Skip to main content
. 2022 May 5;12:7389. doi: 10.1038/s41598-022-11395-2

Table 2.

Performance results for machine learning algorithms using leave-one-patient-out cross validation method.

Classifier Accuracy (%) Sensitivity (%) Specificity (%) Kappa MCC ROC_AUC
Decision tree 68.72 69.16 68.30 0.3744 0.3745 0.75
Discriminant analysis 72.15 84.40 66.33 0.4429 0.476 0.78
Gentle boost 73.52 72.10 75.12 0.4703 0.4713 0.82
k-nearest-neighbors 67.58 69.74 65.84 0.3516 0.3537 0.76
Logistic regression 74.79 79.19 71.55 0.4959 0.5016 0.85
Naive Bayes 63.70 68.29 60.95 0.274 0.283 0.65
Artificial neural network 78.08 85.55 73.21 0.5616 0.5745 0.89
Support vector machine 77.81 85.37 72.91 0.5562 0.5693 0.89