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Abstract

The ancestral recombination graph is a structure that describes the joint genealogies of sampled DNA sequences along the genome.
Recent computational methods have made impressive progress toward scalably estimating whole-genome genealogies. In addition to
inferring the ancestral recombination graph, some of these methods can also provide ancestral recombination graphs sampled from a
defined posterior distribution. Obtaining good samples of ancestral recombination graphs is crucial for quantifying statistical uncertainty
and for estimating population genetic parameters such as effective population size, mutation rate, and allele age. Here, we use standard
neutral coalescent simulations to benchmark the estimates of pairwise coalescence times from 3 popular ancestral recombination graph
inference programs: ARGweaver, Relate, and tsinferþtsdate. We compare (1) the true coalescence times to the inferred times at each locus;
(2) the distribution of coalescence times across all loci to the expected exponential distribution; (3) whether the sampled coalescence times
have the properties expected of a valid posterior distribution. We find that inferred coalescence times at each locus are most accurate in
ARGweaver, and often more accurate in Relate than in tsinferþtsdate. However, all 3 methods tend to overestimate small coalescence
times and underestimate large ones. Lastly, the posterior distribution of ARGweaver is closer to the expected posterior distribution than
Relate’s, but this higher accuracy comes at a substantial trade-off in scalability. The best choice of method will depend on the number and
length of input sequences and on the goal of downstream analyses, and we provide guidelines for the best practices.
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Introduction
The full ancestral recombination graph (ARG) is a structure that

encodes all coalescence and recombination events resulting from

the stochastic process of the coalescent with recombination.

Hudson (1983) first described a stochastic process that combines

recombination and coalescence to generate genealogies. At each

given site, the genealogy resulting from this process is equivalent

to the one generated by the single-locus coalescent model

(Kingman 1982), but because recombination breaks loci apart

(Fig. 1a), the local genealogies can differ between sites.

Representations of the ARG
The full ARG can be represented as a directed graph with 2 types

of nodes: (1) coalescence nodes, where 2 or more edges merge

into one (backwards in time) and (2) recombination nodes, where

1 edge splits into 2 (backwards in time) (Fig. 1b). Alternatively, the

full ARG can also be represented as an ordered collection of mar-

ginal coalescence trees, annotated with the recombination nodes.

These marginal trees are embedded in the graph representation
(Fig. 1, b and c).

In some representations, the collection of trees may or may not
contain all the information from the full ARG, depending on whether
the times of recombination events (red crosses in Fig. 1) are stored
with the trees (Rasmussen et al. 2014), and whether the internal
nodes of the tree are labeled so they can be explicitly shared be-
tween adjacent trees. Furthermore, in some cases only topology
changing recombination events are represented, and thus informa-
tion regarding recombination events that do not lead to topology
changes can be lost (Kelleher et al. 2019). Finally, some representa-
tions of ARGs as a collection of local trees allow more than one re-
combination event between trees (Speidel et al. 2019). In the latter 2
cases, each tree will potentially be an average of multiple coales-
cence trees. Figure 1d shows an example of a collection of local trees
that does not correspond to the underlying full ARG, since one of its
local trees is an average of 2 adjacent trees with identical topologies.

Collections of local trees with labeled internal nodes, regard-
less of whether they represent a full ARG or not, can be
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represented efficiently in computer memory by noting that each
branch is part of many marginal trees (note repeated node num-
bers across trees in Fig. 1c). This property has been explored in
the “tree sequence” format (Kelleher et al. 2018).

The full ARG contains all the information in a sample of DNA
sequences regarding demography. Specifically, for a set of demo-
graphic parameters h, parameters of the mutational process l,
sequence data x, and ARG G, pðxjh; l;GÞ ¼ pðxjl;GÞ, i.e. if G is

known there is no more information in the data about h. A similar
statement can be made for recombination and selection; if the
leaf nodes of G are augmented with the allelic state at the se-
lected loci. Therefore, the ARG is necessarily at least as informa-
tive as the combination of any and all summary statistics
traditionally used to infer evolutionary processes (such as FST, p,
Tajima’s D, or EHH). Knowledge of the ARG is key for constructing
powerful methods for extracting population genetic information
from DNA sequencing data.

Inferring ARGs
Unfortunately, ARGs cannot be directly observed but must be in-
ferred from the data. Together with an estimate of the ARG, it is
desirable to quantify the uncertainty around the inferred ARG,
for example by obtaining samples of ARGs according to their pos-
terior probabilities under a given model (we discuss examples of
these models in the next section). Such samples can be used to
quantify uncertainty regarding ARG inferences in downstream
analyses. Accurate sampling from the posterior distribution is es-
pecially relevant for downstream methods that rely on impor-
tance sampling to infer evolutionary parameters from ARGs. In
essence, these methods weight parameter inference under each
sampled ARG by the ARG probability and therefore require that
the samples of ARGs accurately reflect their probability distribu-
tion. These types of methods can be used to infer population size
history, selection (Stern et al. 2019), migration (Osmond and Coop
2021), mutation rates, and recombination rates.

Inferring full ARGs and quantifying inference uncertainty by
sampling from the posterior distribution is a challenging problem
computationally. It requires navigating a high-dimensional distri-
bution of ARGs, which are themselves a complicated data struc-
ture. For this reason, inferring ARGs and sampling from their
posterior distribution seemed like a nearly impossible endeavor
some years ago, but important methodological developments
now allow us to do so. Today, there are several methods available
to estimate the full ARG or approximations of it, including
ARGweaver (Rasmussen et al. 2014), Relate (Speidel et al. 2019),
and tsinfer þ tsdate (Kelleher et al. 2019; Wohns et al. 2022).

Approximations of the coalescent with
recombination
The classical way to include recombination in coalescence mod-
els is to consider the temporal process of lineage splitting caused
by recombination and lineage merger caused by coalescences as
one moves backwards in time (Hudson 1983; Griffiths and
Marjoram 1997) (Fig. 1, a and b). Wiuf and Hein (1999) considered
instead the spatial process of recombination along a sequence. In
this formulation, the ARG is constructed as a sequence of local
coalescent trees along a genome, where each tree is separated
from adjacent trees by recombination events (Fig. 1c). At each re-
combination breakpoint, a new tree is formed from the immedi-
ately preceding tree. To form the next tree, first one of the
branches in the current tree is detached. Next, a point earlier
than the detachment point is randomly chosen from any of the
branches in any of the previous trees in the sequence. Finally, the
detached branch coalesces to this chosen point.

To improve the computational efficiency in simulations,
McVean and Cardin (2005) proposed approximating the spatial
process as a Markovian process called the Sequentially
Markovian Coalescent (SMC). In the SMC, when a lineage is de-
tached from a tree at a recombination event, it can only coalesce
back to one of the other lineages present at the current tree.
Marjoram and Wall (2006) proposed an improved approximation,

Fig. 1. Schematic representations of the genealogy of a sample of 2
diploid individuals. Colors denote the 4 haplotypes sampled, and black
lines indicate lineages or sequence tracts where at least 1 coalescence
has occurred. Dark red crosses indicate recombination events. a) The
genealogy embedded in a pedigree. b) An ancestral recombination graph
(ARG) that fully represents all genealogical relationships shown in (a),
assuming that recombination events are annotated with the sequence
coordinates. c) An equivalent representation of the full ARG as a set of
local trees separated by a single recombination event. d) A set of trees
that does not correspond to the full ARG. Instead, the second tree is an
average of the local trees at that region. This set of trees is missing a
recombination event that does not change topology, but changes the
coalescence time. Other types of recombination events that could me
missing in a partial ARG are: (1) recombination followed by coalescence
in the same branch, which does not change topology or other
coalescence times and (2) topology changing recombination events.
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the SMC’, in which the detached lineage can coalesce to any
branch in the current tree, including the one it was detached
from. This means that some recombination events in this model
do not generate a different local coalescent tree. This simple
modification significantly improves the model in terms of ap-
proximating the full coalescent (Marjoram and Wall 2006; Wilton
et al. 2015).

A heuristic approximation to the coalescence with recombina-
tion proposed by Li and Stephens (2003), extending ideas from
Stephens and Donnelly (2000), approximates the coalescent with
recombination using a copying process where 1 sequence is mod-
eled as a copy of other sequences in the sample, with errors rep-
resenting mutations and switches in the copying template
representing recombination events. While this model has disad-
vantages, such as a dependence on the input order of sequences,
it has proved computationally convenient for many purposes, in-
cluding demography inference, introgression detection, and more
(Sheehan et al. 2013; Steinrücken et al. 2018, 2019).

The formulation of the coalescent with recombination approx-
imated as a Markovian process generating tree sequences in the
SMC (McVean and Cardin 2005) and SMC’ (Marjoram and Wall
2006) and as a copying process of individual sequences by Li and
Stephens (2003), paved the way for more scalable ARG inference
methods. Notably, ARGweaver (Rasmussen et al. 2014) based on
the SMC or SMC’ model, and Relate (Speidel et al. 2019), and tsin-
fer þ tsdate (Kelleher et al. 2019; Wohns et al. 2022) based on the
model by Li and Stephens (2003).

ARGweaver
ARGweaver uses Markov Chain Monte Carlo (MCMC) to sample
ARGs from the posterior distribution under the SMC or SMC’. It
relies on a discretization of time (such that all recombination and
coalescence events are only allowed to happen at a discrete set of
time points) which makes the state space of ARGs finite count-
able and allows the use of discrete state-space Hidden Markov
Models (HMMs). It then uses a lineage threading approach, which
is a Gibbs sampling update, to sample the history of a single line-
age or haplotype from the full conditional posterior distribution
given the rest of the ARG connecting all other haplotypes.

Relate
Relate simplifies the problem of ARG inference by inferring mar-
ginal coalescence trees, instead of full ARGs. Inference is divided
into 2 steps. First, the Li and Stephens (2003) haplotype copying
model is used to calculate pairwise distances between samples in
order to infer local tree topologies. Next, it uses MCMC under a
coalescent prior to infer coalescence times on those local trees.
Relate is able to output samples of coalescence times from the
posterior distribution using this MCMC approach, but it does so
for the same fixed sequence of tree topologies. This is different
from the ARGweaver MCMC sampling, which also samples the
tree topology space (Table 1).

Tsinfer, tsdate, and the tree sequence framework
Tsdate (Wohns et al. 2022) is a method that estimates coales-
cence times of tree sequences. Here, we used this method to date
tree sequences inferred by tsinfer (Kelleher et al. 2019). Similarly
to Relate, tsinfer is also based on the copying process from Li and
Stephens (2003). A key innovation of tsinfer is a highly efficient
tree sequence data structure which stores sequence data and ge-
nealogies (Kelleher et al. 2016, 2018, 2019; Ralph et al. 2020).
Tsinfer performs inference in 2 steps. First, it recreates ancestral
haplotypes based on allele sharing between samples. Next, it
uses an HMM to infer the closest matches between ancestral hap-
lotypes and the sampled haplotypes using an ancestral copying
process modified from the classical Li and Stephens (2003) model
to generate the tree topology. Finally, nodes in tree sequences in-
ferred by tsinfer can be dated by tsdate. Tsdate uses a conditional
coalescent prior, where the standard coalescent is conditioned on
the number of descendants of each node on a local tree. Like
ARGweaver, tsdate also discretizes time for computational effi-
ciency. This framework infers a fixed topology and coalescence
time, but it has the potential to sample coalescence times.

Benchmarking of ARG inference methods
Here, we use standard neutral coalescent simulations to bench-
mark coalescence time inferences in ARGweaver (Rasmussen
et al. 2014), Relate (Speidel et al. 2019), and tsinfer þ tsdate
(Kelleher et al. 2019; Wohns et al. 2022). We focus mainly on
ARGweaver and Relate because they report measures of uncer-
tainty in inference by allowing the user to output multiple sam-
ples from the posterior distribution. Sampling from the posterior
is not currently implemented in tsdate (Table 1), but we include it
in this evaluation because it is a promising framework for very
fast tree-sequence inference, and it will likely provide an option
to output samples from the posterior distribution of tree-
sequences in future updates.

We focus our analyses on coalescence times not only because
they are a very informative statistic about evolutionary pro-
cesses, but also because they can be fairly compared across all
methods. More specifically, ARGweaver and tsdate allow for pol-
ytomies (i.e. more than 2 branches coalesce at the same node).
Relate, on the other hand, does not allow polytomies. Comparing
topologies with and without polytomies could bias our results
depending on how we chose to deal with polytomies, so we de-
cided to focus on coalescence times only.

We run coalescent simulations on msprime (Kelleher et al.
2016) and compare the true (simulated) ARGs to the ARGs in-
ferred by ARGweaver, Relate, and tsinfer þ tsdate. We compare
the ARGs with respect to their pairwise coalescence times using 3
different types of evaluation (Fig. 2). First, we compare the true
pairwise coalescence time at each site to the inferred time.
Second, we compare the overall distribution of pairwise coales-
cence times across all sites and all MCMC samples to the

Table 1. Genome-wide genealogy inference programs compared.

Program Samples topologies Samples coales-
cence times

Supports demo-
graphic model

Scalability (num-
ber of genomes)

Outputs full ARG Supports
unphased data

ARGweaver Yes Yes No �50 Yes Yes
ARGweaver-Da Yes Yes Yes �50 Yes Yes
Relate No Yes No �103 No No
tsinferþtsdate No No No �105 No No

a Hubisz et al. (2020).
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expected distribution. In Bayesian inference, the data averaged

posterior distribution is equal to the prior. Since data are simu-

lated under the standard coalescent with recombination the data

averaged posterior should be exponential with rate 1 in coales-

cence time units (2Ne generations, where Ne is the effective popu-

lation size). Third, we used simulation-based calibration (SBC)

(Cook et al. 2006; Talts et al. 2020) to evaluate if the posterior dis-

tributions sampled by ARGweaver and Relate are well calibrated

(see details in Methods).

Methods
Simulations
We simulated tree sequences and SNP data with msprime ver-

sion 0.7.4 (Kelleher et al. 2016). For simulations with Jukes and

Cantor (1969) mutational model, we used msprime version 1.0.2

(Baumdicker et al. 2021) to add mutations to trees simulated un-

der msprime 0.7.4, because the Jukes and Cantor (1969) model op-
tion was not available in msprime 0.7.4. Unless otherwise noted,

simulations were done under the standard neutral coalescent
(Hudson model in msprime) and using the following parameters:

4 diploid samples (i.e. 8 haplotypes), total map length R¼ 20,000

and mutation to recombination rate ratio l=q ¼ 1. In practice, we
used the following parameter values in msprime: effective popu-

lation size of 10,000 diploids (2Ne ¼ 20; 000), mutation rate and re-
combination rate of 2� 10�8 per base pair per generation and a

total sequence length of 100 Mb.
We varied these standard simulation scenarios in several

ways: using SMC and SMC’ models, different numbers of samples
(4, 16, 32, and 80 haplotypes), a multiplying the mutation to re-

combination ratio by 10 or dividing it by 10 (in each case changing

either the mutation or the recombination rates), and changing

Fig. 2. Methods overview. a) Data (ARGs and DNA sequences) were simulated from the coalescent with recombination. In the model and simulated
data, pairwise coalescence times (CT) are exponentially distributed (Supplementary Fig. 3). T1 represents the CT between samples 0 and 1, at position P
in the simulated data. T̂1;k is the CT between samples 0 and 1 at position P, in each ARG sample k. Point estimates T�1 are obtained as the mean of T̂1;k,
and the rank statistic is computed as the number of T̂1;k that are smaller than the true value T1. b) We compare estimated to simulated values of the CT
of each pair of samples, at each position of the genome. c) We compare the distribution of sampled CT across all sampled ARGs, all sites and all pairs of
samples to the expected exponential distribution. d) We compare the distribution of ranks to the expected uniform distribution.
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the total length of input sequence from 100 to 5 Mb and 250 kb.
These simulated sequences were then divided into 20 equally
sized segments, so that ARGweaver could be run on each in par-
allel (see below). The minimum length of total simulated se-
quence (250 kb) was chosen such that the average number of
pairwise differences between each of the 20 segments was 10,
given a mutation rate of 2� 10�8.

We extracted coalescence times at all sites in the simulated
trees in BED format (columns: chromosome, start position, end
position, and coalescence time), with 1 BED file for each pair of
samples. Figure 2 shows an overview of the metrics extracted
from simulated ARGs and from ARGs estimated by
tsinfer þ tsdate or sampled from the posterior by ARGweaver and
Relate.

ARGweaver
VCF files from msprime were converted to ARGweaver sites for-
mat using a custom python script. We ran ARGweaver’s arg-sam-
ple program to sample ARGs. This was done in parallel on 20
segments of equal size, using the –region option. We used the
same values used in the msprime simulations (–mutrate and –
recombrate 2e-8 and –popsize 10000) and except where otherwise
noted, we ran ARGweaver using the SMC’ model (–smcprime op-
tion). We ran ARGweaver with 1,200 or 2,200 iterations (–iters)
(with burn-in of the first 200 or 1,200 iterations, respectively),
depending on how long it took to converge. Assessment of con-
vergence is described below and in the Supplementary Materials,
Evaluating MCMC Convergence. We extracted 100 MCMC sam-
ples from every 10th iteration among the last 1,000 iterations (de-
fault –sample-step 10).

We extracted all pairwise coalescence times in BED format
with the program arg-summarize using options –tmrca and –subset,
and we used bedops [version 2.4.35 (Neph et al. 2012)] to match
the times sampled by ARGweaver to the simulated ones at each
sequence segment. Finally, we used a custom Python script to
calculate the ranks of simulated pairwise coalescence times on
ARGweaver MCMC samples per site.

Time discretization
In ARGweaver, time is discretized such that recombination and
coalescence events are only allowed to happen at a user-defined
number of time points, K (default value is 20) (Rasmussen et al.
2014). These time points sj (for 0 <¼ j <¼ K� 1) are given by the
function

sj ¼ gðjÞ ¼ 1
d

e
j

K�1logð1þdsK�1Þ � 1
n o

; (1)

where d is a parameter determining the degree of clustering of
points in recent times. Small values of d lead to a distribution of
points that is closer to uniform between 0 and sK�1, and higher
values increase the density of points at recent times (default
value is 0.01) (Hubisz and Siepel 2020). Equation (1) ensures that
s0 is always 0, and sK�1 (or smax) is user defined by the parameter
–maxtime (default value is 200,000).

Rounding of continuous times into these K time points is done
by defining bins with breakpoints between them, such that the
breakpoint between times sj and sjþ1 is sjþ1

2
¼ gðjþ 1

2 Þ. All continu-
ous values in the bin between sj�1

2
and sjþ1

2
are assigned the value

sj. We note that for the first and last intervals, the values
assigned (s0 and sK�1) do not correspond to a midpoint in the time
interval but rather to its minimum (s0 ¼ 0) or maximum
(sK�1 ¼ smaxÞ

Here, when reporting results in bins, we use the same time dis-

cretization as defined by the ARGweaver breakpoints (sjþ1
2
).

However, we change the value assigned to times in these bins: in-

stead of using sj, we define tj as the median of the exponential

distribution with rate 1 at the interval between sj�1
2

and sjþ1
2
. To

this end, we first calculate the cumulative probability of the ex-

ponential distribution with rate 1 up to the median of the jth in-

terval

pj ¼
ðsj�1

2

0

e�xdxþ 1
2

ð
sj�1

2

sj�1
2 e�xdx ¼ 1� e

�s
j�1

2 þ e
�s

jþ1
2

2

 !
: (2)

We then take the inverse CDF of the exponential distribution

with rate 1, at the point pj, to find the time tj ¼ �lnð1� pjÞ corre-

sponding to the median value for the interval.
This step is relevant for the simulation-based calibration

(see below), where we take the rank of true (simulated) coales-

cence times relative to the values sampled by ARGweaver. If

we used sj, coalescence times in the first or last ARGweaver

time interval would not be represented by a midpoint. We cor-

rect for that by using tj, so that all time intervals are compara-

ble.
Relate does not use time discretization, and tsdate uses a dis-

cretization scheme where the time points are the quantiles of the

lognormal prior distribution on node ages (Wohns et al. 2022).

Here, we always apply the ARGweaver time discretization

scheme when comparing results in bins.

Relate
VCF files generated with msprime were converted to Relate

haps and sample files using RelateFileFormats –mode

ConvertFromVcf and Relate’s PrepareInputFiles script. We ran

Relate (version 1.1.2) using –mode All with the same mutation

rate (-m 2e-8) and effective population size (-N 20000) used in

the msprime simulations, as well as a recombination map with

constant recombination rate along the genome, with the same

rate used in msprime (2e-8).
We used Relate’s SampleBranchLengths program to obtain 1,000

MCMC samples of coalescence times for the local trees inferred

in the previous step in anc/mut output format (–num-samples

1000 –format a). Similarly to the ARGweaver analysis, we also per-

formed this step in 20 sequence segments of 5 Mb, and we

thinned the results to keep only every 10th MCMC sample.

Finally, we extract pairwise coalescence times and calculate the

ranks of true pairwise coalescence times relative to the 100

MCMC samples. Due to the large number of pairwise coalescence

times, for the simulations with 80 and 200 samples, we extracted

coalescence times from a subset of 210 pairs of samples. We

extracted coalescence times for every 4th vs every 4þ 1th sample

in the case of 80 samples, and 10th vs every 10þ 1th sample in

the case of n¼ 200.

tsinfer and tsdate
VCF files generated by msprime were provided as input to the

python API using cyvcf2.VCF and converted to tsinfer samples in-

put object using the add_diploid_sites function described in the

tsinfer tutorial (https://tsinfer.readthedocs.io/en/latest/tuto

rial.html#reading-a-vcf). Genealogies were inferred with tsin-

fer [version 0.2.0 (Kelleher et al. 2019)] with default settings

and dated with tsdate [version 0.1.3 (Wohns et al. 2022)] using
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the same parameter values as in the simulations (Ne¼ 10,000,
mutation_rate¼ 2e-8), with a prior grid of 20 timepoints.

Pairwise coalescence times were extracted from the tree
sequences using the function tmrca() from tskit [version 0.3.4
(Kelleher et al. 2018)], and output in BED format, with 1 file for
each pair of samples. Finally, coalescence times at each site, for
each pair of samples were matched to the simulated ones (also in
BED format) using bedops (Neph et al. 2012).

MCMC convergence
We evaluated MCMC convergence of Relate and ARGweaver
through (1) visual inspection of trace plots, (2) autocorrelation
plots, (3) effective sample sizes, and (4) the Gelman–Rubin con-
vergence diagnostics based on potential scale reduction factor
(Gelman and Rubin 1992; Brooks and Gelman 1998). Trace plots
were also used to determine the number of burn-in samples, and
autocorrelation plots were used to determine thinning of the
samples. See evaluating MCMC convergence in Supplementary
Materials for details.

Point estimates of pairwise coalescence times
We estimated pairwise coalescence times from the MCMC sam-
ples from Relate and ARGweaver by taking the average of 100
samples at each site (Fig. 2). Since tsdate does not output multi-
ple samples of node times, we use its point estimate of pairwise
coalescence times directly. Point estimates of coalescence times
were compared with the simulated values for each pair of sam-
ples, at each site along the sequence.

Mean squared error (MSE) of point estimates was calculated
from each point estimate of coalescence time (for each pair of
samples, at each site), as well as per bin of size 0.1 of the simu-
lated coalescence times (in units of 2Ne generations) for
Supplementary Fig. 2. We also report Spearman’s rank correla-
tion (r2) of the point estimates of pairwise times in each tree
against the simulated tree, averaged over all positions in the ge-
nome.

Simulation-based calibration
In addition to comparing MCMC point estimates to the true simu-
lated values, we use simulation methods proposed by Cook et al.
(2006) and Talts et al. (2020) to assess whether Bayesian methods
are sampling correctly from the true posterior distribution. Cook
et al. (2006) proposed simulating data using parameters sampled
from the prior. The posterior, when averaged over multiple simu-
lated data sets, should then equal the prior.

In our case, we sample ARGs, G, from the full coalescence pro-
cess with recombination with a known implicit prior of pairwise
coalescence times, PðtÞ ¼ e�t. We simultaneously simulate se-
quence data, x, on the simulated ARGs from the distribution
pðxÞ ¼

Ð
pðxjGÞdPðGÞ. The distribution of the averaged posterior of

G, paveðGÞ ¼
Ð

pðGjXÞdPðxÞ should then equal the prior for G (Talts
et al. 2020), and hence the prior distribution for the pairwise coa-
lescence times, t, should equal the averaged posterior distribu-
tion for t. Here, all population parameters relating to mutation,
effective population sizes, etc. are kept fixed and suppressed in
the notation. One way we will examine the accuracy of the poste-
rior inferences is, therefore, to compare the average of the poste-
rior of t to the exponential distribution. In practice, we simulate
data using msprime (Kelleher et al. 2016) and pipe the data to the
MCMC samplers (ARGweaver and Relate) for inference of the pos-
terior distribution. ARGweaver uses an approximation (SMC’) of
the model (coalescent with recombination) used in the data

simulations, and Relate uses a heuristic method based on the Li
and Stephens model. Thus, inadequacies of the fit of the posteri-
ors could potentially be caused by this discrepancy between the
model used in simulations and the models used for inference.

However, even if the averaged posterior resembles an exponen-
tial, the inferences for any particular value of t may have a poste-
rior that is too narrow or too broad. For a closer examination of the
accuracy of the posterior, we use a method proposed by Cook et al.
(2006) and Talts et al. (2020) that compares each posterior to the
true value. To this end, we compare each true (simulated) pairwise
coalescence time to the corresponding posterior for the same pair
of haplotypes. If the posterior is correctly calculated, the rank of
the true value relative to the samples from the posterior should be
uniformly distributed (Cook et al. 2006; Talts et al. 2020). We use
100 MCMC samples from ARGweaver and Relate for each data set,
meaning our ranks take values from 0 to 100. Deviations from the
uniform distribution of ranks quantifies inaccuracies in estimation
of the posterior. For example, an excess of low and high ranks indi-
cates that the inferred posterior distribution is underdispersed rel-
ative to the true posterior.

Results
Comparison of simulated to estimated
coalescence time per site
We compared coalescence times estimated by ARGweaver,
Relate, and tsinfer þ tsdate to the true values known from
msprime simulations. In all 3 methods, estimates of coalescence
time per site are biased (Fig. 3; Supplementary Fig. 2). Small val-
ues of coalescence times are generally overestimated, while large
values tend to be underestimated (Supplementary Fig. 2). In tsin-
ferþtsdate, point estimates are apparently bounded to a narrow
range (Fig. 3g). The MSE of point estimates is larger in Relate
(MSE¼ 0.625) and tsinfer þ tsdate (MSE¼ 1.631) than in
ARGweaver (MSE¼ 0.397), showing that point estimates of pair-
wise coalescence times at each site are closer to the true value in
ARGweaver. Spearman’s rank correlation is also highest in
ARGweaver (rs ¼ 0.761), but in this metric tsinfer þ tsdate
(rs ¼ 0.705) perform better than Relate (rs ¼ 0.669).

For ARGweaver and Relate, the point estimates of coalescence
times are obtained as the means of samples from the posterior.
These Bayesian estimates are not designed to be unbiased and
unbiasedness of the point estimator is arguably not an appropri-
ate measure of performance for a Bayesian estimator. Therefore,
we also evaluate the degree to which the posterior distributions
reported by ARGweaver and Relate are well calibrated, i.e. repre-
sent distributions that can be interpreted as valid posteriors, and
the degree to which the data-averaged posterior distributions of
coalescence times equals the prior exponential distribution.

Posterior distribution of coalescence times
We simulated data under the standard coalescent model, where
the distribution of pairwise coalescence times (in units of 2Ne

generations, where Ne is the diploid effective population size) fol-
lows an exponential distribution with rate parameter 1
(Supplementary Fig. 3). As argued in the Methods, the same is true
for the data-averaged posterior.

We compared the expected exponential distribution of coales-
cence times with the observed distribution of coalescence times
across all sites inferred by ARGweaver, Relate, and
tsinfer þ tsdate (Fig. 4). For ARGweaver and Relate, we output 100
MCMC samples from the posterior distribution and plot the
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distribution of pairwise coalescence times across all sites and

MCMC samples.
To facilitate visual comparison of the distributions between

methods, we discretized Relate and tsinfer þ tsdate coalescence

times into the same bins as ARGweaver (Fig. 4, d and g; see distribu-

tions without discretization in Supplementary Fig. 4; and see Methods

for a description of ARGweaver time discretization). Because the

time discretization breakpoints are regularly spaced on a log scale,

we use a log scale on the x-axis for better visualization.
Distributions of coalescence times from ARGweaver and Relate

(Fig. 4, a and d) show an excess around 1, when compared with the

expected exponential distribution. However, that bias is more pro-

nounced in Relate than ARGweaver. In tsinfer þ tsdate, the distri-

bution is truncated at 1.6, and it deviates more strongly from the

expected exponential distribution (Fig. 4g). We note that the plots

from ARGweaver and Relate are not directly comparable to those

of tsinfer þ tsdate, since there are 100 coalescence time samples at

each site from the former 2 programs but only 1 from tsdate.

Simulation-based calibration
In this section, we use simulation-based calibration to evaluate

whether ARGweaver and Relate are generating samples from a

valid posterior distribution of coalescence times (see Methods). To
that end, we simulated coalescence times at multiple sites fol-
lowing the standard coalescent prior distribution, and we gener-
ated 100 MCMC samples from the posterior distribution using
both ARGweaver and Relate. Finally, we analyze the distribution
of the ranks of the simulated coalescence times relative to the
100 sampled values at each site.

In the previous section, we showed that the posterior distribu-
tions of ARGweaver and Relate are similar to the theoretically
expected exponential distribution. However, in that analysis we
have not evaluated the distribution of MCMC samples relative to
each simulated value. The results of simulation-based calibration
are informative about that distribution and can reveal if the pos-
terior distribution is well calibrated.

The distribution of ranks from ARGweaver [Fig. 5a;
Kullback–Leibler Divergence (KLD) ¼ 0.027] is closer to uniform
than that of Relate (Fig. 5d, KLD¼ 0.602). However, both show
an excess of low and high ranks. The excess of low and high
ranks indicates that the sampled posterior distribution is
underdispersed (Talts et al. 2020), i.e. the posterior has too lit-
tle variance and does not represent enough uncertainty re-
garding the coalescence times.

Fig. 3. Point estimates of coalescence times in ARGweaver (a–c), Relate (d–f), and tsinferþtsdate (g–i). Left column: l ¼ q ¼ 2� 10�8; middle column:
l=q ¼ 10; q ¼ 2� 10�9; and right column: l=q ¼ 10; l ¼ 2� 10�7. For ARGweaver and Relate, point estimates are the means of 100 MCMC iterations.
Note that axes are in log scale. See Supplementary Fig. 1 for the data in plots (a), (d), and (g) plotted in linear axes. Diagonal line shows x¼ y. MSE, mean
squared error; rs, Spearman’s rank correlation.
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One possible cause for this type of deviation from the uniform

distribution could be MCMC convergence, i.e. samples being

autocorrelated, resulting in effective sample size is lower than

the number of samples taken, the MCMC chain not mixing well

and/or the MCMC chain not being run long enough to achieve

convergence.
We show detailed results for MCMC convergence in Relate and

ARGweaver in the Supplementary Materials. Briefly, we have not

found these types of convergence issues in ARGweaver or Relate

with simulations of 8 haplotypes and mutation to recombination

ratio of 1. Potential scale reduction factor (PSRF) from Gelman–

Rubin convergence diagnostic statistics are all close to 1

(Supplementary Tables 2 and 3), and effective sample sizes are

almost all larger than 100. Therefore, MCMC convergence does

not seem to explain why the rank distributions are not uniform.

Increased mutation to recombination ratio
When inferring an ARG from sequence data, the information for

inference comes from mutations that cause variable sites in the

sequence data. The lower the recombination rate, the longer the

span of local trees will be and the more mutations will be avail-

able to provide information about each local tree. More generally,

an increased mutation to recombination ratio is expected to in-

crease the amount of information available to infer the ARG.

In our standard simulations presented so far, the mutation to

recombination ratio is 1 (l ¼ q ¼ 2� 10�8). We increased the

simulated mutation to recombination ratio to 10, both by

dividing the recombination rate (q) by 10 and also by

multiplying the mutation rate (l) by 10. We expected that these

scenarios would improve inference of ARGs, and consequently

the estimates of pairwise coalescence times. Point estimates are

better with increased mutation to recombination ratio in

ARGweaver (Fig. 3, b and c), Relate (Fig. 3, e and f), and

tsinfer þ tsdate (Fig. 3, h and i).
The coalescence times distribution in Relate (Fig. 4, e and f)

are closer to the expected with l=q ¼ 10 relative to l=q ¼ 1

(Fig. 4d), and the simulation-based calibration also improved

(Fig. 5, d–f, KLD¼ 0.492 and 0.498 compared with KLD¼ 0.602).
The results from ARGweaver with l=q ¼ 10 were more surpris-

ing, with the simulation-based calibration showing a more pro-

nounced underdispersion of the posterior distribution (Fig. 5, b

and c, KLD¼ 0.286 and 0.350, compared with KLD¼ 0.027 for

l=q ¼ 1). The overall distribution of coalescence times, however,

showed little change (Fig. 4, b and c). One possible explanation

for ARGweaver results being worse with higher mutation to re-

combination ratio might be that MCMC mixing is worse under

those conditions, leading to convergence issues not observed for

the previous scenario. Examining convergence diagnostics seems

Fig. 4. Distribution of coalescence times inferred by ARGweaver (a–c), Relate (d–f), and tsinferþtsdate (g–i). Left column: l ¼ q ¼ 2� 10�8; middle
column: l=q ¼ 10; q ¼ 2� 10�9; and right column: l=q ¼ 10; l ¼ 2� 10�7. Plots (d) and (g) show the same data as in Supplementary Fig. 4, using
different binning.
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to confirm this with more coalescence times showing low effec-

tive sample size, and with a potential scale reduction factor
showing evidence of lack of convergence of some coalescence
times (see Evaluating MCMC convergence in Supplementary
Materials).

We show additional simulation results in the Supplementary
Materials, including simulations with reduced l=q, which could

be a realistic scenario around recombination hotspots
(Supplementary Figs. 5 and 6) and ARGweaver results on simula-
tions with intermediate values of l=q (2 and 4), under the SMC
and SMC’ genealogy models, and with the Jukes–Cantor mutation

model in the Supplementary Materials.

Number of samples
Next, we evaluate ARG inference with simulations with different
sample sizes. Our standard sample size used so far was 8 haplo-

types, and here we change it to 4, 16, and 32. For Relate and
tsinfer þ tsdate, which are scalable to larger sample sizes, we
also evaluated inference with 80 and 200 sampled haplotypes.

For ARGweaver, increasing sample sizes decreased the MSE of
point estimates (Fig. 6, a–c), distributions of coalescence times

remained similar (Fig. 7, a–c), but underdispersion of the poste-
rior distribution increased (Fig. 8, a–c). As mentioned in the previ-
ous section, this could be caused by an MCMC mixing problem. In
particular, a larger number of samples will contribute to an in-

creasing number of states for ARGweaver to explore, possibly
leading to poor MCMC convergence (see Evaluating MCMC conver-
gence).

With a smaller sample size (n¼ 4 haplotypes), the coalescence
time distribution from Relate showed an excess around the mean

value (coalescence time of 1) (Fig. 7d). With increasing sample

sizes, it became more similar to the expected distribution (Fig. 7,

e–h). Calibration of the posterior distribution improved with in-

creasing sample sizes up to 32 haplotypes (Fig. 8, d–h).
Both the point estimates and posterior distribution of coales-

cence times in tsinfer þ tsdate do not consistently improve or

worsen with increasing sample sizes in the range tested here

(Figs. 6, l–m and 7, l–m).

Length of input sequence
Point estimates of all programs remained similarly accurate

when a much shorter input sequence was provided (5 mb and

250 kb, Supplementary Figs. 7, a–c and 8, a–c, compared with

100 Mb in previous analyses). The distribution of coalescence

times with 5 Mb input sequence remained similar to the ones in-
ferred with 100 Mb input sequence (Supplementary Fig. 7, d–f).

However, distributions from simulations with only 250 kb input

sequence are visibly more deviated from the expected exponen-

tial distribution (Supplementary Fig. 8, d–f). Distributions of ranks

are noisier with decreasing input sequence length, but KLD

remained similar (Supplementary Figs. 7, h and g and 8).

Runtime
We point out that runtimes differ widely among the programs

compared here, and this factor should be taken into account for

users making decisions on what method to use for their applica-

tions. For example, in the simulations with mutation rate equal

to recombination rate, with sample size of 8 haplotypes and tak-

ing 1,000 MCMC samples, ARGweaver took a total of 641 comput-

ing hours while Relate took 17 h. The clock time was reduced by

running both programs in parallel for segments of 5 Mb of the to-

tal 100 Mb sequence, meaning that ARGweaver took

Fig. 5. Counts of ranks from simulation-based calibration in ARGweaver (a–c) and Relate (d–f). Horizontal line shows expected uniform distribution.
Left column: l ¼ q ¼ 2� 10�8; middle column: l=q ¼ 10 decreasing recombination rate (q ¼ 2� 10�9); right column: l=q ¼ 10 increasing mutation rate
(l ¼ 2� 10�7). Horizontal line shows expected uniform distribution.
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approximately 35 h. However, this still could be a significant
amount of time for the user, depending on their utilization of the
algorithm. For a systematic comparison of runtimes between
Relate and ARGweaver, see Speidel et al. (2019). Impressively,
tsinfer and tsdate took only 5 min.

Discussion
ARG inference promises to be a tremendously useful tool for
inferences of evolutionary history, such as natural selection or
demography. However, it is also a very hard computational prob-
lem. We compared methods that use different approaches to this
problem and evaluated their accuracy using simulated data and
comparisons of 3 aspects of coalescence time estimates: (1) indi-
vidual point estimates of each pairwise coalescence time; (2) the
overall distribution of coalescence times across all sites; (3) the
calibration of the reported posterior distributions.

ARGs are extremely rich in information, including topological
information of individual coalescence trees and information re-
garding the distribution of recombination events. We have not
evaluated these aspects of inferred ARGs but have instead only fo-
cused on pairwise coalescence times. However, pairwise coales-
cence times are extremely informative statistics about many
population-level processes and pairwise relationships between
individuals, and they are also indirectly informative about tree to-
pologies. Other research has compared the accuracy of tree topol-
ogy inference (Rasmussen et al. 2014; Kelleher et al. 2019) and

recombination rates (Deng et al. 2021) among ARG inference meth-
ods. We opted to focus on coalescence times not only because
they are a very informative statistic about evolutionary processes,
but also because they can be fairly compared across all methods.
As described in the Introduction, comparisons of tree topologies
could be confounded by the presence of polytomies in ARGweaver
and tsinferþ tsdate and the absence of polytomies in Relate.

We found a strong speed-accuracy trade-off in ARG inference.
ARGweaver performs best in our 3 tests: point estimates, the
overall distribution of coalescence times, and the quality of sam-
pling from the posterior. Importantly, it is also the only method
we compared that resamples both topologies and node times
(Table 1). This likely leads to a better exploration of ARG space
and is 1 reason why it provides better samples from the posterior.
On the other hand, it also contributes to making ARGweaver
much slower than the other methods and not scalable for
genome-wide inference of 50 or more genomes.

Relate largely undersamples tree topologies (Deng et al. 2021),
and thus every marginal tree estimate is only as good as an aver-
age over a series of true trees (Fig. 1d). This will naturally lead to
a more centered, under-dispersed distribution, as shown by the
larger deviations from the uniform distribution in simulation-
based calibration (Figs. 5 and 8, where ARGweaver KLD values
range from 0.008 to 0.350, and Relate range from 0.429 to 0.938).
Despite not performing as well as ARGweaver in our evaluation
criteria, Relate seems sufficient for comparisons of average trees
across different regions in the genome.

Fig. 6. Point estimates of ARGweaver (a–c), Relate (d–h), and tsinferþtsdate (i–m). Columns show different number of simulated samples 4, 16, 32, 80, or
200 haplotypes. Mean squared error (MSE) is shown for each plot. Note that ARGweaver is not scalable for simulations with larger sample sizes.
*Results for a subset of 210 pairs of samples, instead of all pairwise coalescence times.
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Additionally, we showed that Relate’s inferences generally
improve with sample size (Figs 6–8). This is expected from infer-
ence using the Li and Stephens (2003) copy algorithm, which
tends to better approximate the genealogical process with
larger samples sizes (Hubisz et al. 2020). Because Relate is fast

enough, even for thousands of samples, it is preferred for large
numbers of genomes—not only because ARGweaver is not scal-
able for such large sample sizes but also because Relate infer-
ence tends to improve with larger sample sizes (Hubisz and
Siepel 2020).

Fig. 7. Distribution of coalescence times in ARGweaver (a–c), Relate (d–h), and tsinferþtsdate (i–m). Columns: sample sizes of 4, 16, 32, 80, and 200
haplotypes. *Results for a subset of 210 pairs of samples, instead of all pairwise coalescence times.

Fig. 8. Simulation-based calibration for ARGweaver (a–c) and Relate (d–h). Columns: sample sizes of 4, 16, 32, 80, and 200 haplotypes. Horizontal line
shows expected uniform distribution. Note that the y-axis is centralized on different values but always has the same length. *Results for a subset of 210
pairs of samples, instead of all pairwise coalescence times.
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The framework of tsinfer and tsdate is also based on the Li
and Stephens (2003) model, and it additionally takes advantage
of the succinct tree sequence data structure that makes it scal-
able to even larger sample sizes than Relate, and at least an order
of magnitude larger than tested here (Wohns et al. 2022).
Although we did not find an improvement of tsinfer þ tsdate esti-
mates with increasing sample sizes in the range we tested (4–200
haplotypes), our analyses cannot rule out the possibility of better
tsinfer þ tsdate inference at larger sample sizes.

Increasing the mutation to recombination ratio in simulations
improved point estimates from ARGweaver but did not improve
posterior calibration (Fig. 5). This lack of improvement of the pos-
terior sampling can be explained by lack of convergence and
could potentially be improved by increasing the number of
MCMC iterations. Although the statistics recorded by ARGweaver
at each iteration (likelihood, number of recombinations, etc.)
show convergence (Supplementary Fig. 9 and Supplementary
Table 1), we observed that certain pairwise coalescence times did
not converge in the simulations with increased mutation to re-
combination ratio (Supplementary Table 2, see more discussion
in ARGweaver in Supplementary Materials).

Limitations of our analyses and future directions
The focus of this study is the inference of coalescence times un-
der the standard neutral coalescent, assuming all parameter val-
ues of this model are known and correctly provided to the
programs performing inference. In other words, our goal was to
investigate the performance of the ARG inference methods when
the underlying assumptions are met. We have not explored how
the methods perform under more complex demographic models
and in the presence of natural selection, when the underlying
assumptions are not met, but this is clearly an important future
direction.

We also restrict our analyses to small sample sizes relative to
what is possible for Relate and tsinfer þ tsdate. However, increas-
ing sample sizes up to 200 samples does not consistently improve
performances of these methods. We also note that interesting
discoveries have been made by applying ARG-based methods
with similarly small sample sizes, e.g. Hubisz et al. (2020) ana-
lyzed gene flow between archaic and modern humans using 5
genomes: 2 Neanderthals, 1 Denisovan, and 2 modern humans.

Other factors not explored here could also be relevant for
applications to real data. For example, sequencing or phasing
errors could reduce the performance of all methods. Each of the
methods compared here deal with these problems in a different
way. Both Relate and tsinfer require phased data. While Speidel
et al. (2019) argue that Relate is robust to errors in computational
phasing, Kelleher et al. (2019) acknowledge that phasing errors
could reduce the performance of tsinfer. ARGweaver is the only
method of the 3 that supports unphased data, by integrating over
all possible phases. However, the performance of the program on
unphased data has not been evaluated in this study.

Relate takes sequencing errors into account by allowing some
mutations that are incompatible with the tree topology in its tree
building algorithm. Some robustness to error is shown in Speidel
et al. (2019, Supplementary Fig. 3). Tsdate also uses heuristics in
the ancestral haplotype reconstruction stage to increase its ro-
bustness to genotyping errors (Kelleher et al. 2019), and its new-
est version also accounts for recurrent mutation. ARGweaver can
deal with genotyping errors statistically, using genotype likeli-
hoods and integrating over all possible genotypes (Hubisz and
Siepel 2020). In addition, it can take into account local variation
in coverage and mapping quality, all of which are features not

tested here. ARGweaver can also incorporate a map of variable

mutation rates. ARGweaver, Relate, and tsinfer can all incorpo-

rate maps of variable recombination rates across the genome, a

feature which was not used in our constant rate simulations.
In our standard simulations, we use mutation rate equal to re-

combination rate, which is believed to be approximately true for

humans. In reality, even if average recombination and mutation

rates are similar, the average recombination rate is not distrib-

uted equally along the genome in humans and other mammals

but is concentrated in recombination hotspots. Therefore, it is

possible that ARG inference could be more accurate with real

data, since local trees could span longer sequences separated by

recombination hotspots.

Recommendations for usage
Given that ARGweaver provides the most accurate coalescence

times estimates and the most well-calibrated samples from the

posterior distribution of coalescence times, we recommend using

it whenever computationally feasible. However, it is highly com-

putationally demanding and its usage can become unfeasible

with sample sizes close to 100. Running ARGweaver on small seg-

ments of sequence (5 Mb or 250 kb; Supplementary Figs. 7 and 8)

gave similar results to applications on 100 Mb segments, making

the program highly parallelizable, at least for the purpose of esti-

mating pairwise coalescence times.
When ARGweaver is computationally prohibitive, Relate, and

tsinfer þ tsdate are viable alternative options. However, we em-

phasize that we have only examined coalescence time estimates,

and for other downstream uses of ARG inference that do not rely

mostly on coalescence times, the tradeoffs between these meth-

ods could be different. See Deng et al. (2021) for a comparison of

these methods in the context of estimating recombination rates.

Data availability
The data underlying this article are available in GitHub https://

github.com/deboraycb/ARGsims.
Supplemental material is available at GENETICS online.
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