Table 2.
Performance results for machine learning algorithms using leave-one-patient-out cross validation method.
| Classifier | Accuracy (%) | Sensitivity (%) | Specificity (%) | Kappa | MCC | ROC_AUC |
|---|---|---|---|---|---|---|
| Decision tree | 68.72 | 69.16 | 68.30 | 0.3744 | 0.3745 | 0.75 |
| Discriminant analysis | 72.15 | 84.40 | 66.33 | 0.4429 | 0.476 | 0.78 |
| Gentle boost | 73.52 | 72.10 | 75.12 | 0.4703 | 0.4713 | 0.82 |
| k-nearest-neighbors | 67.58 | 69.74 | 65.84 | 0.3516 | 0.3537 | 0.76 |
| Logistic regression | 74.79 | 79.19 | 71.55 | 0.4959 | 0.5016 | 0.85 |
| Naive Bayes | 63.70 | 68.29 | 60.95 | 0.274 | 0.283 | 0.65 |
| Artificial neural network | 78.08 | 85.55 | 73.21 | 0.5616 | 0.5745 | 0.89 |
| Support vector machine | 77.81 | 85.37 | 72.91 | 0.5562 | 0.5693 | 0.89 |