Table 2.
Step | Code/software |
---|---|
Step 1: Data preprocessing | average_nucleotide_identity.py -i fasta/ -o out_file -m ANIb -s 200—workers 10 |
Step 1: ANI calculation (performed by R script) | ani_alnlen = blast_alnlen- blast_gaps
ani_alnids = blast_alnlen- blast_gaps- blast_mismatch
ani_coverage = ani_alnlen /qlen
ani_pid = ani_alnids/qlen
ani_coverage > 0.7 & ani_pid > 0.3 & Delete the duplicate alignment ANIb_percentage_identity = ∑(ani_alnids * blast_pid)/∑ani_alnlen |
Step 2: Data filtration | cat out.txt| awk ‘{if($3≥95) print $0}’ > 95filter.txt (similarity score cutoff: 95); cat out.txt| awk ‘{if($3≥98) print $0}’ > 98filter.txt (similarity score cutoff: 98) |
Step 3: Visualization | Cytoscape |