Skip to main content
. 2022 May 5;12:7389. doi: 10.1038/s41598-022-11395-2

Table 3.

Performance results for machine learning algorithms using k-fold cross validation method.

Classifier Accuracy (%) Sensitivity (%) Specificity (%) Kappa MCC ROC_AUC
Decision tree 74.42 71.05 77.79 0.4884 0.4895 0.80
Discriminant analysis 73.11 52.42 93.79 0.4621 0.5076 0.80
Gentle boost 79.26 76.95 81.58 0.5853 0.5859 0.88
k-nearest-neighbors 74.00 66.32 81.68 0.480 0.4858 0.83
Logistic regression 75.11 69.16 81.05 0.5021 0.5057 0.86
Naive Bayes 69.84 51.37 88.32 0.3968 0.4271 0.78
Artificial neural network 82.32 80.53 84.11 0.6463 0.6467 0.91
Support vector machine 81.05 76.42 85.68 0.6211 0.6237 0.91