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Abstract
Purpose  Laryngopharyngeal reflux disease (LPRD) is a general term for the reflux of gastroduodenal contents into the 
laryngopharynx, oropharynx and even the nasopharynx, causing a series of symptoms and signs. Currently, little is known 
regarding the physiopathology of LPRD, and proton pump inhibitors (PPIs) are the drugs of choice for treatment. Although 
acid reflux plays a critical role in LPRD, PPIs fail to relieve symptoms in up to 40% of patients with LPRD. The influence 
of other reflux substances on LPRD, including pepsin, bile acid, and trypsin, has received increasing attention. Clarification 
of the substances involved in LPRD is the basis for LPRD treatment.
Methods  A review of the effects of acids, pepsin, bile acids, and trypsin on laryngopharyngeal reflux diseases was conducted 
in PubMed.
Results  Different reflux substances have different effects on LPRD, which will cause various symptoms, inflammatory 
diseases and neoplastic diseases of the laryngopharynx. For LPRD caused by different reflux substances, 24-h multichannel 
intraluminal impedance combined with pH-metry (MII-pH), salivary pepsin, bile acid and other tests should be established 
so that different drugs and treatment courses can be used to provide patients with more personalized treatment plans.
Conclusion  This article summarizes the research progress of different reflux substances on the pathogenesis, detection 
index and treatment of LPRD and lays a theoretical foundation to develop target drugs and clinical diagnosis and treatment.
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Introduction

Laryngopharyngeal reflux disease (LPRD) is a general 
term for the reflux of gastroduodenal contents into the lar-
yngopharynx, oropharynx and even nasopharynx, causing a 
series of symptoms and signs [1]. Although LPRD was first 
proposed by the American Academy of Otolaryngology-
Head and Neck Surgery in 2002 [2], its pathogenesis and 
treatment remain controversial. Most scholars believe that 
LPRD is a manifestation of extraesophageal symptoms of 
gastroesophageal reflux disease (GERD) [3], and the patho-
genesis is essentially the same as that of GERD. However, an 
indirect stimulation mechanism of the vagal reflex exists in 
LPRD, and the presence of a proton pump (H+/K+-ATPase) 
in the larynx may induce acid production and mucosal dam-
age [4]. According to the 24-h multichannel intraluminal 
impedance combined with pH-metry (MII-pH) and defini-
tion consensus, the types of reflux can be classified as acid 
reflux, weak acid reflux, alkaline reflux, nonacid reflux, 
and mixed reflux [5, 6]. Reflux substances comprise dif-
ferent levels of hydrochloric acid, pepsin, bile, and trypsin. 
These substances are the main components that cause laryn-
gopharyngeal mucosal damage [7]. Presently, proton pump 
inhibitors (PPIs) are the first choice for LPRD treatment, but 
PPIs fail to relieve symptoms in up to 40% of patients with 
LPRD [8]. Substantial clinical evidence is lacking regard-
ing the effectiveness of PPIs on nonacidic LPRD [9, 10]; 
thus, more studies have focused on drug development for 
nonacidic LPRD. In an international research survey, 21.1% 
of otolaryngologists estimated that the prevalence rates of 
nonacidic LPRD and mixed LPRD were 25.4% and 35.5% of 
all LPRD patients, respectively [11]. Given the complexity 
of the symptoms and mechanisms of LPRD and doubtful 
efficacy of PPIs, it is important to study the effects of differ-
ent reflux substances on LPRD.

Mechanistic effects of reflux material 
on LPRD

Hydrochloric acid

Hydrochloric acid is a major determinant of esophageal 
irritation and reflux symptoms [12]. The laryngeal mucosa 
is more sensitive to acid stimulation than the esophagus 
[13]. Even small amounts of acid can cause severe dam-
age to the laryngeal mucosa. Exploring how the larynx is 
exposed to acidic conditions is the key to determining the 
pathogenesis of LPRD.

The acid in the gastric juice or ectopic gastric mucosa 
of the upper esophagus causes reflux due to esophageal 

barrier dysfunction and contacts the laryngopharyngeal 
tissue, causing damage to laryngopharyngeal mucosal 
epithelial cells and inflammation. The mechanism may be 
related to two aspects. (1) Carbonic anhydrase III (CA III) 
can actively secrete bicarbonate and adjust the pH value 
to address acid reflux. The lack of CA III in the laryngeal 
tissue of some patients with LPRD leads to an imbalance 
in pH regulation [14]. (2) E-cadherin is a transmembrane 
glycoprotein in epithelial tissue that affects intercellular 
adhesive junctions. It forms a permeable barrier in the 
epithelial cells of the pharynx and nose, preventing the 
diffusion of most solutes and maintaining tight junctions 
between the cells. Acid reflux can reduce the expression of 
E-cadherin and cause increased intercellular permeability, 
thereby damaging pharyngeal and nasal mucosal cells [15, 
16].

On the other hand, H+/K+-ATPase is a key enzyme 
involved in acid secretion. H+/K+-ATPase is mainly dis-
tributed in the surface layer of gastric parietal cells and 
secretes hydrochloric acid into the gastric lumen through 
the exchange of H+ and K+. Altman et al. [17, 18] demon-
strated that H+/K+-ATPase is present in serous cells and 
ducts of submucosal glands in the human larynx. Although 
its concentration is much lower than that in the stomach, 
this may be another cause of acid exposure [4]. The expres-
sion level of H+/K+-ATPase is higher in laryngeal cancer 
tissues than in normal laryngeal tissues [19]. High expres-
sion of H+/K+-ATPase leads to abnormal acid secretion, 
causing local inflammation, destruction of mitochondria 
and cell carcinogenesis [20]. In addition, H+-ATPase chan-
nels can function as an auxiliary or secondary acid secretion 
pathway even under conditions of K+ depletion or pharma-
cological inhibition of the proton pump [21]. In summary, 
hydrochloric acid acts on CA III, E-cadherin and laryngeal 
H+/K+-ATPase to cause laryngopharyngeal damage. The 
physiological role of laryngeal H+/K+-ATPase will be the 
focus of future research.

Pepsin

The abnormal secretion and activation of pepsin are crucial 
to the pathogenesis of LPRD. Pepsin is converted from pep-
sinogen produced by gastric chief cells and is a major factor 
causing proteolysis and cell damage. Pepsin is undetectable 
in the laryngeal mucosa of healthy individuals [22]. Pepsin 
remains active at pH 2.0–6.0 [23]. At pH 5.5 and 6.0, it has 
approximately 30% and 10% activity, respectively. Under 
neutral conditions, it remains stable, although it is inactive 
[24]. Bulmer et al. [13] found that the laryngeal mucosa is 
essentially resistant to injury at pH 4.0, but when pepsin is 
present, it is extremely vulnerable.

The mechanism of laryngopharyngeal mucosal injury 
caused by pepsin mainly includes the following. (1) Pepsin 
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can downregulate E-cadherin and reduce cell adhesion, 
leading to the release and accumulation of β-catenin from 
the cell membrane to the cytoplasm, thereby increasing 
the possibility of tumor cell infiltration and metastasis [25, 
26]. Pepsin can also combine with CXC chemokine recep-
tor 2 (CXCR 2) by inducing the secretion of interleukin 
(IL)-8 and ultimately altering the levels of E-cadherin/β-
catenin [27]. (2) Pepsin is reactivated by re-exposure to an 
acidic environment or transport to a cell environment with 
a low pH. It enters cells through endocytosis and is stored 
in vesicles or transported to other complex organelles 
(such as the Golgi apparatus), causing mitochondrial dam-
age and promoting the expression of many tumor-related 
genes in a cell environment with a low pH [28]. (3) Pepsin 
reduces the expression of CA III and attenuates the neu-
tralization of CA III on acid [29]. (4) It is involved in the 
stress response mediated by squamous epithelium stress 
proteins (Sep), leading to impaired laryngopharyngeal 
mucosal cell function [30]. Sep not only show protective 
effects on cell stress but also participate in the repair or 
removal of damaged peptides. Pepsin leads to a disrup-
tion of the laryngeal barrier by reducing Sep70 and Sep53 
levels in a low pH environment [31]. (5) Pepsin increases 
the levels of mucin 5AC mRNA and glycoproteins in 
airway epithelial cells through matrix metalloproteinase 
(MMP)-9 and nuclear factor kappa-B (NF-κB) pathways, 
promoting the secretion of airway mucus hypersecre-
tion and causing airway inflammation [32]. In addition, 
Doukas et al. [33] showed that pepsin, at a neutral pH of 
7.0, is more likely to cause NF-κB and signal transducer 
and activator of transcription factor 3 (STAT3) activa-
tion and upregulation than a weakly acidic pH of 5.0–6.0, 
which upregulates growth factor receptor (EGFR), AKT1, 
mammalian target of rapamycin (mTOR), IL-1β, tumor 
necrosis factor-α (TNF-α), RelA/p65, B cell lymphoma 
2 (BCL-2) and IL-6. In another study performed by Niu 
et al. [34], pepsin induced the activation of NF-κB, tumor 
necrosis factor-related apoptosis inducing ligand (TRAIL) 
and NOTCH signaling, representing major mediators of 
cell proliferation, differentiation and apoptosis. (6) Pepsin 
increases the expression of 8-hydroxy-2'-deoxyguanosine 
(8-OHdG) and p-H2AX, which promotes DNA oxidative 
damage and double-strand breaks (DSB) [35]. (7) Pep-
sin causes cell damage and increases cancer risk through 
the endocytosis of lipoprotein receptor-related 1 (LRP1)/
alpha-2 macroglobulin (α-2M) [36]. In essence, pepsin 
causes laryngopharyngeal damage through CA III, IL-8, 
Sep, E-cadherin, NF-κB and other channels in different pH 
environments. How to prevent pepsin from being activated 
is the key to treatment.

Pepsin not only damages the laryngopharyngeal mucosa 
but also induces chronic inflammation of the surrounding 
tissues to cause vocal fold polyp [37], tonsillar hypertrophy 

[38, 39], otitis media [40], recurrent respiratory papilloma-
tosis [22, 41], laryngopharyngeal tumors [34, 36] and other 
diseases.

Bile

Bile reflux is a major cause of inflammatory damage and 
cellular carcinoma of the laryngopharynx and is associated 
with laryngotracheal stenosis, tracheal fibrosis and laryn-
gotracheal malignancy [42]. Bile is secreted by the liver. 
Bile acid is the main component of bile, which maintains 
fat digestion and absorption, regulates inflammation, and 
affects the intestinal flora [43]. Studies have shown that bile 
acid is an independent risk factor for laryngeal cancer. The 
prevalence of LPRD in patients with laryngeal cancer is as 
high as 67% [44]. The bile acid level correlates positively 
with symptom severity and the risk of laryngeal cancer in 
patients with LPRD [45]. De Corso et al. [46] found that bile 
reflux after gastrectomy increased the risk of laryngeal can-
cer by 10 times, and the incidence of laryngeal leukoplakia 
was also higher.

The main mechanisms by which bile acid causes phar-
yngeal inflammation and cell carcinogenesis include the 
following. (1) Bile acid induces the epithelial–mesenchy-
mal transition (EMT) in cells. EMT refers to the trans-
formation of epithelial cells into mesenchymal cells, 
allowing them to migrate and invade. Bile acid induces 
transforming growth factor-β1 (TGF-β1) through EMT 
channels, causing a decrease in E-cadherin and an increase 
in MMP-9 and fibronectin, leading to laryngotracheal scar 
formation, airway remodeling and tumor growth [42]. (2) 
NF-κB activation alters the expression of tumor transfor-
mation-related molecules and produces selective carcino-
genic effects on the hypopharyngeal mucosa. Sasaki et al. 
[47] found that compared with hypopharyngeal squamous 
cell carcinoma (HSCC) specimens without bile reflux, 
NF-κB was significantly activated and altered the IL-6, 
IL-1β, EGFR, STAT3, TNF-α, BCL-2, RelA/p65, cREL, 
ΔNp63, Wnt5a and microRNA expression levels in HSCC 
specimens with typical bile reflux. At the same time, the 
authors confirmed through animal and in vitro experi-
ments that the combination of bile acid and hydrochloric 
acid induces NF-κB activation, changes the expression 
of tumor transformation-related molecules and early his-
topathology, and leads to uncontrolled changes in tumor 
suppressor microRNAs (miR-21, miR-155, miR-192, and 
miR-375) [48–51]. They have been further confirmed to 
increase the Trp53 protein, accompanied by DNA/RNA 
oxidative damage and increased positivity for γH2AX, 
a marker of DSB [52]. However, even at weakly acidic 
pH (5.5–6.0), bile acids can promote DNA/RNA damage, 
NF-κB activation, and precancerous lesions of the mRNA 
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and miRNA phenotypes [53]. In short, bile acids mainly 
act on EMT and NF-κB channels to induce abnormal 
expression of tumor factors.

Trypsin

Trypsin is secreted by pancreatic cells in the form of zymo-
gen. It is the most effective activator of proteinase-activated 
receptor-2 (PAR-2). PAR-2 is involved in intestinal inflam-
mation and the neurogenic inflammatory epithelial response. 
It is expressed in esophageal epithelial cells [54], odonto-
blasts [55], sinus epithelial ciliated cells [56] and others.

PAR-2 activation by trypsin affects the regulation of the 
lower esophageal sphincter (LES). LES dysfunction under-
lies the pathogenesis of LPRD. The LES includes circular 
smooth muscle (CSM) and longitudinal smooth muscle 
(LSM), and activated PAR-2 functions mainly via bidirec-
tional (systolic and diastolic) mechanisms in CSM. Trypsin 
stimulation of PAR-2 activates transient receptor potential 
vanilloid type (TRPV) 1 of capsaicin-sensitive sensory neu-
rons in the CSM. TRPV1 releases substance P (SP), which 
activates natural killer receptors (NKR) 1/2 to induce con-
traction in CSM [57]. Tanaka et al. [58] concluded that 
PAR-2 induces the activation of Rho-associated protein 
kinase (ROK), p38 mitogen-activated protein kinase (p38 
MAPK) and extracellular signal-regulated protein kinase 
(ERK) 1/2. ROK is involved in the contractile function of 
CSM, whereas ROK, p38 MAPK, ERK1/2, and membrane 
hyperpolarization are involved in relaxation.

Trypsin activates PAR-2 to induce the secretion of IL-8 
and TRPV, causing epithelial barrier dysfunction, which 
mainly occurs in the basal layer of the squamous epithe-
lium of the esophagus [59] and larynx [60]. IL-8 is a neu-
trophil chemotactic factor involved in the inflammatory 
response. TRPV has a heat-sensitive, mechanosensitive 
role and includes subtypes such as TRPV1 and TRPV4. 
TRPV1 participates in the processes of inflammation and 
immune activation, aggravates heartburn and pain symptoms 
in LPRD, and damages the epithelial mucosa [61]. TRPV4 
is dependent on calcium inward flow and facilitates ATP 
cytosolic release, which is involved in esophageal mechani-
cal and thermal stimulation and impairs esophageal barrier 
function [62]. Obviously, the main target of trypsin is PAR-2 
and TRPV, causing LES abnormalities and heat sensitivity, 
among other effects.

Other studies have shown that trypsin increases pulmo-
nary aspiration injury. In addition, it can survive in the oral 
cavity, degrading eroded dentin and causing increased tissue 
loss [63].

Overall, the physiopathology of LPRD disease is complex 
and caused by acids, pepsin, bile acids, and trypsin (Fig. 1; 
Table 1).

Interaction between different reflux 
materials

When many types of reflux substances are found in reflux 
fluid, the damage to the hypopharyngeal mucosa is more 
severe. Lee et al. [5] compared nonacidic reflux and mixed 
reflux in LPRD and found that patients with mixed reflux 
had more severe cough, globus sensation and distal reflux.

Under the action of hydrochloric acid, bile acid is proto-
nated, penetrates and dissolves the cell membrane, enhanc-
ing its cytotoxic effect [7]. At the same time, the proteo-
lytic process of pepsin can proceed, causing neutrophils 
to disrupt the integrity of the epithelial barrier [64]. Roh 
et al. [65] found that pepsin and bile acid damage the sub-
glottic tissue more severely under acidic conditions (pH 
1–2). Doukas et al. [66] found that strong acidic conditions 
(pH ≤ 4.0) enhance the carcinogenic effects of bile acids 
on hypopharyngeal cells.

Previous studies have suggested that bile acids inhibit 
pepsin activity [67]. However, Ali et al. [24] concluded 
that bile acids do not attenuate pepsin activity and that 
the combination of the two enhances the damaging effect 
under nonacidic conditions. Presently, the mechanism of 
the interaction between bile acids and pepsin is unclear.

Research and application of reflux 
substances as detection indicators

Presently, 24-h MII-pH is considered the method of choice 
for diagnosing LPRD and can identify liquid, gaseous or 
mixed forms and detect both acid and nonacid reflux [6, 
68]. However, it is invasive, time consuming and expen-
sive, limiting its widespread use in clinical practice. The 
methods used to detect pepsin, bile acid, Sep70 and MMP 
are simple and highly feasible. However, their detection 
standards, sensitivity and specificity are not the same in 
different research centers; thus, they remain unsuitable for 
the clinical diagnosis of LPRD [69]. The positive thresh-
old of pepsin and collection time of saliva specimens 
remain inconclusive [70]. Na et al. [71] concluded that 
the best time for saliva collection is the just awake state of 
LPRD patients. De Corso et al. [45] concluded that bile 
acid is most suitable to diagnose LPRD, with a sensitiv-
ity of 86% and a positive predictive value of 80.7%. Sali-
vary bile acid > 1 µmol/L is a reliable indicator to evaluate 
the severity of LPRD. Hoppo et al. [72] suggested that 
Sep70 is a “protective” indicator, and its absence indicates 
hypopharyngeal cell damage. The Sep70/pepsin ratio may 
be a more reliable indicator to reflect the actual damage 
of LPRD, with a sensitivity as high as 91%. However, its 
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specificity is very low, and its clinical application value 
warrants further study. Im et al. [73] found that the sen-
sitivity and specificity of MMP-7 as a detection marker 
were 71.43% and 79.75%, respectively. When MMP-7 and 
pepsin were combined for detection, the sensitivity and 
specificity increased to 80% and 82.28%, respectively.

Current status of LPRD treatment 
for different reflux substances

Gastric acid‑inhibiting drugs

PPIs are the drugs of choice to treat LPRD and are suitable 
for LPRD patients with typical GERD symptoms. Depend-
ing on severity, the main therapeutic scheme consisted of 
twice daily PPIs, once daily high-dose PPIs or once daily 
PPIs for a duration ranged from 1 to 6 months [74, 75]. The 
most therapeutic scheme for American-Broncho-Esophago-
logical Association (ABEA) members [76] and Brazilian 
otolaryngologists [77] is twice daily PPIs for 2–3 months. 
However, European general practitioners prefer once daily 

PPIs [78]. Park et al. [79] found that twice daily PPIs are 
more effective than once daily PPIs in achieving clinical 
symptom response in suspected LPR, with a treatment dura-
tion of at least 2 months. However, their efficacy remains 
controversial for the following reasons. (1) The long-term 
use of PPIs increases the risk of gastric tumors, acute 
nephritis, etc. [80] (2) The American Academy of Gas-
troenterology does not recommend using PPIs diagnostic 
tests for patients with atypical reflux [74]. For patients with 
suspected LPRD, using PPIs diagnostic tests will increase 
economic costs [9]. (3) Current meta-analyses have shown 
that PPIs are not superior to placebo in treating suspected 
LPRD [81, 82]. (4) The failure of high-dose PPIs treatment 
does not rule out LPRD, and 24-h MII-pH is still required 
[83]. (5) Patients with acid reflux in whom PPIs are ineffec-
tive can try switching to potassium-competitive acid block-
ers, which have a rapid onset of action and long-lasting acid 
suppression [84].

Patients who do not respond to empiric PPIs therapy 
(twice daily for 2–3 months) should be monitored for reflux 
[85]. If acid reflux is clearly present, the PPIs regimen can 
be optimized, including adjusting the administration time 

Fig. 1   Potential mechanisms of reflux material in LPRD patients 
(details are provided in the text). Arrows terminating with → repre-
sent activation, while those terminating with ┴ represent inhibition/
deterioration. CA III carbonic anhydrase III, IL interleukin, CXCR 
2 CXC chemokine receptor 2, Sep squamous epithelium stress pro-
teins, NF-κB nuclear factor kappa-B, STAT3 signal transducer and 
activator of transcription factor 3, EGFR epidermal growth fac-
tor receptor, mTOR mammalian target of rapamycin, TNF-α tumor 
necrosis factor-α, BCL-2 B cell lymphoma 2, TRAIL tumor necrosis 

factor-related apoptosis inducing ligand, 8-OHdG 8-hydroxy-2'-deox-
yguanosine, LRP1 lipoprotein receptor-related 1, α-2M alpha-2 mac-
roglobulin, EMT epithelial–mesenchymal transition, TGF-β1 trans-
forming growth factor-β1, MMP-9 matrix metalloproteinase-9, miR 
microRNA, PAR-2 proteinase-activated receptor-2, TRPV transient 
receptor potential vanilloid type, SP substance P, ROK Rho-associ-
ated protein kinase, NKR 1/2 natural killer receptors 1/2, p38 MAPK 
p38 mitogen-activated protein kinase, ERK 1/2 extracellular signal-
regulated protein kinase 1/2, LES lower esophageal sphincter
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and dose, changing the PPI, and paying attention to noctur-
nal acid breakthrough [74]. When increasing the dose and 
prolonging the treatment time, the potential adverse risks 
should be carefully considered [86].

Alginate

Following exposure to gastric acid, alginate forms a vis-
cous, gelatinous neutral layer or barrier on top of the gastric 
contents to produce a mechanical barrier against the reflux 
of gastric acid or nonacidic substances, thereby reducing or 
preventing contact between gastric contents and the esopha-
geal or laryngopharyngeal mucosa. In addition, alginate has 
a significant inhibitory effect on pepsin [87]. Wilkie et al. 
[88] confirmed that alginate alone effectively relieved LPRD 
symptoms, but no additional benefit was found when used in 
combination with high-dose PPIs. Darwish et al. [89] found 

that alginate raft-forming formulations containing nizatidine 
rapidly relieved burning symptoms.

Enzyme inhibitors or receptor antagonists

Considering the different impact mechanisms of various 
reflux substances on LPRD, various enzyme inhibitors or 
receptor antagonists, including pepsin inhibitors or recep-
tor antagonists, trypsin inhibitors, matrix metalloproteinase 
inhibitors (MMPIs), NF-κB antagonists, PAR-2 antagonists, 
and TRPV1 antagonists, have become new therapeutic tar-
gets. Johnston et al. [90] studied a drug that targets pepsin 
using the following mechanisms: (1) it irreversibly inac-
tivates the enzyme to prevent its reactivation in cells at a 
low pH; and (2) receptor antagonists prevent pepsin uptake 
through receptor-mediated endocytosis. MMP is an enzyme 
that destroys E-cadherin. Kim et al. [16] found that MMPI 
blocks the cleavage of E-cadherin by MMP, reduces changes 

Table 1   The functional roles of cytokines and cellular receptors in LPRD patients

Arrows terminating with ↑ represent activation, while those terminating with ↓ represent inhibition/deterioration
CA III carbonic anhydrase III, IL interleukin, CXCR 2 CXC chemokine receptor 2, Sep squamous epithelium stress proteins, NF-κB nuclear 
factor kappa-B, STAT3 signal transducer and activator of transcription factor 3, EGFR epidermal growth factor receptor, mTOR mammalian 
target of rapamycin, TNF-α tumor necrosis factor-α, BCL-2 B cell lymphoma 2, TRAIL tumor necrosis factor-related apoptosis inducing ligand, 
8-OHdG 8-hydroxy-2'-deoxyguanosine, LRP1 lipoprotein receptor-related 1, α-2M alpha-2 macroglobulin, EMT epithelial–mesenchymal transi-
tion, TGF-β1 transforming growth factor-β1, MMP-9 matrix metalloproteinase-9, miR microRNA, PAR-2 proteinase-activated receptor-2, TRPV 
transient receptor potential vanilloid type, SP substance P, ROK Rho-associated protein kinase, NKR 1/2 natural killer receptors 1/2, p38 MAPK 
p38 mitogen-activated protein kinase, ERK 1/2 extracellular signal-regulated protein kinase 1/2, CSM circular smooth muscle

Reflux material Cytokines/cellular receptors Function References

Hydrochloric acid CA III ↓ Secrete bicarbonate and adjust pH [14]
E-cadherin ↓ Maintain tight junctions between cells [15, 16]
H+/K+-ATPase, H+-ATPase ↑ Secrete acid [4, 17–21]

Pepsin E-cadherin ↓ Maintain tight junctions between cells [25, 26]
IL-8, CXCR 2 ↑ Change the levels of E-cadherin/β-catenin [27]
CA III ↓ Secrete bicarbonate and adjust pH [29]
Sep70, Sep53 ↓ Protect cells from stress and repair or remove damaged peptides [30, 31]
Mucin 5AC mRNA, glycoproteins ↑ Promotes secretion of airway mucus hypersecretion and causes 

airway inflammation
[32]

NF-κB, STAT3, EGFR, AKT1, mTOR, 
IL-1β, TNF-α, RelA/p65, BCL-2, IL-6, 
TRAIL, NOTCH signaling ↑

Lead to cell proliferation, differentiation and apoptosis [33, 34]

8-OHdG, p-H2AX ↑ Promote DNA oxidative damage and double-strand breaks [35]
LRP1, α-2M Causes cell damage and increased cancer risk [36]

Bile EMT, TGF-β1, MMP-9, fibronectin ↑;
E-cadherin ↓

Cause cell migration and invasion [42]

NF-κB, IL-6, IL-1β, EGFR, STAT3, 
TNF-α, BCL-2, RelA/p65, cREL, 
ΔNp63, Wnt5a, miR-21, miR-155, 
miR-192 ↑;

miR-375 ↓

Cause throat cancer [47–51]

Trp53, γH2Ax ↑ Promote DNA/RNA damage and precancerous lesions [52, 53]
Trypsin PAR-2, TRPV1, SP, ROK, NKR 1/2, p38 

MAPK, ERK1/2 ↑
Involved in the contraction and diastole of CSM [57, 58]

PAR-2, TRPV, IL-8 ↑ Cause inflammation and immune activation [59–62]
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in cell permeability, and maintains intercellular communi-
cation, restoring the mucosal epithelial barrier function of 
patients with LPRD. Clinical studies have reported [91] 
that trypsin inhibitors improve the symptoms of reflux 
esophagitis after distal gastrectomy. Vageli et al. [50, 92] 
found that an NF-κB antagonist (BAY 11-7082) reduced the 
expression of NF-κB and related oncogenes induced by bile 
acids. Souza [93] proposed that the unresolved symptoms of 
heartburn after PPIs treatment may be mediated by PAR-2. 
PAR-2 and TRPV1 antagonists are expected to serve as tar-
geted drugs to improve heartburn and pain caused by LPRD. 
Quilty et al. [94] found that p38 inhibitors, MEK inhibitors, 
PKC inhibitors and methyl-β-cyclodextrin through MAPK 
signaling pathways, particularly via p38 and Erk1/2, reduce 
IL-6 or IL-8 secretion, decreasing esophageal inflammation 
and treating GERD.

Prospect

For LPRD caused by different reflux substances, 24-h MII-
pH, salivary pepsin, bile acid and other tests should be estab-
lished so that different drugs and treatment courses can be 
used to provide patients with more personalized treatment 
plans. For patients with nonacid reflux or refractory LPRD, 
PPI medication indications and discontinuation plans require 
multidisciplinary collaborative evaluations such as gastro-
enterology and otolaryngology. The poor efficacy of PPIs 
and precancerous lesions in the laryngopharynx indicates 
that the molecular mechanism of nonacidic components on 
laryngopharyngeal mucosal injury requires further study to 
reduce the recurrence rate of LPRD and incidence of malig-
nant tumors. In addition, many clinical prospective studies 
are required to evaluate whether biomarkers such as pep-
sin and bile acids are reliable as diagnostic and prognostic 
indicators of LPRD to improve the current status of LPRD 
treatment. Many prospective studies are needed to evalu-
ate whether the prognosis of LPRD can be improved using 
pepsin and bile acid as biomarkers.
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