVID-19 vaccine simultaneously are therefore considered for the first time. The LP-metric
method and meta-heuristic algorithms called Gray Wolf Optimization (GWO), and Variable
Neighborhood Search (VNS) algorithms are then used to solve the developed model. The
other significant contribution, based on two presented meta-heuristic algorithms, is a new
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heuristic method called modified GWO (MGWO), and is developed for the first time to solve
the model. Therefore, a set of test problems in different sizes is provided. Hence, to evaluate
the proposed algorithms, assessment metrics including (1) percentage of domination, (2) the
number of Pareto solutions, (3) data envelopment analysis, and (4) diversification metrics
and the performance of the convergence are considered. Moreover, the Taguchi method is
used to tune the algorithm’s parameters. Accordingly, to illustrate the efficiency of the model
developed, a real case study in Iran is suggested. Finally, the results of this research show
MGO offers higher quality and better performance than other proposed algorithms based on
assessment metrics, computational time, and convergence.

Keywords OR in medicine · Green-cold vaccine supply chain network ·
Internet-of-Things · Waste management · COVID-19 epidemic

1 Introduction

COVID-19 is an unprecedented respiratory disease discovered on December 31, 2019, in
Wuhan (Sohrabi et al., 2020). COVID-19 is caused by the severe acute respiratory syndrome
coronavirus 2 (SARSCoV2). SARS-CoV-2 is transmitted rapidly, mainly through close con-
tact between people and through small droplets producedwhen sneezing and coughing (Chen,
Xiong, et al., 2020). However, in some cases the patient’s symptoms may be exacerbated by
pneumonia and acute respiratory distress syndrome (ARDS) (Chen, Zhou, et al., 2020). Epi-
demic mortality rates range from 1.2 to 3.7 percent worldwide (Baud et al., 2020; Carvalho
et al., 2021) depending upon the COVID-19 variant. The number of infected and recovered
people and the number of deaths are reported in Table 1. To date, no effective medicine
for treating COVID-19 has been conclusively discovered. However, new vaccines have been
developed that effectively increase population protection and reduce virus transmission (Lip-
sitch & Dean, 2020).

From the beginning of the COVID-19 pandemic to the present day, harmful economic
and social consequences have affected various communities. Most countries’ gross domestic
product (GDP) declined in 2020, and many businesses closed, leaving a large number of
people unemployed (Wang & Su, 2020). Moreover, increasing consumption of plastic and
medical products in hospitals and homes has resulted in a significant increase in the amount
of plastic and infectious waste produced. Lack of proper management of health waste can
cause irreparable damage to the environment and people’s lives (Klemes et al., 2020).

Table 1 The number of infected and recovered cases with total death (7/20/2021) (https://www.worldometers.
info/coronavirus/)

Countries Total confirmed cases Total deaths Total recovered

USA 35,018,600 624,983 29,406,202

India 31,174,322 414,513 30,353,710

Brazil 19,391,845 542,877 18,067,080

France 5,871,881 111,492 5,661,352

Turkey 5,537,386 50,604 5,390,739

Iran 3,576,148 87,624 3,168,834
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Fig. 1 The total Number of people who received at least one dose of the vaccine to May 30, 2021

According to epidemiologists and the researchers’ results, the only way to definitively
break the coronavirus chain is through general vaccination, and means such as global quar-
antine or the use of masks offer only temporary protection. Pfizer Pharmaceuticals succeeded
in developing the first vaccine against COVID-19 and it was approved by the Food and Drug
Administration (FDA). Since then, several other vaccines have been produced and are being
used in various countries after obtaining a license. Modern vaccines include Oxford–As-
traZeneca, Sputnik V, Janssen, Pfizer–BioNTech, Sinopharm, and Moderna. Unfortunately,
a few rich countries have bought larger amounts of the available vaccine, which can cause
significant problems in poorer and developing countries and create injustices. Figure 1 shows
the rate of vaccinated people in some countries; the existing figures are related to people who
have received at least one dose of the vaccine.

The vaccine supply chain entails four main issues, involving (1) How many vaccines do
we need? (2) Howmany vaccines should we produce? (3) How should we allocate vaccines?
and (4) How to distribute the vaccines? (Duijzer et al., 2018). The vaccine supply chain is
one of the most essential and sensitive supply chains. This is because it usually has special
conditions for holding and transporting through the cold chain. For example, the Pfizer
COVID-19 vaccine must be held in a cold chain at − 70 °C and it lasts less than a few
hours at ambient temperature. According to the World Health Organization, due to poor
logistical conditions, approximately half of vaccine doses are wasted before use in some
developing countries (Sadjadi et al., 2019). As a result, specific and complete equipment is
needed to provide a supply chain that can meet the required demand without quality being
compromised.

According to the IoT, sensors and actuators are connected to transmit data through an
integrated framework to enable heuristic applications. In supply chain management, IoTs are
used in the fields of logistics, manufacturing, quality control, inventory management, and
real-time decision-making (Ben-Daya et al., 2019). In recent years, IoT-based technologies
have been widely used in health-related fields because they play a pivotal role in monitor-
ing patients, diagnosis, and disease prevention (Tekeste Habte et al., 2019). The application
of the IoT in healthcare, advanced technology for detecting cases of infection, allocating
ambulances to patients, monitoring the general condition of patients in hospitals, disinfect-
ing infected places, informing people of important announcements, monitoring people in
quarantine, and data collection from people for vaccination in the outbreak of COVID-19 are
used. During the COVID-19 epidemic, robots, drones, smartphones with web applications,
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wearables, and thermal sensors, all enriched with artificial intelligence, could reduce the
adverse effects of COVID-19 (Kumar, Kumar, et al., 2020; Kumar et al., 2020; Nasajpour
et al., 2020).

Therefore, in this paper, a new Green-Cold Vaccine Supply Chain Network (GCVSCN)
in the COVID-19 condition is set out. In this regard, based on the proposed network, a
new multi-objective, multi-echelon, multi-period mathematical model for the distribution-
allocation-location problem during the COVID-19 pandemic is designed for the first time.
The IoT application in the GCVSCNmodel is thus used to enhance the justice of COVID-19
vaccine injection with existing priorities. Priorities are divided into seven groups, including
(1) the elderly aged 65 +with their careworkers, (2) all people aged 16 +with a severemedical
problem, (3) all people aged 50 + , (4) all people aged between 16 and 50 whose job involves
being in public and crowded places, (5) all people aged between 30 and 50, (6) all people
aged between 16 and 30, and (7) all people aged under 16. In the model developed, waste
management, environmental effects, demand coverage, and delivery time for transporting
the COVID-19 vaccine are considered simultaneously. Moreover, the LP-metric method is
used to solve the GCVSCN model for small-sized problems. Furthermore, meta-heuristic
algorithms called GWO and VNS algorithms are suggested, and a new heuristic method
called modified GWO (MGWO) algorithm is developed to find Pareto solutions and near-
optimal solutions for the first time in this paper. Then, to tune and control the algorithm’s
parameters, the Taguchi approach is used. And, to compare algorithms, the performance
of the convergence and assessment metrics containing Percentage of Domination (POD),
Number of Pareto Solutions (NPS), Data Envelopment Analysis (DEA), and Diversification
Metric (DM) are used. Managerial insights related to the GCVSCN considering IoT in the
COVID-19 epidemic are discussed. Finally, a real case study in Iran is suggested, and a set
of sensitivity analyses are performed to validate the model set out.

The rest of the paper is organized as follows. In Sect. 2, the literature review, the gaps, and
the contribution of this paper are investigated. Problem description and mathematical model-
ing are discussed in Sect. 3. The solutionmethods are explained in Sect. 4. The computational
results, Taguchi method, assessment metrics, the convergence of the proposed meta-heuristic
algorithms, case study, sensitivity analysis, and managerial insights are stated in Sect. 5. The
conclusion and future work are discussed in the last section.

2 Literature review

In this section, the vaccine supply chain network,COVID-19’s effects on the supply chain, and
waste management fields are examined. Also, the details of the examined papers are shown
in Table 2. Moreover, the existing gaps and contributions are elaborated on the following.

Govindan et al. (2016) presented a fuzzy multi-objective mathematical model for a sus-
tainable reverse logistics network. Thus, they considered the management and recycling
of medical syringe waste, which identifies the best technology for waste treatment. Eco-
indicator 99 was also used to minimize pollution. They used the epsilon-constraint method,
multi-objective genetic algorithm (MOGA), andmulti-objective particle swarm optimization
(MOPSO) to solve their model.

Torabi (2018) developed an option contract to prevent the required dose of vaccine. They
designed a model with the aim of minimizing purchasing and social costs, which had two
suppliers (main and backup). Also, the buyer had two choices: the original supplier, which
was cheaper but less reliable, and the backup supplier, which was more expensive but much
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more reliable and responsive. Their proposedmodelwasmade using the SIR epidemicmodel.
To solve their model, they presented a solution method combining optimal control theory,
Stackelberg game, and nonlinear programming approaches. Ng et al. (2018) formulated a
multi-criteria mathematical model to provide an optimal structure for vaccination planning,
evaluation, and analysis. Reducing costs, increasing vaccination efficiency, and increasing
social benefit indicators were the objectives of their proposed model. Finally, they concluded
that an integrated vaccination strategy, in the form of mass, non-discriminatory general vac-
cination, and targeted vaccination is better than other strategies.

Sadjadi et al. (2019) set out a robust network for vaccine supply chain management. A
model for determining supply chain strategies and tactical decisions was presented according
to the priority of demand and the perishability of vaccines. They used the robust counterpart
model to deal with the uncertainty of the parameters. Eventually, using a real case study, they
examined both the deterministic model and the robust model and concluded that the robust
model was more efficient.

Saeidi-Mobarakeh et al. (2020) developed a bi-level MILP model considering waste man-
agement. A multi-part solution methodology combining the robust optimization method and
a feasibility repairingmechanismwas then used to solve theirmodel. Finally, a real case study
was considered with a real-life hazardous medical waste management scenario. A vaccine
supply chain network consisting of a distributor and a retailer was therefore designed by Lin
et al. (2020). The distributor had the right to use the cold or non-cold transmission chain.
Then, the retailer can inspect them in two common ways (single-stage and two-stage) when
receiving vaccines. Finally, after examining both methods, they concluded that single-stage
inspection is more effective than two-stage inspection. Zambrano et al. (2020) examined the
indirect effects of the COVID-19 virus on the environment. They summarized their studies on
the effects of the COVID-19 virus in six cases, divided into three positive and three adverse
effects. Increased organic and inorganic waste, disruption of the waste recycling cycle, and
some specific adverse effects, such as contamination of sewage systems due to the use of dis-
infectants to prevent the spread of the COVID-19 virus in some countries, such as China, were
among the negative effects of the coronavirus. They also claimed that COVID-19 caused a
reduction in air pollution and the emission of gases such as nitrogen dioxide, besides helping
to clean up beaches and reduce harmful noise in the environment. However, they eventually
concluded that some of the positive effects of the COVID-19 virus do not appear to be lasting
and that serious and intelligent management will be required to deal with its negative effects
in the long term. Kargar et al. (2020) considered all the producers of medical waste, and their
main goal was to minimize the maximum amount of collected waste from these centers. Due
to the unknown behavior of the coronavirus, fuzzy programming was used to uncertain the
demand parameters. Then, Wang et al. (2020) categorized the types of medical waste and
proposed the most appropriate technology for each category. Yu et al. (2020) considered a
mathematical model for locating temporary treatment waste treatment plants. Minimizing
the risk of spreading the coronavirus around temporary facilities was the main contribution
of their paper. Finally, their proposed model was implemented in Wuhan, China. Klemes
et al. (2020) investigated the effects of the COVID-19 pandemic on the amount of plastic
waste and its effects on the environment and energy. A perspective to better understand
the role that entrepreneurs play in resource management and waste management during the
COVID-19 outbreak was presented by Neumeyer et al. (2020) and explored the challenges
and opportunities in this area.

Yang et al. (2021) designed a Mixed-Integer Linear Programming (MILP) model for a
vaccine distribution network. They developed a new algorithm to solve large-sized problems.
The results were then used to validate their model in four countries in South Africa. Singh
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et al. (2021) examined a simulation model of a network public distribution system with
three different scenarios to demonstrate disruptions in the supply chain under COVID-19
conditions. They placed great emphasis on a resilient supply chain during the pandemic.
They also claimed that their proposed simulation model could create a resilient and respon-
sive supply chain network. Nagurney (2021) proposed an optimization model for a supply
chain in a COVID-19 pandemic situation and considered the workforce to be an important
element in linking the economic activities of the supply chain network and its related capaci-
ties. Their chain provided includes medical and protective equipment and some special food
items. Additionally, due to the lack of mathematical models in the field of sustainable phar-
maceutical industry during the COVID-19 pandemic, Goodarzian, Taleizadeh, et al. (2021)
designed a comprehensive pharmaceutical supply chain network for production, distribution,
inventory control, allocation, and location problems.Moreover, a newmulti-objective, multi-
product, and multi-echelon MILP model was formulated. They developed three new hybrid
meta-heuristic algorithms called ant colony optimization algorithm, fish swarm algorithm,
and firefly algorithm, along with variable neighborhood search. The response surface method
was used to tune the algorithm’s parameters. Finally, they suggested a real case study in Iran
and concluded from numerical results that the hybrid fish swarm algorithm with a variable
neighborhood search algorithm was more efficient than the other algorithms. In the field
of waste management during the COVID-19 epidemic, Tirkolaee et al. (2021) presented a
location-routing model with the aim of minimizing the time of waste collection and trans-
portation to reduce risk. The developed location-routing model proposed by Tirkolaee and
Aydın (2021) addressed the problem of infectious medical wastes amid the COVID-19 pan-
demic by minimizing the exposure risk and reducing the total costs. One of the principles of
building a smart city is to use IoT-based infrastructure and blockchain. Medical waste control
is one of the main targets of smart cities. Torkayesh et al. (2021) conducted the research to
find the contributing factors of failure in the utilization of IoT-based systems in the medical
waste area. Sazvar et al. (2021) designed a sustainable pharmaceutical supply chain net-
work under uncertainty considering waste management. They considered a scenario-based
multi-objectiveMILPmodel. To cope with uncertain parameters, a new scenario-based game
theory model was provided. Hence, a hybrid solution method was developed by hybridizing
the LP-metrics approach with a heuristic method. Finally, a real case study was suggested to
assess the performance of their model.

Vaccination, the vaccine production chain, and the distribution of vaccines have always
been among the most critical issues worldwide, especially in low-income and developing
countries. Since the outbreak of COVID-19, the importance of this issue has become even
more apparent, and the need for governments and communities to address the obstacles to
establishing a coherent and comprehensive vaccination program has increased. In green-
cold vaccine supply chain management, little research has been performed on mathematical
modeling, and no research has been done on green-cold vaccine supply chain management
during the COVID-19 pandemic. Moreover, the issue of the impact of IoT on the green-
cold vaccine supply chain network in the COVID-19 condition, bearing in mind demand
coverage, waste management, and environmental effects, has not been used in any of the
papers examined.

In this paper, to fill gaps available in the literature review, the contributions of the proposed
research are explained thoroughly, as follows:

• It designs a newmulti-objectivemulti-echelon responsive-green-cold vaccine supply chain
during the COVID-19 pandemic for the first time,

• It considers waste management and environmental effects in the proposed model,
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• It provides an IoT application in theGCVSCNmodel in theCOVID-19 outbreak to increase
the accuracy, speed, and justice of vaccine injection with existing priorities for the first
time,

• It uses demand coverage and COVID-19 vaccine delivery time simultaneously in the
proposed model,

• It develops a novel meta-heuristic algorithm based on VNS and GWO algorithms called
modified GWO (MGWO) to solve the proposed model.

3 Description of the problem

In this paper, a new Green-Cold Vaccine Supply Chain Network (GCVSCN) using the
Internet-of-Things (IoT) during the COVID-19 pandemic is developed for the first time.
Additionally, a new multi-period multi-echelon MILNP model for a distribution-location-
allocation problem considering waste management has been developed for the first time. The
considered echelon is divided into four levels, including Distribution Centers (DCs), Injec-
tion Centers (ICs), Temporary Treatment Centers (TTCs), and Landfill Sites (LSs). Injection
centers are then divided into two categories containing (i) hospitals and (i i) Temporary Vac-
cination Centers (TVCs). The main aims of the proposed problem include decreasing total
costs, demand coverage, total time, and environmental effects. Considering demand coverage
and environmental effects simultaneously using IoT concepts is a significant novelty in this
paper. In this regard, the echelon considered in the GCVSCN is shown in Fig. 2.

To vaccinate individuals effectively against COVID-19, grouping people living in a region
and prioritizing vulnerable tiers is paramount in the immunization program.At this vital stage,
collecting accurate and reliable data leads to effective widespread vaccination as well as the
lowest shortage of vaccines andmaximumpeoples’ satisfaction. Hence, using state-of-the-art
systems, for example, IoT-based applications, can be considered a viable solution to gather
data and process it. To fill in this gap, the IoT-based application is presented in this paper for
the first time and is considered a significant contribution. Therefore, in this paper, the IoT
application classifies people into various groups, including ages, jobs, and underlyingmedical
problems. Underlyingmedical problems are divided into four groups: cardiovascular disease,

Fig. 2 The structure of the GCVSCN
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respiratory disease, diabetes, and cancer. Age is one of the critical factors for vaccination
prioritization because elderly people have higher mortality rates. Thus, there is a sequence
of how people should be vaccinated according to their age group. This sequence is broken
down as follows:

• The elderly aged 65+ with their care workers.
• All people aged 16+ with a severe medical problem
• All people aged 50+
• All people aged between 16 and 50 that have a job in public and crowded places
• All people aged between 30 and 50
• All people aged between 16 and 30
• All people aged under 16

The general citizen vaccination program prioritizes people to receive vaccines. According
to the prioritization established by the experts, seven groups are selected for this purpose,
as stated above. The groups set out are vaccinated in order and separately; that is, until the
vaccination of the first group is performed, the vaccination of the second group does not start
and also continues until the seventh group. The population of each group is obtained through
IoT-based data. The allocated time for the vaccination of each group is a specific time and
should not exceed the set time. Since the unit of index t in our model is daily, we can obtain
the daily demand in each of the seven age groups. Thus, the parameter Dt is obtained through
Eq. (1).

The amount o f daily demand f or each group � population of each group

T he limited time f rame f or each group
.

(1)

According to the abovementioned explanation related to the range of people’s ages at
vaccination based on the IoT-based application, vaccines must be transported from DCs
to ICs. Based on vaccines provided, vaccines are distributed between DCs based on the
needs of the ICs. In this paper, to find the optimal locations for TVCs between the potential
locations based on the decreasing shortage and cost, and fair distribution is addressed for
the first time. Moreover, another significant contribution, cooling infrastructures for vaccine
transportation, is used for the first time, whereby the distance between DCs and ICs as well
as delivery times are the main criteria for locating TVCs because the longer distance leads to
vaccine perishability. Thereafter, the HazardousMedical Wastes (HMWs) generated through
ICs are inevitable problems that jeopardize people’s lives unless they manage them swiftly.
Thus, TTCs aimed at decreasing the influx volume of HMWs are set out for the first time
in this paper. It is clear that the significant proportion of HMWs in ICs consists of vials and
syringes that are classified as glass and sharp waste, respectively. Moreover, the suggested
technology for treating these types of HMWs during the COVID-19 pandemic is incinerators.
The waste from treated HMWs is then transported to an LFs for safe disposal.

The IoT-based application is presented in this paper for thefirst time as ameans of gathering
data. Thus, the collected data is transmitted to data clouds via the internet network. After
that, the data, including date of birth, employment, and underlying medical problems, are
processed in data centers. The sophisticated tools, for example, Data Science and Machine
Learning, can cope with the massive quantity of data to group people. In the final stage, the
demand for each tier is calculated and shown on the monitor. The data gathering procedure
is depicted in Fig. 3.

The main assumptions of the proposed problem are explained as follows:

• The locations of DCs, hospitals, and LSs are pre-determined.
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Fig. 3 The procedure for data gathering based on the IoT

• The locations of TVCs and TTCs are unknown and must be selected.
• The capacity of DCs, TVCs, hospitals, and TTCs is limited.
• The distances between DCs, ICs, TTCs, and LSs are known.
• The vaccination is performed according to the priority of each group.
• Each group of patients must be vaccinated in a specific timeframe defined by the Ministry
of Health.

• The vehicle, along with cooling infrastructure, is considered to transport vaccines from
DCs and ICs.

• HMWs are transferred by special trucks from ICs to LSs.

In the following, the notations, parameters, decision variables, the mathematical modeling
of the proposed problem are stated and formulated.

Notations:

Sets

i Set of distribution centers

k Set of temporary vaccination centers

h Set of hospitals

j Set of temporary treatment centers

v Set of vaccines

t Set of time periods

Parameters

I Nivt The inventory of DC i for vaccine type v at period t

Ckvt The capacity of TVC k vaccine type v at period t

Chvt The capacity of hospital h vaccine type v at period t

Dvt The demand of vaccine v at period t

TC The transportation cost for vehicle per kilometer

DSik The distance between DC i and TVC k

DSih The distance between DC i and hospital h

DSkj The distance between TVC k and TTC j
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Sets

DShj The distance between hospital h and TTC j

SCvkt The surplus cost of vaccine type v in TVC k at period t

SCvht The surplus cost of vaccine type v in hospital h at period t

SCHvkt The shortage cost of vaccine v in TVC k at period t

SCHvht The shortage cost of vaccine v in hospital h at period t

FCk The fixed cost of establishing the TVC k

FC j The fixed cost of establishing the TTC j

AVG Average vehicle speed

OC The incinerator’s operating costs

CC The capacity of the vehicle

F vehicle fuel consumption per kilometer (l/km)

FP The cost of fuel consumption of each vehicle dollar/litre

CR The amount of carbon emission by vehicles gram/kilometer

E I The rate of environmental impact for establishing temporary centers

CE The rate of environmental impact for burning in waste incinerator

Decision variables

Yk If TVC k is established:1; otherwise 0

Y j If TTC j is established:1; otherwise 0

Qivkt The amount of vaccine type v that is transported from the DC i to the TVC k at period t

Qivht The amount of vaccine type v that is transported from the DC i to the hospital h at
period t

Wkjt The amount of waste, including used syringes and vials, transported from TVC K to
the TTC j at period t

Whjt The amount of waste, including used syringe and vials, transported from hospital h to
the TTC j at period t

Akit If TVC k allocated to DC i at period t is equal to 1; otherwise 0

Ahit If hospital h allocated to DC i at period t is equal to 1; otherwise 0

A jkt If TTC j allocated to TVC k at period t is equal to 1; otherwise 0

A jht If TTC j allocated to hospital h at period t is equal to 1; otherwise 0

QSt The amount of surplus at period t

QSHt The amount of shortage at period t

Nikt The number of vehicles needed for use at period t from DC i to TVC k

Niht The number of vehicles needed for use at period t from DC i to hospital h

Nkjt The number of vehicles needed for use at period t from TVC K to TTC k

Nhjt The number of vehicles needed for use at period t from hospital h to TTC j

DT ik The delivery time from DC i to the vaccination center k

DT ih The delivery time from DC i to hospital h

DT kj The delivery time from vaccination center k to treatment center j

DT hj The delivery time from hospital h to treatment center j
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4 Mathematical modeling

4.1 Minimum total cost

MinZ1 �
∑

k

Yk × FCk +
∑

j

Y j × FC j +
∑

i

∑

k

∑

t

Nikt × DSik × TC+

+
∑

k

∑

j

∑

t

Nk jt × DSkj × TC+
∑

h

∑

j

∑

t

Nhjt×DShj×TC+
∑

t

QSt×SCt

+
∑

t

QSHt × SCHt +
∑

k

∑

j

∑

t

Wkjt × OC +
∑

h

∑

j

∑

t

Whjt × OC

+ F × FP

[
∑

i

∑

k

∑

t

Nikt × DSik +
∑

i

∑

h

∑

t

Niht × DSih

+
∑

k

∑

j

∑

t

Nk jt × DSkj +
∑

h

∑

j

∑

t

Nhjt × DShj

⎤

⎦ (2)

The objective function (2) shows how to minimize total costs, including established distri-
bution and vaccination center costs, transportation cost fromdistribution center to vaccination
center, from distribution center to hospital, from vaccination center to treatment center, and
from hospital to treatment center, shortage and surplus costs in vaccination centers and hos-
pitals, the operational cost of burning the syringes, and fuel consumption cost between all
echelons.

4.2 Minimum unmet demand

MinZ2 � Max

[
∑

t

(
Dt −

[
∑

i

∑

v

∑

k

Qivkt +
∑

i

∑

v

∑

h

Qivht

])]
(3)

The objective function (3) indicates minimizing the maximum unmet demand by deter-
mining an upper bound for the total unmet demand during the planning horizon.

4.3 Minimum delivery time

MinZ3 �
∑

i

∑

k

∑

t

Nikt × DTik +
∑

i

∑

h

∑

t

Niht × DTih +
∑

k

∑

j

∑

t

Nk jt

× DTkj +
∑

h

∑

j

∑

t

Nhjt × DThj (4)

The objective function (4) seeks to minimize the delivery time of vaccines from the
distribution center to the vaccination center, from the distribution center to the hospital, from
the vaccination center to the waste management center, and from the hospital to the waste
management center.
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4.4 Minimum environmental impacts

MinZ4 � CR ×
⎡

⎣
∑

i

∑

k

∑

t

Nikt × DSik +
∑

i

∑

h

∑

t

Niht × DSih +
∑

k

∑

j

∑

t

Nk jt

×DSkj +
∑

h

∑

j

∑

t

Nhjt × DShj

⎤

⎦ + E I ×
⎡

⎣
∑

k

Yk +
∑

j

Y j

⎤

⎦ + CE

×
⎡

⎣
∑

k

∑

j

∑

t

Wkjt +
∑

h

∑

j

∑

t

Whjt

⎤

⎦ (5)

Objective function (5) shows the environmental impacts of transportation of the products
between levels of the supply chain by vehicles, establishing VCs and TTCs, and burning the
syringes in the waste management phase.

5 Constraints

Qivkt ≤ M × Yk ∀i, v, k, t (6)

Wkjt ≤ M × Yk ∀k, j, t (7)

Wkjt ≤ M × Y j ∀k, j, t (8)

Whjt ≤ M × Y j ∀h, j, t (9)

∑

i

Akit ≤ 1 ∀k, t (10)

∑

i

Ahit ≤ 1 ∀h, t (11)

∑

k

A jkt ≤ 1 ∀ j, t (12)

∑

h

A jht ≤ 1 ∀ j, t (13)

Akit ≤ YK ∀i, k, t (14)

A jkt ≤ YK + Y j

2
∀ j, k, t (15)

A jht ≤ Y j ∀ j, h, t (16)

Nikt × CC ≥
∑

v

Qivkt ∀i, k, t (17)

Niht × CC ≥
∑

v

Qivht ∀i, h, t (18)

Nkjt × CC ≥ Wkjt ∀k, j, t (19)
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Nhjt × CC ≥ Whjt ∀h, j, t (20)

∑

k

Qivkt +
∑

h

Qivht ≤ I Nivt ∀i, v, t (21)

∑

i

Qivkt ≤ Cvkt × Akit ∀v, k, t (22)

∑

i

Qivht ≤ Cvht × Ahit ∀h, v, t (23)

QSt ≥
∑

i

∑

v

∑

k

Qivkt +
∑

i

∑

v

∑

h

Qivht − Dt ∀t (24)

QSHt ≥ Dt −
[
∑

i

∑

v

∑

k

Qivkt +
∑

i

∑

v

∑

h

Qivht

]
∀t (25)

[
∑

i

∑

v

∑

k

Qivkt +
∑

i

∑

v

∑

h

Qivht

]
− Dt � QSt − QSHt ∀t (26)

DTik ≥ DSik
AVG

− M × (1 − Akit ) ∀i, k, t (27)

DTih ≥ DSih
AVG

− M × (1 − Ahit ) ∀i, h, t (28)

DTkj ≥ DSkj
AVG

− M × (
1 − A jkt

) ∀ j, k, t (29)

DThj ≥ DShj
AVG

− M × (
1 − A jht

) ∀ j, h, t (30)

Qivkt , Qivht ,Wkjt ,Whjt , QSt , QSHt , Nikt , Niht , ∀i, j, v, k, h, t (31)

Nkjt , Nhjt ≥ 0

Yk, Y j , Akit , Ahit , A jkt , A jht ∈ {0, 1}
Constraints (6) and (7) state that the vaccine is transported from the DCs to TVCs and

from the TVCs to TTCs if the TVCs are established. Constraints (8) and (9) show that the
used syringe is transported from hospitals and TVCs to TTCs if the TTCs are established.
Constraints (10)—(13) ensure that at each time period, each vaccine center is assigned to
a maximum of one distribution center, each hospital is allocated to a maximum of one dis-
tribution center, and each waste center is assigned to a maximum of one vaccine center.
Eventually, each waste center is assigned to a hospital. Constraints (14)–(16) show the rela-
tionship between location and allocation variables. Constraints (17)–(20) specify the number
of vehicles required in each period between distribution centers and vaccination centers, dis-
tribution centers and hospitals, vaccination centers, and waste centers, and between hospitals
and waste centers. Constraints (21)–(23) specify the inventory of distribution centers, vac-
cination centers’ capacity, and hospitals’ capacity in each period. Constraints (24) and (25)
determine a lower bound for the surplus rate and a higher bound for the shortage rate in each
period. Constraint (26) shows the balance between shortage and surplus in each period. Con-
straints (27)–(30) determine the delivery time from the distribution center to the vaccination
center, from the distribution center to the hospital, from the vaccination center to the waste
center, and from the hospital to the waste center. Constraint (31) defines the type of decision
variables.
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6 Methodology solutions

This section explains approaches to the solution. Firstly, the LP-metric method is proposed
for how to tackle themulti-objective technique. The LP-metric method seeks a solution that is
nearest to the optimal values of the objectives.Usingmeta-heuristicmethods to solveNP-hard
problems, despite being approximate, seems to be the most appropriate solution (Goodarzian
et al., 2020). Meta-heuristic algorithms including GWO and VNS are then presented, and
anew meta-heuristic algorithm called MGWO is developed for the first time to address how
to deal with the complexity of the problem.

The reason for using the proposed algorithms is that calculation in the proposed algorithms
is simple, and implementation is straightforward. Also, both of them are useful in engineering
and scientific research and capable of performing both global and local searches. Moreover,
GWO andVNS can be used to address an enormous number of multi-objective problems, and
they are flexible. The suggested algorithms need few parameters, are very robust to solve the
supply chain models, and converge more quickly (Lejeune, 2006; Lo et al., 2021; Şenel et al.,
2019). These can be combined with other algorithms or improved based on other algorithms.
The limitations of the proposed algorithms are as follows: 1. Meta-heuristic algorithms are
not able to calculate the global optimum and calculate the local optimum. 2. The final solution
inGWO,VNS, andMGWOalgorithms depends on the coder’s skill in defining chromosomes
and the initial value of its parameters. 3. The proposed meta-heuristic algorithms also require
access to a computer system equipped with features such as a large RAM and CPU. The
description of the suggested approaches is discussed in the following sub-sections.

6.1 LP-metric method (multi-objective technique)

A multi-objective decision model involves decision variables, objective functions, and con-
straints, as well as the decision-maker’s aim is to maximize or minimize objective functions.
Since these problems rarely have a unique solution, the decision-maker chooses a solution
from a set of efficient solutions. This method minimizes the sum of the relative deviations of
the objectives from their optimum values and combines multiple objective functions into a
single objective. This approach has been used for two reasons: (I ) requiring less information
than decision-makers and (I I ) being easy to use in practice. The proposed method is used
to measure the proximity of an ideal solution. This measure of deviation will be as follows.
Since the objective functions are the form of minimum used in this paper, the minimum f is
formulated in Eq. (32).

min f �
m∑

j�1

ω j ×
(

f ∗
j − f j

f ∗
j

)p

(32)

where ω shows the significance (weight) of the objective. To eliminate the problem of dif-
ferences in objective scales, we divide the deviation of the ideal solution of the j th objective
by f ∗

j . It determines the degree of emphasis on deviations, so that the larger this value, the
greater the emphasis on the largest deviation. The overall objective function of the LP-metric
method should also be minimized to minimize deviations from the ideal.

In this method, we optimize the objective functions by considering all the constraints of
the problem and considering the optimal solutions obtained from each objective function as
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Fig. 4 The producer used to
evaluate the opened centers

Fig. 5 The producer used to
allocate the hospitals to DCs

f ∗
j . Therefore, the LP-metric method is defined as follows:

min f �
m∑

j�1

ω j ×
(

f ∗
j − f j

f ∗
j

)p

(33)

k j
(
Y j , Y2, . . . , Ym

) ≤ a j j � 1, 2, . . .m (34)

f j � z j (Y1, Y2, . . . , Ym) (35)

Y j ≥ 0 j � 1, 2, . . .m (36)

6.2 Solution representation

In this sub-section, the Random-Key method is applied to encode as well as to analyze initial
solutions (Goodarzian et al., 2020). Then, the sub-solutions are divided into two sorts in the
suggested model. The encoding scheme is explained below.

(I) To assess the open vaccination and treatment centers, sub-solution is used as follows.
Accordingly, firstly, a matrix with |N | elements is generated with a uniform distribution
U (0,1). Hence, the first Nmax units are chosen with the most values as open centers.
Therefore, one example is depicted in Fig. 4.

(II) To allocate a hospital to DC, an allocation sub-solution is used. For instance, five
hospitals and three DCs are considered. An array with a length of H is created with
a uniform distribution: U (0, H ). Then, according to Fig. 5, the allocated hospitals to
DCs are indicated. It is clear that in Fig. 5, the third DC is allocated to hospital h1,
the second DC is allocated to hospitals h2, h3, and h5, and the first DC is allocated to
hospital h4.

6.3 Gray wolf optimization

The GWO algorithm is a meta-heuristic algorithm inspired by the hierarchical structure and
social behavior of gray wolves while hunting. The GWO algorithm was first introduced by
Mirjalili et al. (2016). This algorithm is population-based, it has a simple process, and it can
be easily generalized to large-scale problems. Gray wolves are thought of as apex predators;
that is, they are at the top of the food chain. Graywolves prefer to live in a pack, and each pack
has an average of 5–12 members. All members of this pack have a very precise hierarchy of
social domination and have specific tasks. In each wolfpack, there are four degrees to hunt,
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including alpha, beta, delta, and omega. This algorithm is therefore divided into three main
steps: containing tracking and approaching, pursing and encircling, and attacking.

In GWO, the most appropriate solution is considered alpha, and the second and third
appropriate solutions are called beta and delta, respectively. The rest of the solutions are
considered omega. In the GWO algorithm, hunting is driven by alpha, beta, and delta. The
omega solution follows these three wolves. When the hunt is surrounded by wolves and stops
moving, the attack starts on the alpha leader of the wolves. This algorithm requires all wolves
to update their position according to the position of alpha, beta, and delta wolves.

During the hunt, graywolves surround the prey. The siege behavior is presented inEqs. (34)
and (35). Where m shows the current iteration,B and D indicate coefficient vectors, Yz
represents the position vector of the prey, and Y displays the position vector of the gray wolf.

�B � 2�b.−→n1 − �b (37)

�D � −→n2 (38)

Vectors B and D are calculated in Eqs. (37) and (38). In Eqs. (39) and (40), the variable
b decreases linearly from 2 to 0 during the iterations. Thus,n1 and n2 are random vectors in
the range [0, 1].

�W �
∣∣∣ �D.

−→
Yz (m) − �Y (m)

∣∣∣ (39)

�Y (m + 1) � −→
Yz (m) − �B. �W (40)

Hunting operations are usually conducted by alpha. Beta and delta wolves may occasion-
ally participate in the hunting. In the gray wolf hunting behavior, we assumed that alpha, beta,
and delta had better knowledge of the potential prey’s position. The first three solutions are
best stored, and the other agent is required to update their positions according to the position
of the best search agents according to Eqs. (41), (42), and (43).

−→
Wα �

∣∣∣
−→
D1.

−→
Yα − �Y

∣∣∣,
−→
Wβ �

∣∣∣
−→
D2.

−→
Yβ − �Y

∣∣∣,
−→
Wδ �

∣∣∣
−→
D3.

−→
Yδ − �Y

∣∣∣ (41)

−→
Y1 � −→

Yα − −→
B1.

(−→
Wα

)
,
−→
Y2 � −→

Yβ − −→
B2.

(−→
Wβ

)
,
−→
Y3 � −→

Yδ − −→
B3.

(−→
Wδ

)
(42)

�Y (m + 1) �
−→
Y1 +

−→
Y2 +

−→
Y3

3
(43)

The pseudo-code of the GWO is shown in Fig. 6.

6.4 Variable neighborhood search

The VNS algorithm was first proposed by Mladenovic and Hansen (1997). The main idea
of this algorithm is to systematically change the neighborhood structure during the search to
prevent falling into the local optimal. The simplicity of implementation and the quality of
the solutions obtained from the VNS algorithm quickly made this algorithm a good means
to solve optimization problems. The VNS algorithm begins by generating the initial answer,
defining the neighborhood structures, and using a method to search the neighborhood.

Neighbor structures the k � {1, 2, . . . , kmax } algorithm are Mk , in which Mk is the
kth neighborhood structure. After determining the possible neighborhood structures, their
sequence is determined. The two significant points here are selecting the appropriate neigh-
borhood structures and determining the appropriate sequence (for instance, the sequence
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Fig. 6 The pseudo-code of the GWO

based on the size of the neighborhood structures). Generating initial quality solutions, defin-
ing neighborhood structures, determining their sequence, and using the appropriate method
for a local search are the factors that determine the quality of the solutions obtained from
the algorithm. The algorithm begins using the generated initial solution (I0) and repeats the
main loop of the algorithm until the termination criterion is established. The main loop of
the VNS algorithm consists of two main phases of shocking and local search.

In the shocking phase, the algorithm moves from the current solution to the neighbor
solution (I ′) using the k th neighborhood structure. In the local search phase, the search is
performed on the solution (I ′) using local search methods to reach the local optimization
(I

′∗). Now, in the move or not move sections, if the local optimization obtained was better
than the current solution I , it will be replaced, and the search will return to M1, otherwise,
the (Mk+1) neighborhood structure is used to continue the search. This search dimension
continues as long as it is k ≤ kmax . Figure 7 shows the pseudo-code of the VNS algorithm.
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Fig. 7 The pseudo-code of the
VNS

6.5 Modified Gray wolf optimization

In this sub-section, a new modified meta-heuristic algorithm called MGWO is developed to
obtain the best GCVSCN design. We have therefore developed a modified meta-heuristic
method to solve the problem set out. The GWO algorithm is modified based on the VNS
algorithm as a local search. The GWO is a new approach used to solve different problems,
including allocation, location, routing, distribution, supply chain network, inventory man-
agement, production, etc. (Makhadmeh et al., 2021; Qu et al., 2020). The process of the GWO
and VNS algorithms is then explained in Sects. 4.3 and 4.4, respectively. Accordingly, VNS
is applied as a local search approach in the modified GWO on the best solution obtained from
the main loop in each iteration. There are differences between our proposed algorithm and
in some references. For example, Nadimi-Shahraki et al., (2021) used a new search strategy
called dimension learning-based hunting to improve the GWO algorithm, Guo et al., (2020)
improved the GWO algorithm based on seeking mode and tracking and seeking mode, but
our proposed algorithm improves using the VNS algorithm as a local search in this paper.
The pseudo-code steps of the MGWO algorithm are shown in Fig. 8.

Fig. 8 The pseudo-code of the MGWO
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Table 3 The size of the experimental problems

Categories Sample i j k h v t(daily)

Small S1 1 2 1 1 1 10

S2 1 2 2 1 2 15

S3 2 2 2 2 2 20

S4 2 3 2 2 2 25

S5 3 3 2 3 3 30

Medium M1 3 4 3 3 3 50

M2 4 4 3 4 3 80

M3 4 6 4 4 3 90

M4 5 6 5 5 4 110

M5 6 6 6 5 5 120

7 Computational results

In this section, the data generated is first provided to investigate the efficiency of the proposed
algorithms. In this regard, the Taguchi method is presented to tune and control the parame-
ters of the algorithm developed. Thereafter, assessment metrics and the convergence of the
proposed algorithms to evaluate the performance of the developed algorithms are addressed.
Moreover, to validate the GCVSCN model, a real case study during the COVID-19 pan-
demic is presented. Finally, a set of sensitivity analyses are performed. To run the LP-metric
method, GAMS Software is used and the meta-heuristic algorithm is implemented by MAT-
LAB 2020b.

7.1 Data generation

According to the novelty of the presented GCVSCN model, there is no paper related to or
similar to ourmodel in the papers examined. Thus, the benchmarks related to themodel devel-
oped do not exist in the literature reviewed. In this paper, we need to provide experimental
problems. Ten experimental problems are designed; they are divided into three categories,
containing small- andmedium-sized problems for the test problems and large-sized problems
for the case study. The size of the problems designed is illustrated in Table 3. The values of
the presented parameters are then shown in Table 4.

7.2 Taguchi method

This sub-section sets out an, experimental design for controlling and tuning the algorithm’s
parameters. In this paper, theTaguchi approach is used to tune the parameters of the algorithms
set out. For more details about this method, interested researchers can examine a few papers
related to the Taguchi method, such as Rezaei et al. (2020), Janatyan et al. (2021), etc.

The Signal-to-Noise ratio (S/N) is used to analyze the experiment. The S/Nvalue expresses
the degree of scatter around a certain value or, in other words, how our solutions have changed
across several experiments. To obtain the S/N value, there are three equations, each of which
applies to specific conditions.
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Table 4 The range of the presented parameters of the GCSCN

Parameter Value Parameter Value

Civ t u ∼(500, 2500) SCvkt u ∼(5, 25) $

Ckv t u ∼(400, 2000) SCvht u ∼(4, 20) $

Chv t u ∼(350, 2000) SCHvkt u ∼(3, 18) $

Dt u ∼(300, 1500) SCHvht u ∼(4, 15) $

TC u ∼(30, 80) $ FCk u ∼(15, 45) $

DSik u ∼(15, 1000) Km FC j u ∼(20, 65) $

DSih u ∼(20, 500) Km AVG u ∼(60, 80)

DSk j u ∼(15, 500) Km OC u ∼(20, 65) $

DSh j u ∼(15, 100) Km FP u ∼(5, 25) $/ L

CR u ∼(5, 30) g/ KM CE u ∼(5, 25)

EI u ∼(0.2, 0.45) F u ∼(5, 25) L/KM

SB � 1

n

∑
(yi )

2 (44)

LB � 1

n

∑(
1

yi

)2

(45)

NB � 1

n

∑
(yi − y0)

2 (46)

Moreover, the Taguchi approach mechanism focuses on the sort of solution. Therefore,
the solution obtained that is relevant to three Eqs. (44)-(46) of this method is divided into
three groups including the smaller is better (see Eq. (47)), larger is better (see Eq. (44), and
the nominal is better (see Eq. (47)). In the proposed model, objective functions are a type
of minimization, to control the parameters of the algorithm set out, the smaller the better is
used. Thus, Eq. (47) shows the S/N ratio value set out in this paper.

S

N
� −10 × log

(∑n
i�1 Y

2
i

n

)
(47)

where n shows the orthogonal array as well as yi represents the value of the solution for the
orthogonal array.

Since the scale of objective functions in each example is various, they could not be used
directly. Accordingly, the Relative Percent Deviation (RPD) is used for each example to solve
this problem. The RPD value for the data is obtained using Eq. (48).

RPD � Algsol − Minsol
Minsol

× 100 (48)

where Minsol and Algsol show the achieved best solution and the values of the achieved
objective for each iteration of the experiment in a provided example, respectively. Therefore,
the mean RPD is computed for each experiment after transforming the values of the objective
to RPDs.

The provided levels with the factors (the algorithm’s parameters) are reported in Table 5,
which for algorithm’s factors, three levels are provided. It should be noted that the Taguchi

123



Annals of Operations Research

Table 5 The levels and factors of the algorithm’s parameters to tune the algorithms set out

Algorithm Factor Level

GWO, MGWO Maximum Iteration (Maxit) A � 200, B � 400, C � 600

Number of search agents (N ) A � 20, B � 60, C � 100

Initial population of wolves (nPop) A � 50, B � 100, C � 150

VNS Maximum Iteration (Maxit) A � 200, B � 400, C � 600

Number of neighborhood (nn) A � 20, B � 30, C � 20

Population size (nPop) A � 50, B � 100, C � 150

Table 6 The orthogonal array L9
for VNS, GWO, and MGWO L9 A B C

1 1 1 1

2 1 2 2

3 1 3 3

4 2 1 2

5 2 2 3

6 2 3 1

7 3 1 3

8 3 2 1

9 3 3 2

approach reduces the total number of tests by presenting a set of orthogonal arrays to control
the proposed algorithms in a reasonable time. This approach suggests L9 for three VNS,
GWO, and MGWO (see Table 6) obtained by Minitab Software.

Therefore, the output of the S/N ratio should be analyzed by Minitab Software to detect
the best levels for each algorithm (see Figs. 9, 10, 11). Where the S/N index has reached its
minimum, the levels can be selected as the optimal levels.

The RPD is also used to confirm the selected best factors based on S/N ratios. Figure 9
shows the outcomes of RPD for each parameter level. It is clear that in Fig. 12, the RPD
shows the best factors, which confirm the same outcomes as S/N ratios.

The LP-metric method and three meta-heuristics (GWO, VNS, andMGWO) are therefore
provided to solve the experimental problems. Table 7 illustrates the results of the objective
functions and computational (CPU) time. Figure 13 shows the behavior of CPU time of the
proposed methods in small- and medium-sized problems.

7.3 Assessmentmetrics

In this sub-section, various efficiency evaluationmetrics are suggested to compare the quality
of the non-dominated solutions obtained for the proposedmeta-heuristic methods. Therefore,
four assessment metrics are used to evaluate the algorithms. They work as follows:
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Fig. 9 Minitab Software output for the Taguchi method of the GWO algorithm
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Fig. 10 Minitab Software output for the Taguchi method of the MGWO algorithm
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Fig. 11 Minitab Software output for the Taguchi method of the VNS algorithm

Percentage of Domination (POD): This metric assesses the ability of an algorithm to dom-
inate the solutions of other algorithms (Govindan et al., 2015).

POD
(
X ′, X ′′, . . . , X ′′′) �

∣∣{xki Xi }
∣∣xk j X j , i j : xki ≤ xk j

∣∣
∣∣X j

∣∣ × 100 (49)

where Xi and X j show non-dominated solutions of the proposed algorithms. One Pareto
set X ′′ is covered by another solution set X ′ by comparing the number of solutions in X ′′
covered by solutions in X ′. In this regard, if the number of algorithms is more than two,
all pair combinations should be analyzed. To calculate the POD, all the non-dominated
solutions acquired by algorithms are combined into one Pareto set, and the percentage of
solutions belonging to each algorithm is then calculated.
The Number of Pareto Solutions (NPS): NPS computes all the non-dominated solutions
obtained by an algorithm (Goodarzian, Taleizadeh, et al., 2021 and b)
Data Envelopment Analysis (DEA): This metric specifies the performance of the algorithm
versus other algorithms (Yu et al., 2021). One of the best-known criteria in the field of multi-
criteria decision-making is DEA. This criterion is used for the assessment of the efficiency
of choice with some attributes compared to each other. In this paper, this criterion is used
to determine the performance of non-dominated solutions achieved by each algorithm. To
compute this assessment metric, all non-dominated solutions achieved by the algorithms are
combined, and the performance of these points is computed by the DEA model, which was
introduced by Amin (2009).
Diversification Metric (DM): DM counts the spread of the non-dominated solution set
(Nemati-Lafmejani et al., 2019). It is calculated using Eq. (50).

DM �
√

(max f1i − min f1i )2 + (max f12i − min f2i )2 (50)

123



Annals of Operations Research

Fig. 12 Mean RPD plot for each
level of the factors
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(a)

(b)

Fig. 13 The behavior of CPU time of the proposed methods in small- and medium-sized

In this paper, four assessment metrics are suggested to evaluate the performance of the
proposed meta-heuristic algorithms. Hence, according to obtained Pareto front, the assess-
ment metrics are counted to evaluate the proposed algorithms’ performance, as shown in
Table 8. According to Table 8, MGWO shows high performance and efficiency over VNA
and GWO algorithms as four assessment metrics have a high value (more is better for four
assessment metrics), but VNS has the worst performance than the other algorithms in terms
of the four assessment metrics.

In this regard, an example of non-dominated solutions of suggested algorithms in an
experimental problem (M1) is displayed in Fig. 14. It is clear that MGWO indicates the best
efficiency, and VNS shows the worst proficiency.

Moreover, a set of statistical comparisons between the proposed meta-heuristic algo-
rithms according to the assessment metrics are performed to realize which the presented
meta-heuristic is the best. Furthermore, the attained outputs of the suggested problems are
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Fig. 14 The trend of the non-dominated solutions for the proposed algorithms in M1

transformed to Relative Deviation Index (RDI) that is calculated based on Eq. (51):

RDI � |Algsol − Bestsol |
Maxsol − Minsol

× 100 (51)

where Bestsol shows the best solution between the algorithms. Algsol indicates the value
of the objective function. Minsol and Maxsol illustrate the minimum and maximum values
of the proposed assessment metrics. Accordingly, the confidence interval of 95% for the
assessment metrics in the algorithms set out is conducted to analyze the efficiency of the
presented meta-heuristics statistically. Figure 15 depicts the Mean plots and LSD intervals
for the proposed meta-heuristics.

It should be noted that the lower the value of RDI, the better. In Fig. 15, in terms of the
MD, POD, DEA, and NPS metrics, the value of the RDI for MGWO is lower than the GWO
and VNS algorithms and indicates that MGWO has the best statistical performance, but VNS
has the highest value of the RDI and shows the worst performance.

7.4 Convergence of the proposedmeta-heuristic algorithms

The efficiency of the algorithms set out as regards their convergence is surveyed by the plots
of the convergence. Thus, the plots of the convergence for three proposed algorithms (VNS,
GWO, and MGWO), respectively, based on the objective functions, are shown in Figs. 16,
17, 18. It is evident that MGWO is fixed after 54 iterations with a steady line. But the GWO
and VNS algorithms are converging after 100 iterations. As a result, the MGWO has the best
quality, and performance, and high convergence compared to VNS and GWO algorithms.
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Fig. 15 The means plot and LSD intervals for the suggested algorithms

Fig. 16 Convergence of VNS
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Fig. 17 Convergence of MGWO

Fig. 18 Convergence of GWO
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7.5 Case study

The city of Tehran is the capital of Iran that is one of the most populous cities in Asia. As
of 01.07.2021, 3,218,860 people had COVID-19, and 84,389 people had died. The Ministry
of Health has announced that the number of hospitalizations is increasing due to the start of
the fifth COVID-19 wave. The time period considered in the case study is the first 6 months
of 2021. Decision-makers’ main purpose in the case study is to minimize costs, delivery
time, environmental costs, and demand coverage. In the case study, 9 distribution centers, 20
temporary vaccination centers, 12 hospitals, and 15 temporary treatment centers are consid-
ered. Decision-makers’ main concern is the location of temporary vaccination and treatment
centers. Also, allocating vaccination centers and hospitals to temporary treatment centers is
one of the main decisions addressed in this research. Finally, the number of vaccines sent
from suppliers to other centers, the number of cars required to transport the vaccines, and
the delivery time of the vaccines are among the items examined in the case study. It should
be noted that due to the prevalence of two types of vaccines, Barekat and Sputnik, in Iran,
these two types of vaccines have been considered in this study. Figure 19 shows a case study
map. As it makes clear, distribution centers are marked in red, temporary vaccination centers
are marked in blue, hospitals are marked in yellow, and temporary treatment centers are
marked black.

Table 9 shows the distance between hospitals and temporary treatment centers in kilo-
meters. Moreover, Table 10 details the capacity of temporary vaccination centers by vaccine
dose.

Fig. 19 Case study map

123



Annals of Operations Research

Table 9 The distance between hospitals and temporary treatment centers

J/H H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

J1 6 37 5 18 20 34 40 45 51 50 43 31

J2 39 32 27 33 48 6 47 29 29 19 47 11

J3 35 41 41 51 45 45 8 55 17 50 48 16

J4 35 45 54 37 16 18 23 45 23 38 28 15

J5 7 5 23 50 22 27 54 55 29 24 16 5

J6 19 11 32 27 39 32 47 29 19 39 18 22

J7 37 19 30 46 7 52 37 38 37 18 47 41

J8 45 31 37 41 23 8 33 37 27 51 10 22

J9 13 28 14 28 44 28 23 49 40 48 20 48

J10 38 28 49 6 9 36 6 15 35 49 43 28

J11 29 52 34 53 18 6 7 37 55 33 52 40

J12 50 39 5 30 5 27 6 18 45 13 10 26

J13 44 41 41 15 53 12 19 53 34 7 36 33

J14 53 51 54 42 47 18 39 53 9 55 6 5

J15 21 29 51 46 52 18 19 29 41 27 19 37

7.5.1 The results of the case study

The results of the case study are investigated in this sub-section. Accordingly, Table 11 shows
the Pareto points resulting from the case study solution. This table shows 10 different Pareto
points with their CPU time. Due to the importance of the third objective function (minimizing
delivery time) compared to other objective functions, in the case study, the Pareto point with
the shortest delivery time is selected to report the results.

Table 12 shows the TVCs and TTCs established. As is known, 17 centers will be estab-
lished, and centers 3, 8, and 12 will not be established. Also, in the case study, 14 TTCs were
established, and only TTC Center No. 2 was not established.

Table 13 displays the allocation of TTCs to hospitals. For example, it is clear that TTC
1 is assigned to hospitals 2, 3, 4, 6, 8, 11, and 12. Also, TTC 9 is assigned to 3, 6, and 8
hospitals.

Thus, Table 14 represents the quantity of delivered vaccine from DCs to the hospital by
dose. For instance, supplier 1 sent 3952, 1612, 1807, 2189, 3089, 2785, 2022, and 1788
vaccine doses to hospitals 1, 3, 4, 5, 6, 7, 11, and 12, respectively.

7.6 Sensitivity analysis

Here, a set of sensitivity analyses on important parameters are performed. In this regard,
Fig. 20 shows the changes in objective functions in terms of demand change. As can be seen,
with increasing demand, supply chain costs (OBJ1) increase sharply. The reason for this is
the increase in the number of transportation times and the increase in transportation costs.
For example, with a 30% increase in demand, costs increase to 4,389,918 units, and with a
30% decrease in demand, costs fall to 914,125 units.

123



Annals of Operations Research

Ta
bl
e
10

T
he

ca
pa
ci
ty

of
T
V
C
k
va
cc
in
e
ty
pe

v

T
V
C

T
V
C
1

T
V
C
2

T
V
C
3

T
V
C
4

T
V
C
5

T
V
C
6

T
V
C
7

T
V
C
8

T
V
C
9

T
V
C
10

C
A
P
V
1

20
,0
00

15
,0
00

10
,0
00

20
,0
00

20
,0
00

15
,0
00

25
,0
00

10
,0
00

25
,0
00

20
,0
00

C
A
PV

2
20

,0
00

10
,0
00

10
,0
00

20
,0
00

15
,0
00

15
,0
00

25
,0
00

10
,0
00

10
,0
00

10
,0
00

T
V
C

T
V
C
11

T
V
C
12

T
V
C
13

T
V
C
14

T
V
C
15

T
V
C
16

T
V
C
17

T
V
C
18

T
V
C
19

T
V
C
20

C
A
P
V
1

20
,0
00

20
,0
00

20
,0
00

15
,0
00

15
,0
00

10
,0
00

15
,0
00

25
,0
00

25
,0
00

20
,0
00

C
A
PV

2
15

,0
00

10
,0
00

15
,0
00

15
,0
00

10
,0
00

10
,0
00

15
,0
00

20
,0
00

20
,0
00

15
,0
00

123



Annals of Operations Research

Table 11 The results of the Pareto points from the case study solution

F1 F2 F3 F4 Time(s)

1 1,724,319 5293 6609 1673.2 173

2 1,724,786 5325 6647 1694.1 182

3 1,725,085 5367 6684 1716.6 186

4 1,725,335 5405 6700 1755.4 192

5 1,725,443 5454 6748 1781.9 199

6 1,725,611 5479 6778 1802.3 211

7 1,725,698 5539 6815 1823.5 213

8 1,725,884 5597 6838 1846.9 225

9 1,726,232 5671 6877 1892.0 229

10 1,726,609 5709 6910 1925.6 236

Also, as demand increases, the amount of demand coverage (OBJ2) increases. For exam-
ple, given a 10% increase in demand, unsatisfied demand increases to 5476 units, and if
there is a 10% decrease in demand, unsatisfied demand decreases to 5085 units. Then, as
demand increases, delivery time also increases. The reason for this is the increase in the
number of transportation times. Finally, with increasing demand, the environmental impact
also increases. For instance, given a 30% increase in demand, environmental costs increase
to 2469.9 units, and given a 30% decrease in demand, environmental costs decrease to 1210.9
units.

Figure 21 shows the changes in the number of established centers as demand increases. It
is clear that with the increase in demand, the number of established TVC and TTC increases.
Accordingly, given a 10% increase in demand, 17 TTCs and 24 TVCs were established.
Additionally, given a 30% increase in demand, 23 TTCs and 31 TVCs were established.
Finally, given a 30% drop in demand, 9 TTCs and 10 TVCs were established.

In the following, Fig. 22 depicts the effect of vehicle capacity changes on objective func-
tions. As can be seen, supply chain costs decrease as vehicle capacity increases. The reason
for this is to reduce the number of transportation times and minimize transportation costs.
The second objective function remains almost constant as vehicle capacity increases and
decreases.

Delivery time decreases as vehicle capacity increases. For instance, given a 30% increase
in vehicle capacity, the delivery time will decrease by 6009 units, and if there is a 30%
decrease in vehicle capacity, the delivery time will increase to 7123 units. The reason for this
is the reduction in the number of transportation times and of course faster service.

Environmental costs are reduced by increasing the capacity of vehicles due to the reduction
in the number of times of transportation. For example, if there is a 10 percent increase in
vehicle capacity, costs are reduced to 1602.7 units, and with a 10 percent increase in vehicle
capacity, costs are reduced to 1411.3 units.

Figure 23 shows the changes in the fixed cost of establishing the TVCs as demand
increases. It is clear that as the fixed cost of establishing TVCs increases, the total cost
of the supply chain, delivery time, and the amount of unmet demand also increase. Also,
with an increase in the fixed cost of establishing TVC, the environmental impacts decrease.
There is a 30% increase in the fixed cost of setting up TVC, which makes it more expensive
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Table 13 Allocation of TTCs to hospitals

J/H H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

J1 1 1 1 1 0 1 0 1 0 0 1 1

J2 0 1 0 0 1 1 1 1 1 1 1 0

J3 1 0 0 0 1 1 0 1 0 1 0 1

J4 0 1 0 1 0 0 0 1 1 1 1 1

J5 0 1 1 1 0 0 0 1 1 1 0 1

J6 0 0 0 1 1 0 0 1 1 1 1 0

J7 0 0 1 0 1 0 1 0 1 0 0 0

J8 0 0 1 0 0 0 0 0 0 1 1 1

J9 0 0 1 0 0 1 0 1 0 0 0 0

J10 1 0 1 0 0 1 0 0 1 0 1 1

J11 1 0 0 0 0 0 1 1 1 0 1 1

J12 0 0 0 1 1 0 0 1 0 0 0 0

J13 0 1 1 1 1 0 0 1 1 0 1 0

J14 0 0 0 1 0 0 1 0 0 0 1 1

J15 1 0 1 1 0 0 1 0 1 1 0 1

to set up the supply chain. The total cost rises to 3983.3, the unmet demand rises to 6756
units, the delivery time rises to 7378 s, and the environmental impacts fall to 1186.4 units.

7.7 Managerial insights

Air pollution is the fourth leading cause of premature death globally after hypertension,
smoking, and malnutrition, and the second leading cause of death from non-communicable
diseases after smoking. Thus, increasing the number of airborne particles can increase the
transmission of coronavirus and respiratory infections. Air pollution increases the risk of
respiratory diseases. COVID-19 is essentially a respiratory disease, which is why people
living in polluted areas are more vulnerable to the COVID-19. Managers, on the other hand,
are told to use more hybrid cars to cut down on air pollution.

As the capacity of vehicles increases, it can reduce supply chain costs and environmen-
tal impacts. Therefore, it is recommended that managers increase the vaccine capacity of
vehicles. It also minimizes vaccine delivery time.

Based on the results of this research, the IoT-based infrastructure can bewidely deployed to
combat pandemics. Regarding the weird behavior of COVID-19, new variants, e.g. Delta and
Lambdamutations, have emerged over time. Based on daily COVID-19 active cases, vaccines
should be injected periodically to protect people against the incapacitating virus. Therefore,
healthcare managers can use the specificmobile application for booking vaccination appoint-
ments, prioritizing people for receiving vaccines, and assessing people’s wellbeing before
and after vaccination. Themore IoT-based devices are used, the less inequality there is, short-
ages are eased, and vaccine distribution accelerates. It should be noted that finding the exact
quantity of demand for each priority is impactful on the reduction of a vaccine shortage.

Also, determining the optimal location of vaccination and medical centers reduces costs
and minimizes vaccine delivery times and unsatisfied demand, thus fulfilling more requests
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Fig. 20 The trend of the changes in objective functions in terms of demand change
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Fig. 21 The trend of the changes in the number of established centers as demand increases
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Fig. 22 The behavior of the effect of vehicle capacity changes on objective functions
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Fig. 23 The behaviour of the effect of the fixed cost of establishing the TVC on objective functions

for vaccine injections. As a result, the results of this research may be useful to organizations
such as the Crisis Relief Organization, hospitals, the Ministry of Health, vaccination centers,
municipalities, and vaccine transportation companies, among others.

8 Conclusion and future work

In this study, a four-echelon, multi-objective model for the green-cold vaccine supply chain
network during the COVID-19 pandemic is developed for the first time. In this regard,
minimizing supply chain costs, demand coverage, delivery time, and adverse environmental
effects are the most important aims of this study. Moreover, considering the use of IoT to
manage the supply chain of the COVID-19 vaccinewith a simultaneous focus on distribution-
location-allocation decisions in the proposed network is one of the novelties of this study.
Therefore, to solve the proposed problem, GWO and VNS algorithms are suggested, and
a new heuristic method called modified GWO (MGWO) is developed for the first time.
Additionally, a real case study is considered in the proposed network for distributing the
COVID-19 vaccines in Tehran/Iran.

The results of model solving indicate that the MGWO algorithm performed better than
other proposed algorithms as regards CPU time and convergence as well as in terms of
assessment metrics. The results of a case study show that 17 temporary vaccination centers
and 14 temporary treatment centers have been established. As can be seen, supply chain costs
increase sharply as demand increases. The reason for this is the increase in total transportation
time and the increase in transportation costs. Also, increasing demand increases delivery
time, environmental effects, and the number of established centers. Additionally, as vehicle
capacity increases, supply chain costs, delivery times, and environmental impacts decrease.
The reason for this is to reduce the number of transportation times andminimize transportation
costs.

The following matters are suggested for future work:

– Considering demand forecasting approaches such as neural network and a fuzzy inference
system to predict the required vaccine demand

– Presenting the cooperative game and cooperation of different organizations to minimize
the delivery time of vaccines to vaccination centers
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– Using scenario uncertainty and solve the mathematical model by the robust optimization
approach

– Other decisions such as routing vaccine vehicles or other objectives such as maximizing
justice in vaccine distribution
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