Table 3.
Performance results for machine learning algorithms using k-fold cross validation method.
| Classifier | Accuracy (%) | Sensitivity (%) | Specificity (%) | Kappa | MCC | ROC_AUC |
|---|---|---|---|---|---|---|
| Decision tree | 74.42 | 71.05 | 77.79 | 0.4884 | 0.4895 | 0.80 |
| Discriminant analysis | 73.11 | 52.42 | 93.79 | 0.4621 | 0.5076 | 0.80 |
| Gentle boost | 79.26 | 76.95 | 81.58 | 0.5853 | 0.5859 | 0.88 |
| k-nearest-neighbors | 74.00 | 66.32 | 81.68 | 0.480 | 0.4858 | 0.83 |
| Logistic regression | 75.11 | 69.16 | 81.05 | 0.5021 | 0.5057 | 0.86 |
| Naive Bayes | 69.84 | 51.37 | 88.32 | 0.3968 | 0.4271 | 0.78 |
| Artificial neural network | 82.32 | 80.53 | 84.11 | 0.6463 | 0.6467 | 0.91 |
| Support vector machine | 81.05 | 76.42 | 85.68 | 0.6211 | 0.6237 | 0.91 |