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Abstract

Synthetic rubber emissions from automobile tires are common in aquatic ecosystems. To assess 

potential impacts on exposed organisms, early life stages of the estuarine indicator species Inland 

Silverside (Menidia beryllina) and mysid shrimp (Americamysis bahia) were exposed to three 
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tire particle (TP) concentrations at micro and nano size fractions (0.0038, 0.0378 and 3.778 

mg/L in mass concentrations for micro size particles), and separately to leachate, across a 5-25 

PSU salinity gradient. Following exposure, M. beryllina and A. bahia had significantly altered 

swimming behaviors, such as increased freezing, changes in positioning, and total distance moved, 

which could lead to an increased risk of predation and foraging challenges in the wild. Growth for 

both A. bahia and M. beryllina was reduced in a concentration-dependent manner when exposed 

to micro-TP, whereas M. beryllina also demonstrated reduced growth when exposed to nano-TP 

(except lowest concentration). TP internalization was dependent on the exposure salinity in both 

taxa. The presence of adverse effects in M. beryllina and A. bahia indicate that even at current 

environmental levels of tire-related pollution, which are expected to continue to increase, aquatic 

ecosystems may be experiencing negative impacts.
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1. Introduction

An estimated 4.4 – 12.7 million metric tons of marine debris enter the ocean annually, 

presenting a threat to pelagic, benthic, and coastal environments (Granek et al., 2020; 

Jambeck et al., 2015; Rochman et al., 2016). Through photodegradation and weathering 

processes, these synthetic polymers fragment are dispersed throughout the ocean, often 

concentrating in coastal areas (Barnes et al., 2009). Synthetic rubber emissions from 

automobile tires, now broadly considered a common type of microplastic (CA Waterboard, 

2020), are a likely threat to the health of marine ecosystems, especially in estuaries, rivers, 

and streams located near metropolitan areas and busy roadways (Brahney et al., 2021; Gray 

et al., 2018; Klöckner et al., 2019; Rochman et al., 2019; Tian et al., 2021; Wagner et 

al., 2018). Another potential pathway of tire particles (TP going forward) is stormwater 

runoff, as reported by a recent study at 12 sites within the San Francisco Bay estuary, 

where fibers and TP (black rubbery fragments) contributed ~85% of total particles sampled 

(Werbowski et al., 2021). Modern tire materials, products of fossil fuels, are composed of 

complex mixtures of synthetic polymers, natural rubbers, carbon black, polyester and nylon 

fiber, chemical additives, petroleum, and pigments (Baumann and Ismeier, 1998). These 

mixtures are shed as TP, characterized as airborne and road wear particles, generated by the 

rolling shear of tread against a surface (Kovochich et al., 2021; Rogge et al., 1993). Once 

produced, TP can aggregate with other auto-related particles from brake dust, pavement, and 

atmospheric deposition (Charters et al., 2015). The presence of these particles in aquatic 

environments may result in impacts to wildlife and humans. For example, changes in cell 

morphology and DNA damage due to inhalation of tire particles are known to occur in 

humans (Gualtieri et al., 2008). Additionally, tires can leach constituents known to be toxic 

to aquatic organisms across different taxonomic orders (Hartwell et al., 2000; Nelson et al., 

1994; Tian et al., 2021). For example, TP has been recently documented to cause acute 

toxicity to Coho salmon due to the presence of 6PPD-quinone, a chemical commonly used 

as an antiozonant and antioxidant in tires. (Tian et al., 2021).
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Coastal estuaries are susceptible to micro and nano plastic pollution from terrestrial sources, 

including automobile tires. These water bodies receive freshwater from inland rivers, which 

deliver nutrients and runoff that may harbor agricultural chemicals and microplastics (Le 

Roux, 2005). An automobile tire is designed to last for 40,000 km until it is worn down, and 

throughout its lifetime, about 30% of its tread erodes and enters the environment (Dannis, 

1974; Piotrowska et al., 2019). It is estimated that coastal rivers in Europe transport an 

annual load of 1.2 kt of TP to the Atlantic Ocean (Siegfried et al., 2017). Knowledge on 

the distribution and concentration (mass or particle count) of TP in coastal areas is limited 

(Unice et al., 2019). In Charleston Harbor, TP was found in all layers (intertidal sediment, 

subtidal sediment, and sea surface micro layer) with a maximum concentration identified in 

the intertidal sediments of the Ashley River (203 mg/Kg ww) (Gray et al., 2018). Another 

study report predicted average coastal European surface water concentrations to contain 

0.03-17.9 mg/L and measured 0.09-6.4 mg/L of TP (Wik and Dave, 2009), which is in range 

the mass concentration used in this study (0.0038-3.778 mg/L ww).

Once in an estuary, low-density microplastics, including TP, remain buoyant for a period 

of time and become available to planktonic organisms which may ingest these fragmented 

particles (Barnes et al., 2009). As predators consume prey organisms, those particles are 

susceptible to trophic transfer in estuarine food webs (Athey et al., 2020; Au et al., 2017; 

Stienbarger et al., 2021). Several recent studies have indicated that estuarine species such as 

shore crabs, oysters, shrimp, fish, and clams will internalize microplastics through ingestion 

and uptake through gill tissue and soft tissues (Bessa et al., 2018; Davidson and Dudas, 

2016; Gray and Weinstein, 2017; Van Cauwenberghe and Janssen, 2014; Watts et al., 2014). 

At the same time, organisms inhabiting estuaries are exposed to a wide range of salinities, 

which may alter the impacts of pollutants as freshwater transitions to saltwater, and in terms 

of micro and nanoplastics may influence agglomeration and hence bioavailability (Shupe et 

al. 2021). Testing across salinities is important because as global ocean temperatures warm, 

salinity is evidenced to increase (Durack et al., 2012; Helm et al., 2010). This increase in 

salinity may alter or potentiate the effects of pollutants, including micro and nanoplastics 

(MNPs), on estuarine organisms (Hutton et al., 2021; Shupe et al., 2021).

Americamysis bahia and Menidia beryllina are model estuarine organisms used across a 

range of salinities following guidelines developed by the EPA for whole effluent toxicity 

testing (Brander et al., 2012; Pillard et al., 1999; Vlaming et al., 2000). Changes in organism 

behavior result from various cellular, biochemical, and neural processes (Døving, 1991; 

Little, 1990) that are critical to organism survival as well as fitness, thus a sensitive 

endpoint for use in toxicity testing (USEPA, 1994). Numerous studies have drawn links 

between the biogeochemical and ecological consequences of environmental contamination 

by demonstrating that subtle changes in fish behavior indicate stress (Beitinger, 1990; Little, 

1990; Sprague, 1971). Swimming and feeding behavior, frequency of activity, and velocity 

have been established as reliable responses to measure sublethal toxicity stress in fish 

(Grillitsch et al., 1999; Little and Finger, 1990; Newman and Jagoe, 1996) and that also 

has implications for organism fitness (Weis et al., 2001). The current experiment synthesizes 

methods of early and recent studies to measure several of these historically documented 

stress responses as well as growth in M. beryllina and A. bahia using periodic light and 

dark cycles as introduced stimuli (Pannetier et al., 2020; Romney et al., 2019). The purposes 
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of the light/ dark cycles are to provide a general overview of organismal behavior in the 

environment during these conditions, as well as a stimulus effect for fish to act on, as in the 

natural environment.

This study investigated the sublethal effects (behavior and growth) of micro (10-20 um) 

and nano (< 1um) TP exposure across a salinity gradient similar to that found in estuaries. 

Subtle changes in behavior and growth are essential to document because they may increase 

predation risk and population-level effects (Beitinger, 1990; Little and Finger, 1990; Mundy 

et al., 2020). We used a range of concentrations based on environmentally relevant mass 

concentrations of TP and its leachate on behavior in the early life stages of indicator species 

A. bahia and M. beryllina. We hypothesize that TP will influence both growth and behavior, 

that it will be readily internalized, as has been demonstrated across other microplastic types 

in the early life stages of aquatic organisms, and that some responses may be salinity 

and size dependent. As data on TP pollution and sub-lethal effects in aquatic species are 

currently rare, this study fills critical knowledge gaps on uptake and internalization, growth 

impacts, and stress responses to an emerging microplastic pollutant by species that may act 

as proxies for threatened or endangered species and ecosystems sensitive to anthropogenic 

pollution.

2. Methods

2.1 Chemicals

Suwanee River Natural organic matter (NOM) - 2R101N used to create suspensions of 

MNPs in exposure wells was purchased from the International Humic Substance Society, St. 

Paul, MN. Tissue-Clearing Reagent CUBIC-R+ [for Animals] (T3741) and Tissue-Clearing 

Reagent CUBIC-L [for Animals] (T3740) for visualization of particles within organisms 

following exposures were purchased from Tokyo Chemical Industry Co., Ltd.

2.2 Microplastics preparation

A detailed TP preparation protocol has been provided in SI. Briefly, TP from tire tread was 

prepared by cryomill process in a ceramic chamber (Retsch CryoMill, Haan, Germany). 

After milling, 3 g tire particles were combined with 300 ml of solution in a flask containing 

50 mg/L Suwanee River NOM prepared in Milli-Q water then filtered through a 0.2 

mm filter. The solution is then run through a coarse strainer to remove the glass beads 

and strained through a 20 μm standard mesh sieve, producing a resulting solution with 

particles <20 μm in at least one dimension. Then, using a 47 mm syringe filter holder 

containing a 1 μm mixed cellulose ester (Advantec) filter the solution is further filtered 

to produce a suspension of nanoparticles <1 μm in at least one dimension. The filter 

holder is then backflushed with clean NOM suspension, and the backflushed solution is 

collected to produce a suspension of tire particles in the range of 1-20 μm. A portion of 

the prepared nano-TP fraction was further filtered using a 30K MWCO centrifugal filter 

(Corning Spin-X #431489) ran at 7800 rpm for 5 minutes to rinse particles and to produce 

simulated TP leachate. The solution particle counts are determined separately for each 

fraction of the suspension. The micron (1-20 μm) sample particle count is determined by 

triplicate sampling of the suspension and the particle count analysis by flow cytometry 
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(Acurri C6 Flow Cytometer, BD Biosciences, San Jose, CA). The nanoscale (<1 μm) sample 

particle count is also determined in triplicate by Nanoparticle Tracking Analysis (NTA) on a 

NanoSight instrument (NanoSight NS500, Malvern Instruments, Westborough, MA).

2.3 Model organisms, their sources, and experimental setup

Americamysis bahia larvae were purchased from Aquatic Biosystems in Fort Collins, 

Colorado and reared in three tanks at 15, 20, and 25 PSU salinities with filtered artificial 

seawater prepared (AFSW). For each organism, there were three biological replicates. For 

silversides, 2 technical replicates were averaged for each of the three biological replicates. 

For mysids, 3 technical replicates were averaged for each of the three biological replicates. 

Following EPA protocol 833-C-09-001 (USEPA, 2009), when adult A. bahia reproduced, 

larvae were moved to additional tanks of the same salinity and reared for seven days prior 

to exposures beginning. Micro and nano-TP exposures with mysids were initiated at seven 

days post fertilization (dpf) (n=3) under static renewal conditions for seven days. Menidia 
beryllina embryos were harvested from broodstock held at the Hatfield Marine Science 

Center into three acclimation aquaria of 5, 15, and 25 PSU salinities with filtered AFSW 

following modified methods from Middaugh et al. (1987) as done in previous studies in 

the Brander lab (e.g. DeCourten et al., 2020; Hutton et al., 2021). Larvae were placed into 

exposure vessels at 6 ±1 days post fertilization (dpf) (n=6 technical replicates to make n=3 

biological replicates) and maintained under static renewal conditions for 96 h. All exposure 

vessels were covered during exposures to prevent background contamination and a blank 

filter water was also used.

Each model species was exposed to a total of 26 treatments (n=3): each containing a 

water control, NOM control with four TP concentration treatments (micro and nano with 

60, 6000, and 60000 particles/mL, which is equivalent to 0.0038, 0.378 and 3.778 mg/L 

in mass concentration for micro-size particles; 0.014% TP leachate) across three salinities 

per species as described above. Nominal water concentrations with detailed QA/QC are 

provided in SI table 1. Water quality parameters were measured daily over the exposure 

period at the time of 80% water renewal. Cumulative hatching and mortality were recorded 

daily. A. bahia were fed concentrated brine shrimp (Artemia franciscana) ad libitum, and 

M. beryllina were fed Gemma Microdiet 0.2 mg/beaker/day (Skretting, Westbrook, Maine). 

Both organisms were fed daily and allowed to feed for at least two hours before water 

changed. Table SI 2 and 3 provides water quality parameters maintained throughout the 

experiment. A control blank filters were setup in a petri dish to measure background 

contamination. No particles resembling TP were observed on filter blanks.

2.4 Behavioral assays

Following MNP exposures of 7d (A. bahia) and 96 h (M. beryllina), behavioral assays were 

performed post-exposure from each treatment using a DanioVision Observation Chamber 

(Noldus, Wageningen, the Netherlands) for the dark: light cycle as described previously 

(Mundy et al., 2021; Segarra et al., 2021). Briefly, A. bahia and M. beryllina larvae were 

randomized and placed in individual 10 ml glass beakers within a 12-well plates tray 

designed and 3D-printed in Brander lab (Hutton et al., 2021), in the Ethovision Observation 

Chamber (EOB) to observe natural photo motor response. Larvae were acclimatized for 
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at least 1 hour before placing into the EOB. After acclimatization outside the chamber, 

another 5-minute acclimatization period was provided inside the dark chamber, followed by 

three cycles of alternating 2-minute intervals of dark stimuli and 2-minute intervals of light 

stimuli. Behavior and activity were recorded and tracked by a Basler Gen 1 Camera using 

Ethovision XT15 software. Velocity thresholds were determined for swimming parameters 

between 0.5 cm/s (freezing) – 2.0 cm/s (moving) (Segarra et al., 2021). A virtual center zone 

(1.6 cm diameter) was established to measure the time that larvae spent in the center of the 

2.2 cm diameter in the beaker. All behavioral tests were conducted between 09:00 and 18:00 

h. The resolution was set at 1280 x 960, light cycles were programmed at 10,000 lux and 

the frame rate was set at 25/s. A total of seven variables were analyzed in this study which 

is included in Table 1. Following behavioral analysis, organisms were euthanized humanely, 

silversides per IACUC protocol #0035, and fixed in paraformaldehyde (PFA) to preserve 

tissues for examination of MP internalization.

2.5 Growth and TP internalization

At least three individuals from each species per treatment were collected for growth 

measurement. Length and width measurements were collected via dissecting scope equipped 

with Moticam visual software, and particle uptake was visualized on a Zeiss Axio Observer 

inverted microscope (Carl Zeiss, White Plains, NY). Growth data were assessed by creating 

a growth index with the following formula:

W
L Xd

Where W is the width of the organism, L is the length, and d is the number of days the 

organism is exposed to the TP. This relationship provides the index used to plot the final 

growth curve. Organisms were then cleared using a protocol adapted for larval organisms 

with CUBIC™ clearing reagents (Ohnuma et al., 2017; Susaki et al., 2015). Briefly, 

to remove pigmentation and allow visualization of internalized microplastics (1-20 um), 

individual organisms fixed in 3% PFA were washed in 5 ml phosphate-buffered saline (PBS) 

for 30 minutes and incubated in 5 ml CUBIC-L at 37 ° C for seven days to encourage lipid 

removal. Following this step, organisms were washed again in 5 ml PBS for an additional 

two hours and then transferred to CUBIC-R + for an additional seven days to clear the 

remaining tissue.

2.6 Statistical analysis

Statistical analysis was performed using RStudio Version 1.0.153. Dose-response curves 

were generated to evaluate larval swimming behavior and growth effects across 

concentration treatments. The growth data were analyzed using a maximum likelihood 

estimate (MLE) approach to evaluate which of five different curves (linear regression, 

quadratic, sigmoidal, 5-parameter unimodal, and 6-parameter unimodal) were tested for the 

best fit to all three concentrations and controls. A maximum likelihood ratio test was used 

to examine whether each curve provided a better fit than an intercept-only null model with 

a significance level of α < 0.05. All calculations for the concentration–effect curves were 

performed using mean behavior variables, re-scaled between 0 and 1 within each cycle 
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to facilitate comparison between salinity. R scripts used for data preparation, statistical 

analysis, and graphing can be found at https://github.com/branderlab/TWP-DRC-Curve.git, 

and examples using the same package are published in other studies (Brander et al., 2016; 

Frank et al., 2019; Mundy et al., 2020) Concentration dependent dose response curves for 

behavioral data were prepared by drm function in r using DRC package by Ritz, (2010), 

which does not include leachate (due to the absence of particle count). The Shapiro–Wilk 

test was used to test normality, and Levene’s test was used for homogeneity testing. After 

confirming normality and homogeneity of data, a 3-4 parameter using nonlinear regression 

approach was used to prepare the model at each salinity and combined using ggplot2 

function in R. Analysis of Variance (ANOVA) was used to evaluate differences among 

treatment groups. A Tukey HSD post-hoc test was used to compare particle concentrations 

between treatments, and a Dunnett’s post-hoc test was used to compare leachate treatments 

to controls. Differences were considered statistically significant at p < 0.05.

3. Results and discussion

3.1 Behavioral responses of model species when exposed to TP in a range of salinities

3.1.1 Behavioral responses for A. bahia—Average A. bahia larvae survival for 

control and exposure treatments was 98 ± 2% and 90 ± 3 %, respectively, with no significant 

difference across the treatments (ANOVA (Normal distribution, Tukey HSD post-hoc, p < 

0.05)). Out of all seven behavioral responses analyzed, ~50% of micro- TP exposures and 

~33% of nano-TP (except 25 psu; ~57%) exposures were significantly different from the 

control group in at least one concentration in both light and dark cycle at least one salinity 

(SI Table 4; Fig. SI Fig. 1C &D). In both the micro and nano-sized TP treatments, A. bahia 
turn angle, freezing, movement and in zone duration (time spent in center of beaker) were 

most significantly affected at each salinity (Fig.1). In leachate-exposed A. bahia, six out 

of the seven variables (freezing, movement, In zone duration, frequency, meander and turn 

angle) were significantly different from the control group (SI Fig. 1B).

When compared between dark and light cycles, A. bahia demonstrated increased distance 

and meander in the light cycle at highest salinity, with increasing freezing frequency and 

time spent in the zone at lowest salinity in micro and nano TP exposed group (Fig. 1 & 

3). When compared between TP sizes, nano-TP caused hyperactivity in A. bahia, reflected 

by their swimming distances significantly increasing in a concentration dependent manner. 

Selected variables (distance, in zone duration, meander and turn angle) in the dark and light 

cycle micro-TP demonstrated about 70% behavioral alterations compared to control whereas 

in nano-TP exposure group about 80% behavioral alterations in both dark and light cycles at 

at least one salinity (SI Table 4; SI Fig. 1).

In terms of salinity, behavioral alterations in both nano and micro-TP exposures were 

significantly higher at the two higher salinities (15 and 25 PSU). This suggests nano-TP 

affected mysids more at a higher salinity as reported by other studies (Kögel et al., 2020; 

Lee et al., 2013; Rist et al., 2017). This may be due to agglomeration at higher salinities 

(Shupe et al. 2021). When D. magna were exposed to nano (1-9 μm) and micro (>10 μm) 

plastics, nanoplastic was reported to decrease 21% feeding rates compared to microplastic 

exposure (Rist et al., 2017). Other studies reported hyperactive behavior in zebrafish 
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(Danio rerio) exposed to micro polystyrene (PS) (0.001-20 mg/L, equals to 14.5~2.9 × 105 

particles/mL) and sticklebacks (Gasterosteus aculeatus) exposed to PE (50,000 particles/ml) 

each, (Bour et al., 2020; Chen et al., 2020). Moreover, hyperactivity has been reported 

in the F1 offspring of zebrafish exposed to polyvinyl chloride (PVC) and high-density 

polyethylene (HDPE) (Cormier, 2020).

3.1.2 Behavioral responses for M. beryllina—Average M. beryllina larvae survival 

for control and exposure treatments was 97 ± 3% and 91 ± 2 %, respectively, with no 

significant difference across the treatments (Normal distribution, Tukey HSD post-hoc, p < 

0.05). In M. beryllina, all the behavioral variables measured were significantly differently 

from the control group in at least one salinity (SI Table. 5; SI Fig. 2C & D). In both 

dark and light cycles, M. beryllina spent an increased time in the zone (the center of 

the beaker) compared to controls, and also had an increased turn angle (Fig. 2 & 4). 

Dark and light cycle behavioral observations showed a similar pattern except M. beryllina 
meandered more compared to the dark cycle at all the exposure concentrations, within 

at least one salinity condition. Following TP leachate exposure concentration, more than 

half of the variables (freezing, movement, In zone duration, frequency, meander and turn 

angle) demonstrated a significant change in behavior from the control in both dark and 

light cycles in at least one salinity condition (SI Table 5; SI Fig. 2B). Similar behavior 

changes were observed in Delta smelt (Hypomesus transpacificus) following exposure to 

pesticides (Mundy et al., 2021, 2020). Concentration dependent dose response curves for the 

selective variables demonstrated 79% behavioral alterations in micro-TP exposed silversides 

whereas, in nano-TP exposure group, about 75% behavioral alterations at both micro and 

nano exposed TP Silversides at both dark and light cycle (Fig. 4). In silversides salinity 

dependent behavioral changes were not significant in the micro-TP exposed group, in 

contrast to nano-TP where higher salinity seems to affect behavior more. This may be 

because of increased agglomeration of nano-TP at higher salinities (Shupe et al. 2021; 

Gousiadou et al., 2021), as this response to nano TP at higher salinities was also seen in 

mysids. Altered swimming behavior, reduced velocity and decreased feeding activity have 

also been observed in larval zebrafish (Danio rerio), larval rockfish (Sebastes schlegelii) and 

sheepshead minnow (Cyprinodon variegatus) when exposed to PS and polyethylene (PE) 

microplastics (Chen et al., 2017; Choi et al., 2018; Noldus et al., 2001; Yin et al., 2019, 

2018).

3.1.3 Comparable Behavioral responses for M. beryllina and A. bahia—When 

comparing M. beryllina and A. bahia behavioral responses, there were some correlations 

(Pearson) identified between some variables (SI Table 6). There was a direct correlation 

observed in M. beryllina between distance related to movement, freezing (0.32-Dark, 0.16- 

Light) (Fig. 2). In contrast to mysid shrimp, there was an inverse relationship between 

movement and freezing (−0.54-Dark, −0.59-Light) (Fig. 1). Freezing demonstrated a weak 

inverse relationship with velocity for M. beryllina and A. bahia. Turn angle and freezing 

mean also showed a weak inverse relationship with the movement for M. beryllina and A. 
bahia. This suggests random movement that can be caused by additional stress due to the TP.
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3.1.4 Salinity impacts on Behavioral responses for M. beryllina and A. bahia
—Within different salinities, the lowest salinity (15 PSU) in A.bahia demonstrated the 

highest variation from control in combined dark and light cycles in all concentrations 

of micro-TP (SI Table 4; Fig.1). This was in contrast to nano-TP and leachates, where 

the highest salinity (25 PSU) demonstrated the most impact on behavioral variation. As 

mentioned above, this may be due to agglomeration behavior, and also due to some soluble 

chemicals becoming more bioavailable at higher salinities, and thus potentially more toxic, 

although this requires further research (Hutton et al., 2021; Saranjampour et al., 2017). 

Similar results were observed in M. beryllina, where in both the dark and light cycle the 

lowest salinity (5 PSU) showed most variation from control when exposed to micro-TP 

in contrast to nano-TP and leachate exposure group, where the most behavioral variation 

from control was seen in highest salinity (25 PSU) (SI Table 5; Fig. 2). These results align 

with recent findings on nanoplastics agglomerating more as salinity increases (Shupe et al., 

2021). M. beryllina exposed to both micro and nano-TP exhibited increased duration of time 

spent in central habitat across all concentrations and salinities, except individuals exposed 

to nano-TP in the highest concentration and TP leachate, both at lowest salinity in dark 

cycles. Similarly, A. bahia exhibited increased in zone duration across all TP concentrations, 

salinities, and light-dark cycles, including individuals exposed to TP leachate. Occupancy of 

the boundaries of a novel environment is widely documented to indicate a stress response 

in fish, rodents, and humans (Kallai et al., 2007; Schnörr et al., 2012; Sharma et al., 2009; 

Treit and Fundytus, 1988). An increase in central habitat occupancy that is significantly 

different from control organisms may indicate increased exploration or indiscriminate 

feeding behavior. Previous studies observed impaired swimming competence and reduced 

exploratory behavior in N. japonica exposed to PS microbeads (Wang et al., 2020). The 

uninhibited exploration behavior we observed may lead to an increased risk of predation in 

these highly susceptible larval fish.

Behavioral changes can be an outcome of physiological changes like respiratory stress 

(Abdel-Tawwab et al., 2019; Hashemi et al., 2019) that may be caused by changes in oxygen 

consumption with altered ion regulation (Kolandhasamy et al., 2018; Watts et al., 2016) as 

observed in this study, where increasing zone duration and freezing are caused at various 

TP concentrations (Fig. 1& 2. ; SI Table 4&5). Similarly, ingestion of irregularly sized TP 

may also induce irregular behavior (Wang et al., 2016; Wright et al., 2013) and may be 

another reason for irregular behavior patterns in our study (Fig 1 and 2). These particles 

can also come in contact with the skin, gills, fins, and eyes of the organisms, when present 

in high concentrations, and may result in abnormal swimming behavior (Choi et al., 2018), 

as observed in this study with altered turn angle and meandering patterns differing from 

control (Fig. 1&2; SI Table 4&5). Altered turn angle and meandering patterns describe 

necessary behavioral patterns required by an aquatic organism for their survival, supporting 

actions such as predator avoidance or foraging. Some of the behaviors documented in our 

study (in zone, turning, and velocity) may represent hyperactive behavior of an organisms 

(Mundy et al., 2021). Behaviors exhibited by organisms exposed to tire particles herein may 

also be indicative of exploration avoidance, or an indication of anxiety-like behavior (e.g., 

altered in zone duration, Schnörr et al., 2012). If an organism can’t respond quickly to prey 

or a potential predator and gets confused due to the presence of external particles it may 

Siddiqui et al. Page 9

Chemosphere. Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



limit their ability to survive, causing long term population decline (Weis and Candelmo, 

2012). Several studies have reported that MNPs can cause movement-related neurotoxicity 

in organisms (Barboza et al., 2018; Lei et al., 2018; Yin et al., 2018), as reported in this 

study, with changing movement and distance in model species when exposed to various 

TP concentrations indicating neurotoxicity as other studies have with other polymer types. 

Swimming behavior is crucial for predator defense and avoidance, food acquisition, and 

social activity (Colwill and Creton, 2011) that all require motor as well as sensory systems 

(Roberts et al., 2011; Wong et al., 2010) to work in concert. M. beryllina are known to occur 

in schools and exhibit diel migrations following zooplankton prey, often displaying high 

school densities during the nocturnal period, presumably to reduce predation (Wurtsbaugh 

and Li, 1985). The presence of high TP concentrations may alter migration or shoaling 

patterns and limit population ranges, although environmentally relevant TP concentrations 

in larger water bodies may not present significant risk at this time. A. bahia exposed 

to nano-TP concentrations (60 and 6,000 p/ml) at 15 PSU and 25 PSU in dark cycles 

exhibited further total distance moved while organisms exposed to TP leachate in light 

cycles exhibited shorter total distance moved at 25 PSU salinity. Increased activity from TP 

exposure in nocturnal periods may not present high risk to the diurnally benthic A. bahia, 

which becomes planktonic at night to forage for food and engage in reproductive activity 

(Wortham-Neal and Price, 2002). However, observations of decreased activity resulting from 

TP leachate exposure in A. bahia during diurnal periods may increase susceptibility to 

predation by fish or crustaceans who forage during the day or cause reduced food intake.

3.2 Growth and Ingestion

A. bahia growth demonstrated a significant concentration-dependent decrease in both the 

highest salinities (Normal distribution, Post-hoc Tukey’s test, ANOVA, p < 0.05) micro-TP 

exposure (Fig. 5). There were no significant differences observed in leachate concentration 

when compared to control (Fig. 7A). When compared between the salinities, A. bahia 
demonstrated comparatively better growth at the highest salinity, which was reduced 

significantly at the highest TP concentration (Tukey HSD post-hoc, ANOVA, p < 0.05). 

There was no significant growth reduction demonstrated in nano-TP-exposed A. bahia over 

all concentrations. However, the highest salinity demonstrated better growth compared to 

both lower salinities. The appearance of ingested TP was concentration-dependent in A. 
bahia, as shown in Fig. 8A and 9A. TP ingestion is also documented in other benthic 

invertebrates (Khan et al., 2019; Redondo-Hasselerharm et al., 2018). In the case of 

amphipod crustacean (Hyallela azteca), gut retention times of 24–48 h were observed in 

ingested TP with a significant impact on net growth when exposed to 500–2000 p/ml (Khan 

et al., 2019).

M. beryllina demonstrated significant concentration-dependent reduced growth in both 

micro- and nano-TP exposed groups at all salinities, except in nano-TP group at lowest 

salinity (Tukey HSD post-hoc ANOVA, p< 0.05; Fig. 6). There were no significant 

differences observed in leachate concentration when compared to control (Fig. 7B). This 

is true in the case of M. beryllina’s ingestion of micro-TP as well, where ingested particles 

were observed at the two highest concentrations with the highest number of ingested TP at 

middle salinity (Fig. 7B and 8B). This is consistent with a recent study that traced TP in the 
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gut of 14% of individuals across five fish species surveyed in urbanized estuarine conditions 

(Parker et al., 2020).

Micro and nanoplastic exposures can cause adverse effects on the growth and development 

of larval aquatic organisms, primarily through ingestion (Athey et al., 2020; Lo and Chan, 

2018). Inhibited growth may reduce the probability of attack because of inconspicuousness, 

but in the long term may increase failure to escape as a result of less developed sensory 

and locomotion abilities (Fuiman and Magurran, 1994). Further, reduced growth and 

stunted development increase the amount of time a larval organism spends in a specific 

stage or size class, impacting cumulative predation mortality rate (Shepherd and Cushing, 

1980), and could also result in reduced size at reproductive maturity (e.g. DeCourten 

and Brander, 2017). In M. beryllina, optimal growth in laboratory conditions has been 

documented at 15 PSU while Mysid species was 30 PSU (Middaugh et al., 1987). Therefore, 

measuring growth in larval individuals following a period of salinity stress may yield 

unique insight into the effects of TP across different salinities on developing organisms. 

Particularly considering that salinity regimes are already being altered by global climate 

change (DeCourten et al., 2019).

Ingestion of 1 – 20 mm micro-TP was observed in A. bahia and M. beryllina at 6000 

p/ml and 60,000 p/ml. A generalized linear model (GLM) was run for particle count at 

all three concentrations (micro-TP) at different salinities for both the model species (Fig. 

8A and B). The GLM for A. bahia suggested concentration dependent ingestion at all the 

salinities (χ2 = 18.12, df = 3, p <0.005). Results also suggested concentration dependent 

ingestion at the lowest salinities (5 and 15 PSU) (χ2 = 2.55, df = 3, p<0.005). However, in 

M. beryllina in 15 PSU demonstrated increasing ingestion compared to the 5 and 25 PSU 

salinity group (χ2 = 1.04, df = 6, p<0.005). Results suggest that ingestion is likely the most 

common interaction that nondiscriminatory feeding fish larvae and zooplankton have with 

TP. Previous studies confirm that M. beryllina will ingest microplastic at high concentrations 

when exposed to zooplankton internalized with TP, although most particles were observed to 

be egested within 24 hours of internalization (Athey et al., 2020). However, the gut retention 

time for TP in A. bahia is unknown and may be dependent on particle size and shape. The 

irregularity of TP shape may contribute to the varying retention times. Egestion of 10 um 

polystyrene microspheres in other mysid species (N. integer) has been observed to occur 

within 12 hours of ingestion (Setälä et al., 2014). Microplastic can also agglomerate with 

increasing salinity, leading to longer retention times in estuarine species closer to marine 

environments (Ogonowski et al., 2016). In a study comparing the physiological toxicity of 

polystyrene and carboxylate polystyrene (PS-COOH) in mysid shrimp, both plastics were 

observed to reduce feeding efficiency in these organisms. Future studies should carefully 

evaluate changes in density and sinking rates for TP at different salinities.

We observed reduced growth in M. beryllina across all micro-TP and two nano-TP (6000 

and 60,000 p/ml) concentrations with increasing salinity, except for individuals exposed to 

nano-TP at 5 PSU. Other studies have also demonstrated growth inhibition of larval fish 

due to ingestion and accumulation of microplastics in the gut (Athey et al., 2020; Santos et 

al., 2020). A. bahia appeared to be less sensitive to growth restriction by TP and exhibited 

a reduction in growth only in micro concentrations at 20 PSU and 25 PSU. Nano-TP did 
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not elicit a significant response in growth reduction in A. bahia. Inhibited growth in another 

species, N. japonica, has been observed as a result of chronic polystyrene exposure (Lee et 

al., 2021). Several studies investigated the effect that microplastics have on the growth 

of small aquatic organisms. Though some studies found that microplastic, particularly 

polyethylene, exposure did not affect growth (Malinich et al., 2018; Mazurais et al., 2015), 

others noted detrimental effects of microplastics on growth (Athey et al., 2020; Lee et 

al., 2021). These contrasting reports may be attributed to the wide variety of microplastic 

compositions, shapes, and sizes, as well as the lengths of exposure. While no studies could 

be found in the current literature on the effects of TP on mysid or silverside growth, the 

findings of this study are in line with toxicity assessments for other microplastics. For 

example, exposure of mysids (N. japonica) to polystyrene (PS) and PS-COOH resulted in 

growth inhibition in a dose-dependent manner in which increasing concentrations resulted 

in decreasing growth (Wang et al., 2020). Additionally, mysids (N. awatschensis) showed 

impaired growth when exposed to melamine resin microparticles over four weeks (Lee 

et al., 2021). For amphipod (H. Azteca), chronic exposure to polyethylene microplastic 

particles and acute exposure to polypropylene microplastic fibers significantly decreased 

growth (Au et al., 2015). Similarly, growth inhibition in larval fish has been documented as 

an effect of exposure to micro polyvinyl chloride (Xia et al., 2020), low density polyethylene 

(Athey et al., 2020) and microplastic mixtures (Naidoo and Glassom, 2019; Pannetier et al., 

2020). Furthermore, a meta-analysis of the literature (Foley et al., 2018) found that overall, 

exposure of zooplankton to microplastics decreases growth, and food dilution is thought to 

be one of the major mechanisms of MP toxicity to aquatic organisms in general (de Ruijter 

et al., 2020; Koelmans et al., 2020).

In aquatic environments, TPs are influenced by tidal processes, currents, and waves and may 

disperse throughout the estuarine system. At lower salinities closer to the river mouth, TP 

may remain suspended or float, which may make them more available to organisms that 

feed in the water column. TP and other particulates will agglomerate at higher salinities 

and biofouling may occur, increasing the potential for higher density particles to settle out 

into benthic environments. As mysids are indiscriminate feeding epibenthic organisms, this 

settling out may increase the likelihood that mysid shrimp occurring at higher salinities will 

encounter and ingest TP. Additionally, mysid shrimp are confirmed to ingest MP through 

their prey (Setälä et al., 2014). TP is likely to follow the same fate of planktonic trophic 

transfer. Inland silversides typically feed in the water column on copepods, mysids, and 

other zooplankton, although bottom feeding has been observed (Weinstein, 1986). In this 

respect, inland silversides may ingest TP in both the demersal and benthic environments. 

Future studies should further investigate the estuarine processes that affect TP circulation 

and transport and how this will impact aquatic species.

4. Conclusion

Following exposure, M. beryllina and A. bahia had significantly altered swimming 

behaviors, such as increased freezing, changes in positioning, and total distance moved, 

which could lead to an increased risk of predation and foraging challenges in the wild. 

Growth for both A. bahia and M. beryllina was reduced in a concentration-dependent 

manner when exposed to micro-TP, whereas M. beryllina also demonstrated reduced growth 
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when exposed to nano-TP (except lowest concentration). The specific effects of particles 

on growth in our study are notable, in comparison to the insignificant effect of leachate 

on growth. TP internalization was dependent on the exposure concentration and to some 

extent salinity in both taxa. Recently the role of behavioral ecotoxicology in environmental 

conservation has been discussed by various scholars (Ford et al., 2021). This includes 

lab-based research that can help to study more about the individual, population, and 

ecosystem processes. Our research demonstrated the occurrence of significant behavioral 

changes in response to the lowest concentration (60 particles/ml), as well as to higher 

potential future concentrations and leachates under various salinities found in the estuarine 

environment. These behaviors represent ecologically important stimulus responses in field 

conditions, including activity (movement, velocity, freezing), boldness (in zone duration and 

frequency), and exploration (meander, turn angle, distance moved). Behavioral responses 

connect directly to population fitness and ecosystem-level impacts, therefore carrying high 

relevance to be considered by policymakers. Additionally, growth and TP ingestion data 

represent the significant impacts of micro and nano-TP on both of these model species 

that may have population-level implications. Specifically, data collected in the presence of 

estuarine conditions over different salinity gradients, that can aid in the assessment of risk 

over wider environmental ranges. Although automobiles are here to stay, limiting TP from 

entering the environment is paramount if we wish to preserve sensitive aquatic ecosystems 

and fisheries. Possible actions to take in order to achieve this goal may include providing 

incentives for citizen awareness of and participation in waste reduction (Eriksen et al., 2014, 

p. 201; Rochman et al., 2021) redesigning tire constituents with biopolymers and materials 

for circularity (Karan et al., 2019) extending tire producer responsibility for the end of life 

products, (Leal Filho et al., 2019) improving wastewater treatment technology, (Edo et al., 

2020; Katyal et al., 2020) and passing legislation to ban certain synthetic materials, as well 

as increasing use of public transportation rather than single vehicle use (Deng et al., 2020).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Larval mysid shrimp and silversides had significantly altered swimming 

behaviors.

• Growth was reduced in both species in a concentration dependent manner in 

μTP.

• TP internalization was dependent on the exposure salinity in both taxa

• A. bahia & M. beryllina ingested significantly more particles at 15 PSU in 

μTP
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Fig. 1. 
Mysid shrimp (A. bahia) behavioral responses with selective significant variables, 

represented after 7 days exposure to micro and nano-TP in combined average dark and light 

cycles 3 concentrations (60, 6000, 60000 particles/ml) (Lighter to darker color represents 

lowest to highest concentration) of across a salinity gradient 15PSU – 25PSU. Y-axis 

represents data normalized to 0-1 scale. Similar alphabets represent statistically significant 

difference in at least one salinity (* p < 0.05 ANOVA test followed by Dunnet’s test, 

comparing all concentrations to their respective salinity NOM control within each cycle 

per salinity (Control = 0)). Lighter to darker color represents lowest, medium and highest 

concentration.
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Fig. 2. 
Silverside (M. beryllina) larvae behavioral responses with selective significant variables, 

represented after 4 days exposure to micro and nano-TP in combined average dark and light 

cycles 3 concentrations (60, 6000, 60000 particles/ml) (Lighter to darker color represents 

lowest to highest concentration) of across a salinity gradient 5PSU – 25PSU. Y-Axis 

data normalized to 0-1 scale. Similar alphabets represent statistically significant difference 

in at least one salinity (* p < 0.05 ANOVA test followed by Dunnet’s test, comparing 

all concentrations to their respective salinity NOM control within each cycle per salinity 

(Control = 0)). Lighter to darker color represents lowest, medium and highest concentration.
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Fig. 3. 
Mysid shrimp (A. bahia) behavioral concentration response curves after 7 days exposure 

to micro and nano-TP in combined average dark and light cycles across a salinity gradient 

15PSU – 25PSU. “P” represents particle count and “S” salinity. Data normalized to 0-1 

scale. * p < 0.05 ANOVA test followed by Dunnet’s test, comparing all concentrations to 

their respective salinity NOM control within each cycle per salinity.
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Fig. 4. 
Silverside (M. beryllina) larvae behavioral concentration response curves after 7 days 

exposure to micro and nano-TP in combined average dark and light cycles across a salinity 

gradient 5PSU – 25PSU. “P” represents particle count and “S” salinity. Data normalized to 

0-1 scale. * p < 0.05 ANOVA test followed by Dunnet’s test, comparing all concentrations to 

their respective salinity NOM control within each cycle per salinity.
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Fig. 5. 
Concentration response growth curve of mysid shrimp (A. bahia) larvae exposed to micro 

and nano-TP across 15-25 PSU salinity gradient. Each circle represents the rescaled growth 

index mean of one larva (n=9). Data are presented on a log10 X+ 0.05 axis. Curves shown 

as a solid line are significantly better fits than a null intercept-only model (p<0.05), curves 

shown as a dashed line are the best-fit of the five-curve option (lowest p-value), but not 

significantly better than the null model.
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Fig. 6. 
concentration response growth curve of silverside (M. beryllina) yolk-sac larvae exposed to 

micro and nano-TP across 5-25 PSU salinity gradient. Each circle represents the rescaled 

growth index mean of one larva (n=6). Data are presented on a log10 X+ 0.05 axis. Curves 

shown as a solid line are significantly better fits than a null intercept-only model (p<0.05), 

curves shown as a dashed line are the best-fit of the five-curve option (lowest p-value), but 

not significantly better than the null model.
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Fig. 7. 
Control (dark color) compared to leachate (Light color) growth bar plot for A) mysid shrimp 

(A. bahia) and B) silverside (M. beryllina) yolk sac larvae from micro-TP concentration at 

5-25 PSU salinity gradient range.
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Fig. 8. 
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Generalized linear model of TP ingested by A) mysid shrimp (A. bahia) and B) silverside 

(M. beryllina) yolk sac larvae from micro-TP concentration at 5-25 PSU salinity gradient 

range.
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Fig. 9. 
Images of A) mysid shrimp (A. bahia) at 15 PSU salinity with highest micro-TP 

concentrations at 35x and B) larval silverside (M. beryllina) yolk sac at 10x exposed to 

highest micro-TP concentration at 5 PSU salinity. Inset images in each panel are showing 

control organisms.
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Table 1

Behavioral variables from Noldus ethovision software used in this study to analyze Mysid shrimp (A. bahia) 

larvae and silverside (M. beryllina) larvae behavioral response

Variable Unit Description

Distance (Total) cm Total distance moved inside the well throughout the video recording time.

Freezing S The mean of the total time fish were moving for less than 2 seconds.

Movement S Duration for which the selected body point (head and tail region) was changing location with respect to the 
body center.

In Zone duration S The total time spent in the zone defined as the central portion of the beaker

In Zone Frequency The number of times fish spent time in the zone

Meander Deg/cm Turning in animals moving at different speed.

Turn Angle degree Difference in heading between two samples.
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