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Abstract

Prion diseases are rapidly progressive, incurable neurodegenerative disorders caused by misfolded, 

aggregated proteins known as prions, which are uniquely infectious. Remarkably, these infectious 

proteins have been responsible for widespread disease epidemics, including kuru in humans, 

bovine spongiform encephalopathy in cattle, and chronic wasting disease in cervids, the latter 

of which has spread across North America and recently appeared in Norway and Finland. 

The hallmark histopathologic features include widespread spongiform encephalopathy, neuronal 

loss, gliosis, and deposits of variably-sized aggregated prion protein ranging from small, 

soluble oligomers to long, thin, unbranched fibrils, depending on the disease. Here we explore 

recent advances, from the function of the cellular prion protein to the dysfunction triggering 

neurotoxicity, as well as mechanisms underlying prion spread between cells, and the effect of 

prion conformation on spreading pathways. We also highlight key findings that have revealed new 

therapeutic targets and consider unanswered questions for future research.

INTRODUCTION

Prion diseases are fatal neurodegenerative disorders of humans and animals and are 

remarkable due to their infectious nature. The infectious agent causing prion disease, known 

as PrPSc, is unusual as it lacks any specific nucleic acid; it is a pathogenic misfolded and 

aggregated form of the cellular prion protein, PrPC (1, 2). Following transmission to a naive 

host, prions seed the misfolding of host PrPC in an autocatalytic process, leading to an 

exponential increase in PrPSc in the brain and spinal cord that eventually leads to neuronal 

death (3). The primary amino acid sequence of PrPSc is determined by host PrPC, which is 

encoded by the prion gene, PRNP, on chromosome 20 in humans (4).

Prions are highly stable and accumulate in the central nervous system over months to 

years, eventually generating rampant spongiform degeneration and neuronal loss as well 

as activated astrocytes and microglia, and with a notable lack of peripheral inflammatory 

cells (5) (Figure 1). Although the incubation period may be years, the clinical phase is 

typically rapidly progressive (weeks to months) and may include behavior abnormalities, 

motor dysfunction, cognitive impairment, and ataxia, depending on the prion and species 

affected (6). No therapy is currently available beyond palliative care.
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In humans, prion diseases are categorized as sporadic, genetic, or acquired, with the majority 

of cases (~85%) being sporadic. Sporadic Creutzfeldt-Jakob disease (sCJD) has no known 

cause but has been hypothesized to be instigated by a somatic mutation in PRNP or the 

spontaneous conversion of PrPC to PrPSc (7). Genetic prion diseases have been classified by 

clinical symptoms and neuropathological features and consist of familial CJD (fCJD), fatal 

familial insomnia (FFI), and Gerstmann-Sträussler-Scheinker (GSS) disease. The mutations 

in PRNP are autosomal dominant, highly penetrant, and consist of missense mutations, 

insertions, and deletions, usually inciting disease onset in the 5th or 6th decade of life (6). 

Acquired prion diseases have been transmitted between individuals (kuru and iatrogenic 

CJD) and rarely from cattle to human (variant of Creutzfeldt-Jakob disease (vCJD)) (8, 

9). Iatrogenic spread has occurred from prion-contaminated corneal and meningeal grafts, 

blood transfusions (10–13), human growth hormone (14, 15), and from prion-contaminated 

neurosurgical instruments and electrodes (16).

In addition to iatrogenic prion infection, prions have also precipitated large-scale, multi-

species epidemics and even spread as a zoonosis. BSE was first described in 1986 (17) and 

within a decade, more than 180,000 cases of BSE were diagnosed in cattle with further 

expansion to zoo bovids, felids, and primates within Great Britain (18). By 1996, vCJD had 

targeted mainly young people (2nd decade) in the United Kingdom, likely from exposure 

to BSE-contaminated beef (9, 19), with 229 vCJD cases diagnosed to date (20). No recent 

cases have occurred, however secondary transmission of vCJD prions arose in transfusion 

recipients receiving blood or blood products originating from prion-infected donors (10–13).

Prion diseases in animals, including BSE, are largely acquired by ingestion, although 

atypical scrapie and BSE in aged sheep and cattle, respectively, may arise sporadically 

similar to sCJD (21–23). Classical scrapie affects sheep and goats nearly worldwide and 

has been recognized for more than 250 years (24). Chronic wasting disease (CWD) was 

first discovered in Colorado deer in 1967 (25) and affects free-ranging or captive deer, elk, 

reindeer, and moose (family Cervidae) in 25 U.S. states and two Canadian provinces, as well 

as ranched elk in South Korea (26) and most recently wild reindeer and moose in Norway 

(27) and Finland (28). Transmissible mink encephalopathy (TME) has been previously 

identified in farmed mink in the US, Canada, Russia, Finland and East Germany, and was 

thought to be due to dietary exposure to a prion-infected animal, although the origin of the 

epidemic remains unclear and no recent cases have been reported (29).

The complicated molecular mechanisms that govern how prions are converted and spread 

from extraneural entry sites into the brain, as well as how prions generate neurotoxic 

responses are the subject of this review focused on recent findings in prion pathogenesis. We 

also highlight new research linking prion conformation to disease phenotype.

Cellular Biology of the prion protein-- function and proteostasis

Prion protein synthesis and modification—The physiological (or cellular) form of 

the prion protein is glycosylphosphatidylinositol (GPI)-anchored and features two variably-

occupied N-linked glycosylation sites (30). Mature PrPC consists of approximately 210 

amino acids, arranged as a disordered N-terminal domain and a globular C-terminal domain 

composed of three α-helices and a short anti-parallel β-pleated sheet (31). In its mature 
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form, PrPC is mainly present as a diglycosylated protein, located at the outer leaflet 

of the plasma membrane in lipid-enriched microdomains (32). Following internalization, 

PrPC is either recycled to the plasma membrane or the Golgi (retromer pathway) (33), 

or is transported to late endosomes, eventually residing in the pinched off intraluminal 

vesicles within multivesicular bodies (MVBs) for release as exosomes or for degradation in 

lysosomes (34, 35).

PrPC is subject to proteolytic cleavage, with α-cleavage and shedding of PrPC representing 

the two most important cleavage events (36). α-cleavage occurs in the middle of PrPC, 

releasing an unstructured N-terminal protein-fragment while leaving its C-terminal globular 

part attached to the membrane (37). This cleavage takes place during vesicular trafficking of 

PrPC within the secretory pathway (38). Initial reports identified the serine protease plasmin 

(39, 40) or ADAMs (proteins belonging to the a Disintegrin and Metalloproteinase family) 

(41) as potential proteases, yet recent data do not support this observation (42–44) and the 

exact nature of the responsible protease remains unclear (36).

A cleavage event occurring at the distal C-terminus of PrPC and releasing nearly full 

length PrP into the extracellular space is referred to as PrP-shedding (45, 46). PrP-shedding 

occurs only on the plasma membrane and ADAM10 is the only relevant PrP-sheddase, with 

diglycosylated PrPC representing the preferred substrate (47, 48).

Prion protein function—A detailed explanation of all of the functions attributed to 

PrPC would go beyond the scope of this review. In fact, we (MG and colleagues) have 

recently proposed to list PrPC among the expanding group of “multifunctional” proteins, 

in which several functions are attributed to just one protein (36). An incomplete list of 

PrPC functions would include its role in neural development (49), cell adhesion (50), axon 

guidance, synapse formation (51), neuroprotection (52, 53), regulation of circadian rhythm 

(54), myelin maintenance (55, 56) maintenance of ion homeostasis (57, 58), and signaling 

(59, 60).

Interestingly, some of the best described functions are not accredited to PrPC in its 

membrane-bound, GPI-anchored form but rather to soluble PrPC fragments, which can 

only be generated by regulated proteoloysis such as alpha-cleavage and shedding. This 

is true for the recently described function of soluble PrP in the maintenance of myelin 

homeostasis (56), or for the role of soluble versions of PrP in inducing neurite outgrowth 

(61). For myelin maintenance, binding of the flexible N-terminal part of soluble PrP acts 

as agonistic ligand to a G-protein-coupled receptor (GPCR) expressed on Schwann cells, 

Adgrg6 (Gpr126) (56), whereas the molecular details for the neurite outgrowth-promoting 

role of soluble PrP are not understood. Interestingly in this instance, membrane-bound 

PrPC itself may act as a receptor via homophilic interactions (61). In both instances, it 

is obvious that regulated proteolysis would be an elegant mode of functional regulation 

to transmit information to distant sites. This is reminiscent of functions attributed to 

proteolytic cleavage fragments from the amyloid precursor protein (APP) (62, 63). Yet while 

insights into the processing of APP and its biological and pathogenic consequences are vast, 

relatively little is known about the physiological roles of PrPC cleavage fragments.
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Prion protein malfunction: Mechanisms of neurodegeneration in prion disease

Loss of function of PrPC vs toxic gain of function of PrPSc?: A key event in the 

pathophysiology of prion diseases is the PrPSc template-directed misfolding of PrPC into a 

pathogenic, conformationally altered, β-sheet-rich version of itself. This conversion process 

lies at the root of the now widely accepted prion hypothesis, which states that the infectious 

agent for prion diseases (the “prion”) is entirely made up of proteins and devoid of specific 

nucleic acids (64). Today we know that a pathogenic, conformationally altered version 

of PrPC is a key component of the infectious agent responsible for transmission of prion 

diseases. This disease-associated version of PrPC can be partially resistant against protease-

digestion and is designated as PrPSc (where Sc stands for the pathogenic version of the 

protein found in sheep suffering from “scrapie”, a prion disease found only in sheep and 

goats). Originally, only highly protease-resistant forms were termed PrPSc but it is now 

accepted that there are also pathogenic PrP conformers that are mildly protease-resistant, 

referred to here as sPrPSc, and since these versions are just as infectious as PrPSc, a 

biochemical definition of protease-resistance is not adequate (65). Thus one has to include 

protease-sensitive disease associated PrP species into the pool of conformationally-altered 

versions of PrP able to induce prion disease. Alternatively, the term “PrPSc” is still widely 

used to describe disease associated PrP-species and for the sake of clarity, we will use this 

term in this review when referring to pathogenic, conformationally-altered versions of PrP.

The PrPC to PrPSc conversion process involves a massive structural rearrangement of the 

primarily α-helical protein into a highly β-sheet-rich structure (approximately 47% β-sheet) 

(66). The mechanism that underlies PrPC conversion into PrPSc remains unknown. One 

hypothesis is that short segments of PrPSc interact with PrPC in a “steric zipper”, in which 

complementary amino acid side chains from two β-sheets tightly interdigitate and effectively 

stabilize growing fibrils, largely through hydrogen bonds (67, 68). Sequence differences 

within steric zipper segments have been shown to block prion conversion between species 

(69, 70).

PrPC is converted to PrPSc on the plasma membrane or within the endocytic pathway, and 

a recent study by Greene and colleagues suggests that prion conversion occurs primarily 

within MVBs and not on the plasma membrane, as preventing MVB maturation sharply 

reduced PrPSc production (34).

The generation and progressive accumulation of PrPSc is of key importance for the 

development of clinical prion disease, although there are rare instances, such as 

subclinical disease in prion-infected mice, where the presence of PrPSc does not lead to 

neurodegeneration (71). It is conceivable that the partial loss of some of the physiological 

functions of PrPC may contribute to prion-associated neurodegeneration. A key argument 

against loss of function playing a role in prion disease is that loss of PrPC function in 

PrP knockout mice does not lead to neuronal death (72). On the other hand, we have only 

begun to understand how PrPC functions on a molecular level, with PrPC, or its proteolytic 

cleavage products, acting as receptor or ligand or both, most likely in concert with many 

binding partners (73). Thus a certainly recurring redundancy in this system may compensate 
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loss of function phenotypes, which may only become apparent once additional stressors are 

active (36, 56).

Mechanisms underlying the toxic gain of function of PrPSc—The evidence for 

direct or indirect neurotoxicity of PrPSc is compelling and there is no doubt that cerebral 

accumulation of misfolded PrPSc plays a key role in the pathophysiology of prion diseases, 

but how?

Disturbed protein homeostasis in prion disease: Neuronal proteostasis, which is 

the interplay of protein synthesis (including correct protein folding, trafficking, and 

processing) and protein degradation, is essential for correct neuronal function (74). 

Disturbed proteostasis occurs in prion disease at multiple levels. PrPSc disturbs the ubiquitin/

proteasome system already at early disease states leading to impaired function of this 

protein degradation pathway, enhancing the buildup of PrPSc (75). There is also mounting 

evidence that buildup of PrPSc affects the autophagy–lysosome pathway responsible for 

degradation of aggregated proteins, although in one study temporal analysis indicates that 

this is a consequence of protein buildup and not causally involved in disease initiation (76). 

Additionally there is evidence that exhaustion of unfolded protein response (UPR) pathways 

occurs early in prion disease (77–79). UPR is a cellular stress response aiming to protect the 

endoplasmic reticulum regarding its function in protein synthesis and sorting. PrPSc stresses 

the ER and sets off a vicious cycle resulting in disturbed PrPC trafficking, impaired PrPC 

functions, and translational shutdown that weakens the neurons, causing synaptic loss and 

ultimately inducing cell death pathways (80). Interestingly, restoring the disturbed protein 

translation has been shown to be neuroprotective (80).

PrPSc mediated toxicity at the neuronal membrane: PrPSc aggregation occurs in a 

highly ordered fashion, and oligomeric, rather than fibrillar forms of PrPSc-aggregates, 

are thought to be more neurotoxic (81). Morphological studies have shown the close 

relationship of PrPSc-deposits and the neuronal plasma membrane (82). How this translates 

into neurotoxicity is not fully understood but two lines of thought have emerged. In 

the first scenario, PrPSc-aggregates lead to major membrane disturbance, possibly by 

corrupting the function of neuronal receptors such as the NMDA receptor and thus altering 

plasma membrane permeability (83). GPI-anchored PrPC is able to efficiently transduce 

neurotoxicity and prion disease is accelerated in mice where PrPC shedding is impaired, 

both of which support this line of thought (84, 85). In the second scenario, membrane-bound 

PrPC itself may act as a receptor of prion toxicity. Indeed, a direct interaction between 

PrPSc and PrPC induces neurotoxicity similar to a mechanism first described in Alzheimer’s 

disease, where oligomeric species of Aβ bind membrane PrPC complexed to metabotropic 

glutamate receptor (mGluR5), activating intracellular Fyn kinase and ultimately leading to 

synaptotoxicity (86–90).

PrPC has also been incriminated in neurotoxic responses, as antibody binding to the 

C-terminal globular domain leads to toxic signal generation through the N-terminus, 

inducing calpain activation and ROS production (91). PrPSc has been found to cause a 

similar toxic signaling cascade, again with calpain activation and ROS generation (92). In 

cultured primary neurons expressing a mutant PrP lacking residues in a central region (105–
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125), abnormal ion channel currents occurred, sensitizing neurons to glutamate-induced 

excitotoxicity. These abnormal currents may represent very early toxic signaling events 

in affected cells and underlie early neurodegeneration (93). Nevertheless, the sequence 

of events leading to receptor-mediated neurotoxicity are not yet completely defined and 

GPI-anchored PrPC would need a co-receptor to enable intraneuronal signal transduction.

Prion spread into the CNS – an update: Similar to rare neurotropic infectious agents 

such as rabies virus, prions have managed to access the CNS from extraneural entry sites. 

The initial prion replication site in the CNS can often be linked to the entry site by 

peripheral nerves, incriminating retrograde axonal transport as a possible mechanism of 

prion transit. For example, feeding prions to hamsters leads to early prion deposition in 

enteric and autonomic ganglia as well as vagus and splanchnic nerves, and subsequently in 

the thoracic spinal cord and dorsal motor nucleus of the vagus in the brainstem, consistent 

with retrograde prion spread along autonomic PNS pathways into the CNS (94). BSE and 

CWD prions in cattle and deer, respectively, are also first detected in the CNS within the 

vagal nucleus, consistent with prion entry through the GI tract and transit via the vagal nerve 

into the brain (95, 96). Similarly, prion exposure of the mouse eye induces prion deposition 

along the optic nerve and tract, followed by the contralateral superior colliculus to which 

it projects, further suggesting prion spread via neural circuitry (97). Additional support 

for prion transit in nerves was provided by studies manipulating sympathetic innervation 

to the prion-infected spleen, which markedly affected prion entry into the CNS (98, 99). 

Interestingly, prion conformation also plays a role in prion neuroinvasion, as fibril-forming 

prions spread poorly to the brain as compared to oligomeric or subfibrillar prions (100–

103). Nevertheless, since prions circulate in blood within minutes post-inoculation (104), 

additional non-neural pathways of prion entry into the CNS, such as passage across the 

blood brain barrier, cannot be excluded.

Prion spread from the gastrointestinal tract to the brain—Prion spread following 

ingestion is similar to that used by other infectious agents exploiting entry portals to invade 

the host. Transepithelial prions transit through the intestinal epithelium by way of M cells, 

as M cell depletion reduces oral susceptibility to prion disease (105); additional studies by 

multiple laboratories support M cells as key players that passage prions across the mucosal 

barrier (105–109). Enteritis may heighten susceptibility to oral prion infection, potentially 

by enabling prion passage through the mucosa (110). Once subepithelial, neurotropic prions, 

such as BSE, are thought to spread by retrograde axonal transport along autonomic PNS 

pathways into the brainstem (111, 112). Lymphotropic prions, such as sheep scrapie, 

deer CWD, and likely vCJD, also rapidly spread (within hours) to Peyer’s patches and 

draining lymph nodes, potentially transported by classical dendritic cells (95, 113, 114), 

as depletion of dendritic cells impedes the early replication of prions in lymph nodes 

(115, 116). Interestingly, lymphotropic prions also accumulate within inflamed organs 

harboring lymphoid follicles, such as kidney or mammary gland, leading to prion excretion 

or secretion into urine or milk, respectively (117–120).

Within the lymphoid tissue, PrPSc accumulates within the germinal centers of lymphoid 

follicles, both on the plasma membrane of follicular dendritic cells (FDCs) and within 
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tingible body macrophages (121), where it persists throughout the infection (95). FDCs 

trap antigens on their plasma membrane for display to B cells (122, 123) and have proven 

highly capable of replicating prions (124), sustaining lymphoid prion infections for months 

to years (124). On the surface of FDCs, the CD21/35 receptor is thought to bind a PrPSc 

- complement complex, as both soluble C1q and regulatory protein factor H bind PrPSc 

(125–128), and CD21/35 receptor knockout mice show low attack rates after a peripheral 

prion infection (128). Together these studies indicate a crucial role for complement receptors 

in prion replication and spread to the CNS.

This peripheral phase of prion replication has been exploited for developing prevention 

strategies to block prion spread to the CNS. FDCs require B cell signalling through tumor 

necrosis factor and lymphotoxin to develop and maintain a mature state (122), and blocking 

lymphotoxin signaling induces FDC dedifferentiation and prevents prion accumulation in 

lymphoid tissue. This prevention strategy has worked very effectively in mice treated with 

lymphotoxin β-receptor agonists or anti-receptor antibodies (129), abolishing splenic prion 

replication and prolonging disease following an intraperitoneal challenge (129). Preventing 

disease by this strategy must begin early, however, as nerve entry occurs quickly after a 

prion exposure, within 14 days post oral challenge in mice (130).

Lymphoid tissues may also serve as a source of new prion strains. Cross-species prion 

transmission has generated new prion strains within lymphoid tissues, suggesting that 

lymphoid tissues may be more promiscuous than CNS in replicating prions having a 

different PrP sequence (131). The mechanism underlying this reduced threshold for prion 

replication is unclear, however the PrPSc glycan sialation levels influence capture by 

complement receptors and replication in lymphoid tissue, and the glycans on PrPSc are 

more sialated in the lymphoid tissue than in brain (132). Highly sialated PrPSc has been 

postulated to contribute to the permissiveness of lymphoid tissue to prion replication (132, 

133).

Prion conversion within the CNS—Once within the brain and spinal cord, prions are 

converted by neurons and astrocytes. Astrocytes are highly susceptible to prion infection in 

vitro and can readily transfer prions to neurons (134, 135). On the other hand, microglia do 

not have a major role in replication, but are instead critical for prion clearance; depletion of 

microglia accelerates disease in vivo and increases PrPSc accumulation in organotypic brain 

slices (136). In contrast, oligodendrocytes lack any known significant contribution to prion 

replication or spread through the CNS (124). Although much is known about the cells that 

replicate prions in the brain, a pressing research need is to better understand how protein 

aggregates spread through the brain, from neuron-to-neuron (137–139) and between neurons 

and astrocytes (140).

Cell-to-cell prion spread through the CNS—Once in the brain, prions spread through 

neuroanatomically connected brain regions by poorly understood mechanisms (141–144). 

In vitro, prions spread cell-to-cell via (i) exosomes and (ii) tunneling nanotubes (138, 

145–147), with yet-to-be-tested other possible mechanisms including synaptosomes, GPI-

painting, microvesicles, or PrPSc cleavage from the plasma membrane (Figure 2).
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PrPC and PrPSc were both shown to sort into MVBs for release within exosomes, 40–100 nm 

extracellular vesicles (EVs) that arise within multivesicular bodies (MVB) (147–149)[add 

Greene]. The extent to which prions are released within exosomes varies depending on the 

prion strain, as certain strains traffic more extensively into exosomes (145).

Further supporting the importance of EVs in prion transport, Saa and colleagues showed 

that vCJD prion-infected mice harbored EVs containing infectious prions in plasma starting 

at preclinical disease stages (150), which suggests that vesicles may transport prions long-

range. Nevertheless, whether exosomes or other EVs are the most relevant mechanism for 

prion spread through the CNS is not yet clear. Recent methodological advances for isolating 

exosomes and other EVs from the brain is expected to shed light on the role of exosomes for 

prion spread in vivo (151).

Another possible route for direct cell-to-cell spread of prions is through tunneling 

nanotubes. Tunnelling nanotubes are thin membranous tubes that connect cells and serve 

as a mechanism for cell-to-cell communication, as organelles including lysosomes and 

mitochondria can be transported in nanotubes (139, 152). In addition to organelles, PrPSc 

was transferred to naïve cells via nanotubes, including transfer from primary dendritic cells 

to neurons as well as from neuron-to-neuron (138). Tunnelling nanotubes may be induced by 

cell stress.

Lysosomes may also be involved in the cell-to-cell transport of prions, either through 

transfer within tunnelling nanotubes or through lysosomal exocytosis, as observed for 

amyloid-β and α-synuclein (153, 154).

PrPSc conformation impacts disease phenotype—In experimental prion disease 

of rodents, a wide range of incubation periods and brain targets have been reported 

(155), depending on the prion conformation, or strain. Much work has been done to 

examine the relationship between the biochemical properties of PrPSc and the survival time. 

Studies of yeast prions (Sup35) indicated that the rate of prion propagation is inversely 

proportional to the aggregate stability, and suggested that more fibril fragmentation, or a 

higher “frangibility”, would produce new free ends for prion formation and accelerate prion 

propagation (156). Consistent with this notion, murine prion strains with shorter incubation 

periods typically have a lower PrPSc stability compared to that of longer incubation period 

strains (157–159). In contrast however, hamster prion strains with short incubation periods 

had a relatively high PrPSc stability compared to long incubation period strains (160, 161). 

Similar to the hamster prion model, patients with sporadic CJD accumulating stable PrPSc 

had a shorter, more rapidly progressive clinical disease, potentially due instead to faster PrPC 

conversion (162, 163).

Protease-sensitive forms of PrPSc, sPrPSc, have been implicated in disease pathogenesis 

(164), and factoring in these species may also help explain the above discrepancies in 

PrPSc stability and incubation period. The relative ratio of sPrPSc to PK-resistant PrPSc is 

strain-specific, and evidence suggests that these small sPrPSc oligomers can influence the 

prion conversion rate (165, 166). However, some groups have suggested that the abundance 

of sPrPSc does not exceed 10% of the total amount of PrPSc and, therefore, downplay the 
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relative contributions of these species to disease (167). Overall, the relationship between the 

biochemical properties of PrPSc and the outcome of disease is still poorly understood. This 

may be due, in part, to the many other factors that contribute to the incubation period of 

disease in vivo, including the various clearance mechanisms. The use of protein misfolding 

cyclic amplification (PMCA), which recapitulates prion conversion in vitro (168), continues 

to provide useful information on factors that influence the rate of PrPSc formation.

PrPC is the major host factor that controls the tempo of prion formation. Genetic ablation 

of Prnp renders animals resistant to prion infection and agent replication (169–172). 

Conversely, increasing PrPC expression results in a reduction in the incubation period 

(173, 174). Consistent with these in vivo studies, in vitro experiments have shown that the 

abundance of PrPC positively correlates to conversion efficiency (175). Interestingly, recent 

work has shown that as the prion disease progresses, the PrPC level is reduced (44). The 

reduction in PrPC levels may contribute to a decline in the rate of prion conversion and/or 

slow the onset of neurodegeneration (176). Additional PrPC factors that influence conversion 

include the post-translational modifications of PrPC. Specifically, the sialylation status of the 

N-links glycans impacts prion conversion in a strain dependent manner (177). Consistent 

with this observation, removal of sialylation can increase the efficiency of prion formation 

(133, 178).

Host cellular co-factors also influence the rate of prion formation. Removal of RNA 

significantly reduced PrPSc formation, whereas RNA supplementation restored PrPSc 

formation in a PMCA reaction (179). Interestingly, the extent of reduction induced by 

RNA depletion was strain dependent as was the composition of nucleic acid that restored 

PrPSc formation (180). Phosphatidylethanolamine (PE) also supported the formation of 

both mouse and hamster PrPSc in vitro (181). Importantly, PMCA conversion of three 

separate prion strains with PE as a co-factor resulted in the three strains converging into 

a single strain (181). Recent evidence suggests that strain specific co-factors may not be 

the only mechanism responsible for prion tissue tropism. For example, if the relative rate 

of PrPSc clearance exceeds PrPSc formation, infection is not established (182). Overall, the 

distribution of convertible PrPC and host cellular co-factors, in combination with the relative 

rates of prion formation and clearance, may influence the strain-specific pace and tropism of 

disease (Figure 3).

Multiple prion strains can coexist in a host—A co-existence of prion subtypes 

is commonly found in sCJD-affected patients (183), and interestingly, the subtypes have 

different rates of PrPSc formation in vitro (184). The relative percentage of sCJD cases that 

contain both PrPSc subtypes is not agreed upon (185–187). Differences in estimates of the 

co-occurrence of PrPSc subtypes may be explained by incomplete PK digestion of PrPSc that 

may allow for an overestimation (188), or sampling a limited number of brain regions or 

employing a limited number of anti-PrP antibodies, which may lead to an underestimation. 

Overall, it is clear that in human prion disease, mixtures of prion subtypes occur. The effect 

of these subtype mixtures on disease development and transmission in natural cases of prion 

disease are unclear.
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Prion strains can interfere with conversion when present in mixtures. Prion strain 

interference occurs when a slowly replicating (long incubation period) strain interferes with 

the replication of a relatively quickly replicating (shorter incubation period) prion strain. The 

relative onset of replication of the blocking and superinfecting strain dictates the outcome of 

strain emergence (189). Consistent with this observation, replication of the blocking strain 

is required for strain interference to occur (190, 191). Interestingly, in animals infected with 

two strains under conditions where strain interference does not occur, PrPSc levels of both 

strains are altered (192). This is consistent with the hypothesis that prions have properties 

of a quasispecies, hypothesized to be populations of similar, but not identical, conformations 

of PrPSc (193). Altering the prion conversion environment in vitro can also alter the strain 

properties (194–197), and the selection of drug resistant prions that revert to a drug sensitive 

phenotype once the drug is removed is consistent with this hypothesis (194). Overall, prion 

strains are highly dynamic mixtures regardless of incubation period or clinical outcome of 

disease, and must be considered in the development of therapies that may target specific 

prion conformations.

Therapeutic Implications—Prions cause toxicity in the central nervous system and 

yet the underlying mechanisms remain incompletely defined. Neuronal PrPC is part 

of a key pathway inciting neurodegeneration, as an elegant study from Mallucci and 

colleagues showed that depleting neuronal PrPC in transgenic mice 8 weeks post-inoculation 

reverses early spongiform degeneration and the progression to clinical scrapie (198). Such 

remarkable findings, together with a rich body of research that indicates the requirement of 

PrPC in prion-induced neurodegeneration, indicate that reducing PrPC expression may be a 

key therapeutic intervention.

Prion activation of the unfolded protein response leads to a decrease in protein translation 

associated with synaptic failure and neuronal loss in prion-diseased mice (80), and restoring 

protein translation is neuroprotective (80). Thus as a second possible therapy, pharmacologic 

restoration of protein translation may aid neuronal survival (199). Additional potential 

therapeutic strategies may rely on increasing the clearance of prion aggregates, blocking 

the cell-to-cell spread of prions, and directly inhibiting prion conversion using mutated full 

length or peptide fragments of PrPC that bind PrPSc and block fibril growth. Taking these 

studies t(85)ogether, the essential role of PrPC in mediating neuronal toxicity is clear, and 

much has been learned in recent years about the mechanisms of toxicity, yet a complete 

understanding of how neurodegeneration develops remains to be elucidated.

Future Directions

Although much has been discovered in recent years on the mechanisms of prion conversion, 

transmission, and pathogenesis, basic structural and mechanistic questions in the prion 

disease field remain unresolved. How are the multiple functions of PrPC executed and 

how do PrPC proteolytic cleavage products contribute to the purported functions? What 

is the structure of PrPSc and how widely do PrPSc molecules from different strains vary 

in structure? How does the structure of PrPSc impact neural cell targeting and influence 

neuronal toxicity? What are the pathways of prion-induced neuronal toxicity? How do 

prions spread through the brain? What are the major prion clearance pathways? Prion 
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disease investigation has led the way in dementia research in recent years and answers to 

questions raised above are within reach. Additionally, answers to these basic questions will 

enable the rationale design of new therapeutic strategies, which may also help to restore lost 

confidence regarding novel therapeutic approaches in the wider field of dementia research.
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Figure 1. 
Hematoxylin and eosin and PrP immunostain of brain (frontal cortex) from a sCJD patient. 

Spongiosis is visible in the deep layers of the cortex (HE) (arrow indicates intaneuronal 

and parenchymal spongiform change, arrow) and synaptic, plaque-like, and perineuronal 

deposits of pathological prion protein (arrow indicates plaque-like and perineuronal 

deposits). The synaptic deposits of pathological prion protein are pronounced in the deep 

layers of the cortex. Scale bar = 100 μm.
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Figure 2. 
Possible pathways of prion spread from cell-to-cell. Prion aggregates may spread through 

transport in tunneling nanotubes (1), GPI painting, by which GPI-anchored proteins transfer 

from one cell surface to a neighboring cell surface (2), trafficking within exosomes (3), or 

from membrane budding and transport within vesicles (4).
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Figure 3. 
Strain-specific factors in prion formation. Prion formation is dependent on the presence 

of PrPC (1). For the conversion of PrPC to PrPSc in spontaneous, familial, or infectious 

etiologies, cofactors (Co) may participate in the formation of PrPSc, although it is unknown 

if they are incorporated into the growing polymer or simply used as a structural scaffold (2). 

The rate of PrPSc formation (3) is dictated by the incoming prion strain (PrPSc), the level of 

PrPC (1), and the cofactors present (2). PrPSc fragmentation can result in newly fragmented 

PrPSc serving as a seed for conversion (5) or PrPSc clearance from the cell (6). The rate of 

prion formation (3) must be greater than the rate of clearance (6) to establish a productive 

infection. Strain-specific PrPSc conformations may utilize specific subpopulations of PrPC, 

cofactors, and clearance mechanisms that may all contribute to strain-specific cellular and 

tissue tropism.
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