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Computational modeling offers new insight
into Drosophila germ granule development
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ABSTRACT The packaging of specific mRNAs into ribonucleoprotein granules called germ granules is required for germline
proliferation and maintenance. During Drosophila germ granule development, mRNAs such as nanos (nos) and polar granule
component (pgc) localize to germ granules through a stochastic seeding and self-recruitment process that generates homotypic
clusters: aggregates containing multiple copies of a specific transcript. Germ granules vary in mRNA composition with respect to
the different transcripts that they contain and their quantity. However, what influences germ granule mRNA composition during
development is unclear. To gain insight into how germ granule mRNA heterogeneity arises, we created a computational model
that simulates granule development. Although the model includes known mechanisms that were converted into mathematical
representations, additional unreported mechanisms proved to be essential for modeling germ granule formation. The model
was validated by predicting defects caused by changes in mRNA and protein abundance. Broader application of the model
was demonstrated by quantifying nos and pgc localization efficacies and the contribution that an element within the nos 30 un-
translated region has on clustering. For the first time, a mathematical representation of Drosophila germ granule formation is
described, offering quantitative insight into how mRNA compositions arise while providing a new tool for guiding future studies.
SIGNIFICANCE The organization of proteins and mRNAs into membrane-less organelles called biomolecular
condensates is required for diverse biological processes. In Drosophila, biomolecular condensates called germ granules
assemble during oogenesis and are essential for reproduction. During their development, thousands of these condensates
form that vary in mRNA composition with respect to the different transcripts that they contain and their quantity. Thus,
Drosophila germ granule development provides an excellent system to explore how mRNA composition is regulated in
biomolecular condensates. By combining computational modeling with biological experiments, we identified the rules
influencing Drosophila germ granule mRNA composition while offering quantitative insight into the assembly process. Our
findings may shed light on the rules that govern mRNA compositions of biomolecular condensates in other systems.
INTRODUCTION

The development and maintenance of the germline, the set
of highly specialized cells responsible for passing on genetic
material to the following generation, is essential for animal
reproduction (1,2). Recent discoveries revealed that both
germline function and maintenance require the formation
of highly conserved ribonucleoprotein (RNP) granules
called germ granules (1,3–6). Germ granules are biomole-
cular condensates that contain proteins and mRNAs that
are important for germline differentiation, proliferation,
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and maintaining primordial germ cell fate through post-tran-
scriptional gene regulation (1–8).

In Drosophila, germ granules are components of a highly
specialized cytoplasm located at the posterior of the oocyte
called the germ plasm (9,10). Germ plasm and germ granule
assembly are initiated through the local production of Oskar
(Osk) protein at the posterior of the oocyte and the recruit-
ment of additional germ granule proteins, such as the
conserved helicase Vasa (Vas) and Tudor (Tud), the found-
ing member of the Tudor domain family (11–14). Among
the proteins in the germ granule protein ensemble, Osk is
the only one that is both necessary and sufficient for germ
plasm formation, making it the primary organizer of germ
plasm and germ granule formation (13). Transcripts that
comprise the mRNA component of germ granules, such as
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nanos (nos) and polar granule component (pgc), are mater-
nally synthesized in support cells called nurse cells located
at the anterior of the oocyte. Germ granule mRNAs are then
deposited into the oocyte where they diffuse as RNPs con-
taining single transcripts throughout the oocyte cytoplasm.
These single-transcript RNPs are stochastically incorpo-
rated into granules where they become enriched by forming
homotypic clusters, mRNA aggregates that contain multiple
copies of transcripts from the same gene (referred to as
mRNA type) (15,16). Homotypic clusters form through a
stochastic seeding and self-recruitment process within a
germ granule protein ensemble where the ability of the
mRNA to associate with the granule requires the 30 untrans-
lated region (30 UTR) but self-recruitment does not (16–18).
Each granule can contain clusters of different mRNA types
and the process of homotypic cluster formation generates
heterogeneity with respect to mRNA types and the number
of each type that reside within each granule (15,16). Germ
granules continuously increase in number and grow
throughout oogenesis stages�9–14 and in the early embryo,
until Osk production ceases due to the degradation of osk
mRNA (13,16,19). Upon fertilization, the posteriorly local-
ized germ granules induce the formation of pole cells, pri-
mordial germ cells, which develop at the posterior pole of
the embryo (11,20). Developing pole cells inherit germ
granules, including their mRNA constituents; thus, germ
granule mRNA heterogeneity serves as a mechanism to
facilitate the simultaneous and collective segregation of
many mRNA types into the primordial germ cells (15).
Such maternal mRNA inheritance supplies the transcrip-
tionally silent pole cells with mRNAs that direct the produc-
tion of proteins essential to germline development, viability,
and function (1,2). The importance of germ granules is high-
lighted by defects, including sterility, that occur in the
absence of germ granules (14,21,22).

With the advancement of single-molecule fluorescent
in situ hybridization (smFISH) and super-resolution micro-
scopy, precise quantification of germ granule mRNA con-
tent has been instrumental in deciphering the germ
granule assembly process (6,15–18). To study germ granule
development, germ granule mRNA composition is quanti-
fied in various ways using smFISH data: 1) the number of
transcripts found within a homotypic cluster (i.e., cluster
size); 2) the distribution of homotypic cluster sizes found
in the germ plasm; 3) the frequency at which different types
of homotypic clusters populate the same granule (referred to
as colocalization); and 4) the relationship between the sizes
of homotypic clusters of different mRNA types that reside
within the same granule (measured using Pearson’s correla-
tion coefficient) (15,16). Visual representation of the land-
scape of germ granule mRNA content within the germ
granules is accomplished using the Granule Census, which
transforms smFISH data from 3D confocal images into a
2D quantified matrix (16). Despite our ability to detect
and quantify germ granule mRNA characteristics, such as
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cluster size, colocalization, and correlation, questions
regarding how these germ granule features emerge remain
largely unexplored. Our goal is to gain insight into how
germ granule mRNA composition arises using computa-
tional modeling.

Computational modeling has been used to investigate the
formation of biomolecular condensates by focusing on
spontaneous processes and thermodynamic parameters that
are necessary to form liquid-like biomolecular condensates
(23–26). Drosophila germ granules, however, have distinct
biophysical properties. Specifically, the germ granule pro-
tein ensemble has intermediate or gel-like properties given
the partial ability of Osk and Tud to exchange with the cyto-
plasm (18). Despite the proteins’ limited and variable
mobility properties, germ granules also display solid-like
physical properties since mRNAs remain stable as orga-
nized homotypic clusters (16), and fusion events that are
observed in liquid-like condensates (27) are not seen among
homotypic clusters (16). Similarly, recent work has shown
that Xenopus L-bodies also have a dynamic protein-contain-
ing phase and a more stable RNA phase (28). Overall,
Drosophila germ granules are exceptionally stable, as
further demonstrated by their ability to be tracked moving
directionally on microtubules for long-term retention at
the posterior of the oocyte (29). Moreover, Drosophila
germ granules develop over approximately 19 h (20), a
longer timescale than expected for formation of liquid-like
droplets (27,30,31). To advance our understanding
regarding how Drosophila germ granules develop given
their unique biophysical properties, we developed a new
rules-based computational model that calculates the proba-
bilities for granules to be seeded and homotypic clusters
to gain and/or lose transcripts using ordinary differential
equations (ODEs).

In addition to confirming previously reported develop-
mental processes, the model supports the existence of unre-
ported mechanisms that help determine germ granule
mRNA content. The model-supported mechanisms include
a clustering factor, a quantifiable effect that, together with
gene expression levels, regulates the sizes of homotypic
clusters for any particular mRNA type. Modeling also sug-
gests that the ability of the germ granule protein ensemble to
be seeded by a transcript increases over time and that seed-
ing competition emerges as a granule develops. Comparing
modeling data with biological data, we demonstrate that the
computational model simulates the formation of Drosophila
germ granules across 19 h of developmental time with a
high degree of accuracy. To increase the utility of the model,
it is designed with the flexibility to interrogate different
germ granule mRNAs and provide predictive power by
allowing users to adjust parameters to mimic genetic pertur-
bations. Demonstrating the robustness of the model’s pre-
dictive abilities, simulations with adjusted parameters
reproduced germ granule defects that occur in four genetic
backgrounds, including changes in Osk production and
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nos and/or pgc mRNA levels. We also show how the model
quantifies clustering ability and how this property can be as-
signed to a specific region within a 30 UTR by integrating
biological data into the model. Such flexibilities can be
broadly applied to future studies to separate the contribu-
tions that gene expression and clustering factors make in
regulating total mRNA localization. For the first time in
the Drosophila system, the germ granule assembly process
is transformed into a mathematical representation that offers
new mechanistic insight, delivers a continuous visualization
of germ granule formation, and provides a quantitative tool
for guiding future research.
MATERIAL AND METHODS

Mathematical representation of Drosophila germ
granule assembly

The general process of germ granule formation, which includes seeding and

self-recruitment to form homotypic clusters, has been described previously

and is summarized in Fig. 1 (15,16). The model was constructed using 13

parameters that are justified based on the essential components needed to

develop nos and pgc homotypic clusters within germ granules, the seeding

and self-recruitment process, and theoretic behaviors that were necessary to

simulate biological data (Figs. S1 A and 2). A developmental time window

of 19 h was chosen based on the onset of Osk translation and is divided into

previously described stages: late stage 9 to 10B, stage 11, stage 12, stage 13,

stage 14, and the first 1 h of embryonic development (13,20). The model

uses nos and pgc data as reference mRNAs given the availability of quan-

tified smFISH data, and it was designed to output modeled granule data
FIGURE 1 Summary of Drosophila germ granule formation. (A) Confocal m

(posterior germ plasm is to the right). nos (magenta) and pgc (green) mRNAs wer

of nos and pgc in the bulk cytoplasm. The broken red box represents mRNAs

unlocalized single transcripts in the white boxed region in (A). (A00) Enlarged
germ granules in the red boxed region in (A). (B, B0) LIGHTNING super-res

pgc (green), and nos (magenta) shows mRNA-specific subdivisions within a gran

organizing around nuclei at the posterior of the embryo as pole cells begin to fo

Schematic summary of the germ granule formation processes including seeding

developing pole cells.
using the Granule Census (15–17,32). To replicate biological data, the

computational model uses a hybrid rules-based approach where the deci-

sion for a granule to be seeded, gain, or lose a transcript is determined by

probabilities calculated by ODEs that are updated on a 1-min time step.

The choice to calculate probabilities using ODEs is based on the hypothesis

that increased mRNA concentration within the germ granule may increase

the probability of mRNAs to self-recognize and self-sort (18).

The model can be viewed as two components that represent mRNA 1

(nos) and mRNA 2 (pgc). Both nos and pgc follow the same methods,

but hyperparameters that are unique to each are tweaked to give the model

robustness and user flexibility. The general approach to modeling is out-

lined as follows:

I. Update probabilities using ODEs

II. Probabilities decide if a granule is seeded, gains, or loses on each time

step

In the model, the probabilities for seeding, gaining, and losing transcripts

are kept for every granule at any given time step. Seeding by a given mRNA

type can only occur when a granule has 0 molecules of that mRNA type.

Transcript seeding is based on a seeding probability and, if a seeding event

occurs, the granule will gain one transcript. Once seeded, there are four pos-

sibilities for what happens to a granule on every time step with respect to

the number of transcripts in its homotypic clusters. The probabilities to

gain and lose transcripts are both used on every time step to determine

the net change of the granule for a particular mRNA type. Out of the

four possible outcomes, two of them result in a net change of 0 (Fig. S1 B).

The probability for a granule to be seeded by a transcript, s, which is only

used when a germ granule has no transcript of a given type, is given by

Eq. 1:

ds

dt
¼ k

�
1� pg

pt

�
ð1� sÞ: (1)
aximum projection of the posterior region of an early Drosophila embryo

e detected by smFISH. The white box denotes unlocalized single transcripts

that reside within germ granules in the germ plasm. (A0) Enlarged view of

view of the germ plasm localized nos and pgc mRNAs that reside within

olution image of individual germ granules marked with Osk-GFP (blue),

ule. (C, C0) Maximum projection super-resolution images of germ granules

rm. (C0) is an enlarged image of a single developing pole cell from (C). (D)

, recruitment, and the incorporation of densely packed germ granules into
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FIGURE 2 Key principles and parameters that are included in the computational model. (A) Parameters representing the transcript pool and gene expres-

sion for one mRNA type, the granule pool, which increases over time until its upper limit, and the carrying capacity, which increases with an individual

granule’s age. (B) Parameter used to describe the probability for a granule to be seeded by a transcript, the number of transcripts that are in a homotypic

cluster, and the parameter for the probability of losing a transcript. (C) The clustering factor value for nos and pgc; increasing the clustering factor increases

each mRNA type’s clustering ability. Each mRNA’s clustering factor is represented as a reciprocal, d, in the model. (D) The age effect increases a granule’s

probability to be seeded as it increases in age and is impacted by the age effect constant. (E) The competition effect generates a penalty for a granule’s ability

to be seeded and this penalty increases as a granule’s age increases and is impacted by the competition effect constant. The competition effect is only applied

to granules that contain a different mRNA than the one trying to seed as marked by the broken dotted line. Older granules that tend to have larger clusters will

be least likely to accept a new seed (broken x), while younger granules may still seed due to a lesser penalty (broken circle).
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Here, k ¼ 0.01 is a constant, pg and pt are the granule pool and transcript

pool for a particular mRNA type, respectively. The change in a granule’s

probability to be seeded should be proportional to the number of granules

in the pool and the number transcripts in the pool. In addition, since these

are probabilities, the seeding probability is bounded logistically above by 1.

The transcript pool is in fact, on any given time step, always larger than the

granule pool. This means that the probability to be seeded is always mono-

tonically increasing (33). However, this probability is a base value and,

overall, a granule’s probability to be seeded on any given time step is a

product of multiple parameters, and the age and competition effects, which

are further described later.

Once seeded, a granule’s ability to gain a transcript is represented by

Eq. 2:

dg

dt
¼

8><
>:

2k
�cm
d

� r
�
ð1� gÞ cm

d
� r>0

2k
�cm
d

� r
�
g

cm

d
� r%0

: (2)

Here, k ¼ 0.1 is a constant, c is the carrying capacity of the granule, r is

the number of transcripts the granule currently has in its cluster for a given

mRNA type, and g is the current probability to gain. Of note, c and r are

both functions of time. Finally, the variables m and d are special constants

that are paired with each mRNA type in the model. Gene expression
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(transcript levels) for both mRNA types are represented by a modifier, m,

and accepts values from 0 to 1, where 0 is no expression and 1 is wild-

type transcript expression level. Variable d is the reciprocal of what we refer

to as the clustering factor, a parameter that regulates each mRNA type’s

ability to participate in homotypic clustering and is further explained later.

The probability to gain, denoted by g, is used on every time step of the

model to potentially give a granule one new transcript after it is seeded.

Each granule has an independent soft cap carrying capacity, c, that controls

how large homotypic clusters can become. The soft cap allows for granules

to recruit and contain mRNA clusters that are larger than their capacity, to

some extent. Osk has the ability to leave the granule and exchange with the

surrounding cytoplasm without mRNAs (18), suggesting the presence of

support proteins within the granule that can stabilize clusters. Thus, a

soft cap for carrying capacity was chosen to compensate for Osk’s ability

to leave the granule while compensating for other proteins that may help

facilitate clustering to a lesser extent. However, the probability for a granule

to have clusters that are larger than its carrying capacity becomes lower the

larger this difference is. Since it is undesirable for the values to go far

beyond their soft limit, the conditional for the piecewise differential equa-

tion is dependent on the sign of the term cm/d.

Since the model deals with probabilities, the probability to gain tran-

scripts must begin decreasing before the granule actually reaches its car-

rying capacity (32). Otherwise, if the probability to gain decreases only

after a granule hit its carrying capacity, it would still potentially gain

many transcripts beyond its limit before the probability became low
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enough. The final term for increasing the probability in the top equation is

(1–g), which gives a logistic cap to 1. The bottom equation is for when

probability is decreasing, it is simply multiplied by its current probability

g so the value never goes below 0. Overall, the trajectory of the probability

to gain is bounded between the values 0 and 1 and follows a parabolic

structure.

There is also a probability for a granule to lose a transcript for each

mRNA type, but this value is altered by a simple pair of arithmetic expres-

sions. If the probability to lose decreases, we use Eq. 3:

liþ1 ¼ kli: (3)

Here, l of i is the current probability to lose, and k ¼ 0.1 is a constant.

This is equivalent to an exponential decay. If the probability to lose in-

creases, we instead use Eq. 4:

liþ1 ¼ f

�
1;
l2i þ 2li
1þ li

�
: (4)

In Eq. 4, all variables are the same as Eq. 3. While Eq. 4 achieves an

exponential-like increase for all values between 0 and 0.62, once the value

exceeds 0.62, it is automatically mapped to 1 via the minimum function, f.

Thus, there is an assumption in the model that a small number of germ gran-

ules are probabilistically unfit based on their tendency to lose transcripts.

During oogenesis, the germ plasm region and the number of germ gran-

ules increases over developmental time (15). Therefore, an additional ODE

governs the growth of the granule pool and is given by Eq. 5:

dpg
dt

¼ kpg

�
1� pg

L

�
: (5)

In Eq. 5, pg is the granule pool, k ¼ 0.35 is a constant, and L is the upper

limit of this pool. The upper limit of the pool is adjustable in the model, and

the default value is 16,000 granules.

The resulting probabilities from the ODE update are used in a simple yet

extremely effective rules-based approach. Firstly, the seeding event proba-

bility is only used when a granule has 0 transcripts of that mRNA type in a

cluster. On a time step where this criterion is true, this granule will have a

chance equal to its seed probability to recruit an initial molecule of that

mRNA type. If a granule already has this mRNA type in the granule, it

has a chance to gain and lose a transcript depending on its probability for

both events. Note that a granule may gain and lose a transcript on the

same time step, resulting in a net gain of 0 (Fig. S1 B) (33).

Considering that all granules have an age associated with them from

when they first formed, our model imposes the condition that older granules

have larger carrying capacities. Specifically, the oldest granules in the

model will have the largest carrying capacity, and the youngest granules

will have the smallest carrying capacity. The design for carrying capacity

dynamics is based on the comparison of Osk intensity between stage 10

and 13 oocytes and the correlation to homotypic cluster sizes (see Discus-

sion) (16). The carrying capacity of all granules is monotonically

increasing, although on an individual level granules can lose carrying ca-

pacity on any given time step, due to the ability for Osk to exchange

with the surrounding cytoplasm (18). However, on an individual level, gran-

ules are overall growing larger over time (16), and there are no instances

where a granule completely degrades. The carrying capacities for granule

population follows an evolving weak exponential decay and was designed

to be comparable with the biological distribution of Osk intensity in the em-

bryo (Figs S2, A and B). To generate a model that represents Osk nucleation

and growth, we calculated that �16,000 granules form by factoring in that

there are up to �3 million nos transcripts (15), a �4% nos localization rate

(15,34), an average of 11 nos transcripts per granule in the embryo, and up

to �68% of Osk-gfp granules contain nos (16), (3,000,000 � 0.04/11)/

0.68 ¼ �16,000 granules. By combining 19 h of developmental time, the
number for granules that form, and using the intensity distributions of

Osk-gfp, we generated a model for Osk nucleation and carrying capacity

growth (Video S1).

Cluster sizes are susceptible to changes in transcript levels (16). There-

fore, it is important that the expression levels of nos and pgc can be inde-

pendently controlled in the model. For nos and pgc, two independent

transcript pools are generated by the same function of the model time,

shown in Eq. 6:

ptðtÞ ¼ aþ bðt þ cÞ4: (6)

Here, t is time (hours), and a ¼ 19,200, b ¼ 21.34, c ¼ 0.3833, pt is the

transcript pool for one mRNA type at a given time t. During oogenesis,

mRNAs are transcribed in nurse cells and are continuously deposited into

the oocyte through the process of nurse cell dumping (20), thus the

mRNA pools must be represented as growing pools over model time. The

coefficient and constants were chosen so that �4% of the total amount of

nos transcripts are found in germ granules at any given time step and

�3 million transcripts of nos transcripts are produced, based on biological

observations (15,34). In the late oocyte (stages 13 and 14), nos and pgc tran-

scripts are expressed at comparable levels (Fig. S3 A), thus the same values

were used for both mRNA types in the model. How the mRNA pool

changes over time and responds to different modifiers is shown in Fig. S3

B. Although, nos and pgc are expressed at equivalent levels in the oocyte,

nos produces larger clusters than pgc on average (Fig. S3 A) and (15). To

achieve cluster size tunability in the presence of equal expression levels,

we introduced a parameter, the clustering factor, which is associated with

each mRNA type and helps to influence of recruitment of a specific

mRNA type into a cluster (the reciprocal of the clustering factor is repre-

sented as variable d in Eq. 2). The larger the clustering factor, the better

an mRNA type can be recruited into a cluster. To introduce variability

into the model, this clustering factor can fluctuate based on random sam-

pling from a truncated normal distribution where the average clustering fac-

tor for nos is set at 0.74 and for pgc is set at 0.48. The truncated distribution

ensures that pgc does not form larger clusters than nos on average. Clus-

tering factor has a direct impact on cluster size for each mRNA type,

thus this factor is responsible for generating the observed difference in

nos and pgc cluster sizes regardless of their equal transcript expression

levels. In the model, �4% of the total number of nos transcripts is found

in granules, while �2% of pgc transcripts accumulate in granules due to

the reduced clustering factor. How changing the clustering factor value

for nos or pgc affects the overall accuracy of the wild-type model is shown

in Fig. S3 C.

Colocalization between nos and pgc increases over developmental time

(16). To achieve this behavior in the model, we introduce an age effect,

F, which imposes a seeding penalty on granules based on age, defined as

time from formation of the granule. The younger the granule, the higher

the penalty it receives for its probability to be seeded and, therefore, older

granules have a higher probability to be seeded. The penalty follows a sig-

moid function, offset vertically by 0.5. The age effect is expressed as Eq. 7:

FðxÞ ¼ 1

1þ e�x�am � k: (7)

In Eq. 7, x is a vector of linearly spaced values from 0 to 1 and am ¼ 2.4

and k ¼ 0.5 are constants. It is a shifted and vertically scaled sigmoid func-

tion. As mentioned, this allows younger granules to be penalized more in

their ability to be seeded.

Although introducing the age effect generated a desired increase in co-

localization rate, the modeled Granule Census produced a phenomenon

where the largest clusters of nos were colocalizing with single transcripts

of pgc and vice versa. This phenomenon rarely occurs biologically (16)

but occurred with a high frequency in our model (Fig. S3 D). To fix the

model, we introduce a new competition effect, U (Eq. 8). The competition

effect imposes a penalty for a granule to be seeded if it is already seeded by
Biophysical Journal 121, 1465–1482, April 19, 2022 1469
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another mRNA type. Contrary to the age effect, granules only receive a

competition penalty when they are seeded by another mRNA type and

the competition penalty increases with granule age (see Discussion).

Germ granules that contain no mRNAs are not affected by the seeding

competition penalty. The equation for the competition effect is a decaying

exponential given by:

UðxÞ ¼ e�x�Cm � k: (8)

In Eq. 8, x is a vector of linearly spaced values from 0.0 to 1.0, and cm ¼
2.3 and k ¼ 0.16 are constants. Both age effect and competition effect are

used in conjunction with each other to produce results that are expected

from biological data (Fig. S3 E) (see Discussion). Schematics that summa-

rize each of the computational model’s key parameters and behaviors are

shown in Fig. 2.

To solve the ODEs, we used Euler’s method, since the computational cost

for using higher-order methods is high, given that this calculation is run on

each time step of the model for every single granule. In the early stages, the

number of granules is relatively small, but as the number grows as develop-

mental time increases, the computational cost can increase significantly

(35). The choice of using Euler’s method is not without weighing the

cost of accuracy. Since the model only deals with probabilities, which

have a domain of (0,1) and the ODEs are variations of exponentials, our

ODEs have the benefit of being smooth and bounded by small numbers.

Thus, there is no significant difference when compared with higher-order

methods (36). Initial conditions for new granules and equation constants

were manually chosen and refined based on how well modeled data fit ex-

pected biological data and the Granule Census. How the model responds to

different chosen values for respective initial conditions and constants are

shown in Fig. S4. Technical replicates (n) of simulated modeled data are

reported in the figure legends.
smFISH data collection and microscopy

smFISH was carried out as described previously (15,16,37). In summary,

ovaries were dissected from yeast-fed females in PBS, and 0–1-h old em-

bryos were collected on apple juice agar plates with yeast paste. Tissues

were fixed for 30 min in 4% paraformaldehyde in PBS. Prior to imaging,

samples were mounted in Prolong Diamond (Thermo Fisher Scientific,

Waltham, MA, USA) and allowed to cure for 3 days (15,37). Confocal im-

aging for quantification was performed as described in detail using a Leica

SP5 confocal microscope (16) and super-resolution images were captured

on a Leica STELLARIS 5 confocal microscope with LIGHTNING. Biolog-

ical replicates (n) are reported in the figure legends.
mRNA particle identification and quantification

The detection and quantification of single transcripts and homotypic cluster

(referred to as mRNA particles) were carried out using a custom MATLAB

(The MathWorks, Natick, MA) program that has been described previously

in detail (15,38). In summary, the germ plasm area was first established with

a user-defined polygon that was applied to the entire z series (15 confocal

slices). We then identified mRNA particles in the germ plasm by setting an

intensity threshold based on the average intensity of candidate particles in

the bulk cytoplasm (RNA pools), which contain only a single transcript

(15). By normalizing the intensity of germ plasm mRNA particles to the

average intensity of single transcript particles, we were able to quantify

the absolute number of transcripts in a homotypic cluster within each

germ granule. As previously described, nos and pgc clusters were deter-

mined to reside within the same germ granule (referred to as colocalized)

using a custom MATLAB program that selects colocalized pairs based on

the following criteria: 1) two clusters must be within a z distance of two sli-

ces for confocal images and 2) a colocalized cluster pair must also be within

a distance limit of 200 nm in x-y (15,16). Once nos and pgc clusters were
1470 Biophysical Journal 121, 1465–1482, April 19, 2022
identified, quantified, and organized in colocalized pairs, the data were

used to produce the Granule Census (16). The Granule Census was pro-

duced by organizing and allocating the occurrence of each observed cluster

size to the proper row and column of a matrix where the row represents the

number of pgc mRNAs and the column represents the number of nos

mRNAs found in a cluster. Values for each matrix element were represented

as a jet color scale from blue to red (16). The Granule Census was modified

to use x, y, and z distance thresholds to determine whether nos and pgc

clusters reside in the same granule, whereas the original Granule Census

program relied on marking granules with Osk-GFP (16). The modified pro-

gram allowed for the generation of Granule Censuses without introducing

additional Osk into various genetic backgrounds. For the super-resolution

image in Fig. 1, Osk-GFP was used to mark the protein ensemble. All

confocal images presented are maximum projections that were filtered by

a balanced circular difference-of-Gaussian with a center radius size of

1.2 pixels and surround size of 2.2 pixels (15).
Quantification of mRNA levels

Stage 13/14 oocytes were dissected from yeast-fed females. Following tis-

sue homogenization, RNA was extracted using RNeasy kit (Qiagen, Hil-

den, Germany, cat no. 74104) following the standard protocol. cDNA

synthesis was performed using QuantiTect Reverse Transcription kit (-

Qiagen, Hilden, Germany, cat no. 205311). Gene expression assay was

performed using TaqMan Gene Expression Assays (Thermo Fisher Scien-

tific, Waltham, MA, USA), nos (cat no. 4351372), rpl7 (cat no. 4351372),

and a custom assay was designed for pgc (context sequence,

TGGAACATCGTGAATGCACTTTTGA). TaqMan assay master mix

(cat no. 4369514) was used for all assays, which were preformed using

the Bio-Rad CFX96 Real-Time System. For all qPCR experiments, three

technical replicates for each of three biological replicates were performed.

Each biological replicate included >15 stage13/14 oocytes from multiple

females. To calculate gene expression, we first generated standard curves

by amplifying nos, rpl7, pgc using standard PCR and the primer sets: nos

(fwd-CCACTGTGTCCACCAATCTCG, rev-TTTGGGGCACAGCACTC

GGTTAAAG), rpl7 (fwd-TCCGCGCCGAGAAGTACCAGAATG, rev-

CGCAGCATGTTGATGGTGGCCTTGTT, and pgc (fwd-GTCATCGCG

GATAGATGGAGAT, rev-AAACAATGCGAGTTTTCACGA). Next, we

calculated template copy number based on the amplicon length and con-

centration and completed an eight-step serial dilution. Each dilution was

used to generate Ct values for a given template copy number (Fig. S7).

Absolute transcript quantities for nos and pgc were normalized to internal

rpl7 transcript values.
Statistical analyses

All non-Germ Granule Census graphs were created using R statistical pro-

gramming and the ggplot2 package in R studio (39–41). Pearson’s r was

calculated using R statistical programming with the cor() function. To

determine the significance between average cluster sizes, correlation, coloc-

alization, and slopes, p values were calculated using a two-sample t-test be-

tween modeled and biological data with the t.test() function (39). Standard

error of the mean is represented by 5 for all replicates. Percent overlap

values between density plots were calculated using the overlapping R pack-

age (42,43). To visualize expected cluster size targets in Fig. 4 B, corner

boundary coordinates were generated by pairing the four different combina-

tions of upper and lower limits of average and maximum cluster sizes that

were observed in biological germ plasms. To identify outliers produced by

the model in reference to biological data, we performed the following anal-

ysis: 1) germ plasm’s average cluster size (x axis) was paired with its max

cluster size (y axis) from biological replicates and from randomly generated

modeled germ granules. Each of these pairs was plotted and analyzed in a

stage- and mRNA-specific manner. 2) The centroid for stage-specific bio-

logical data was calculated using Euclidian distances. 3) The 1.5� (IQR)



FIGURE 3 Modeling germ granule formation pro-

duces Granule Censuses that are comparable with

biology. (A, A0) Granule Census produced from

analyzing biological germ granules at stage 10 and

in the early embryo. (B, B0) Granule Census gener-

ated based on modeling germ granule formation at

stage 10 and in the early embryo. For all censuses,

the average nos cluster size (magenta vertical lines)

and average pgc cluster size (green horizontal line)

increase from stage 10 to early embryo. The relation-

ship between the sizes of nos and pgc mRNAs that

reside in the same germ granule can be visualized us-

ing a line of best fit for colocalized nos and pgc clus-

ters (broken gray line). The heatmaps indicate the

number of granules with each observed mRNA

composition, n ¼ 11 biological germ plasms for

both stages and n ¼ 10 random simulations for

modeled data.

Drosophila germ granule assembly model
to the third quartile rule was applied to the distances of modeled data from

the biological centroid to identify outliers. Outliers were quantified and the

frequency with which the model produces outliers on average was deter-
FIGURE 4 Computational modeling of homotypic cluster formation captures

The maximum cluster size plotted against the average cluster size for nos and p

modeled homotypic clusters qualitatively aggregate with biological data on the

against average cluster size. Shaded regions indicate expected clusters sizes at

biology germ plasms for each stage) and model data (bottom row, panels III and

by the computational model as measured from the centroid generated from bio

modeled maximum and average clusters sizes for nos and pgc. Entropy scale

modeling data and 1 for an even mixture of modeling and biological data from

left of pgc data (red) for each stage. Error bars represent mean 5 SE from 10
mined by replicating the outlier analysis 10 times using 10 different sets

of randomly generated modeled germ granules for each analysis. To

conduct the k-means and entropy analysis, we pooled biological and
expected cluster sizes for both nos and pgc across developmental stages. (A)

gc from modeled and biological germ plasms. Plotted data reveal that the

graph at all stages for both nos and pgc. (B) Maximum cluster size plotted

a given developmental time for biological (top row, panels I and II, n > 8

IV, n ¼ 10 random simulations). (C) Analysis of outliers that are produced

logical data. (D) Entropy values from k-means analyses of biological and

is 0 to 1, where 0 represents the absence of any mixing of biological and

the k-means analysis. In both (C) and (D), nos data are blue and to the

replicated analyses.
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modeled cluster size pairs (average clusters size on the x axis paired with

the max clusters size on the y axis) and set k ¼ 2. Next, we tracked which

elements corresponded to biological and modeled data and calculated the

entropy in the data sets that were produced from k-means results. An en-

tropy score of 0 represents complete separation of biological data from

modeled data while a score of 1 represents an equal mixing of biological

and modeling data. The average entropy between modeled and biological

data was calculated by replicating k-means 10 times using 10 different

sets of randomly generated modeled germ granules for each analysis in a

stage- and mRNA-specific manner. Additional details about statistical ana-

lyses can be found in the figure legends and the Results section.

To measure how well the model produces biological germ granule

mRNA compositions overall, we developed an accuracy score that takes

into consideration how well the model predicts the six measurable

mRNA germ granule compositions. The scoring system is on a scale

from 0.0 (least accurate) to 1.0 (most accurate). To calculate the overall ac-

curacy score, we first identified the centroids for each of the six measure-

ments from replicated biological data (nos average cluster size, pgc

average cluster size, nos maximum cluster size, pgc maximum cluster

size, colocalization rate, and correlation) in a stage-specific manner.

Next, the root-mean-square deviation (RMSD) for each measurement was

calculated using biological centroid values as the expected results and 10

randomly modeled data points as the predicted values in a stage-specific

manner. RMSD values were scaled using the mean. To produce a single

scoring value that represents the model’s overall performance, we calcu-

lated the Euclidean norm of individual stage-specific vector that contained

all six scaled RMSD values. In principle, the most inaccurate model has a

vector that contains six scaled RMSD values that are each equal to 1 and a

Euclidean norm that is equal to the square root of 6, �2.4495. Stage-spe-

cific Euclidean norm values were divided by 2.4495 and then subtracted

from 1.0. This results in a scale in which 1.0 represents perfect accuracy,

and 0.0 is the least accurate. Using a similar approach, the overall accuracy

of individual parameters, such as colocalization, can also be scored across

all stages.
Fly strains

The y1, w67c23 strain (Bloomington Drosophila Stock Center 6599) was

used as the wild-type. Females heterozygous for the nosBNX (16), pgcD1

(44), and oskA87 (45) were used to create 1� nos, 1� pgc, 1� nos and

1� pgc, and 1� osk. The osk-gfp transgene (fTRG_1394) was a gift from

H. Jambor (46). The nosD3 transgene was created by deleting nucleotides

185–403 from the nos 30 UTR in a 4.3-kb genomic nos rescue fragment

(22). The nos sequences were cloned into the pattB vector and inserted

into the attP40 landing site by phiC31-mediated recombination (47). One

copy of the transgene was introduced into nosBNX homozygous females to

create the 1� nosD3 strain.
RESULTS

Computational modeling produces biology-like
germ granule landscapes

Our current understanding of Drosophila germ granule as-
sembly, including a seeding and self-recruitment process
that forms homotypic clusters, has been described previ-
ously (16) and is summarized in Fig. 1. To gain quantitative
insight into the germ granule assembly process, we devel-
oped a new rules-based computational model that uses
ODEs to calculate the probabilities for granules to be seeded
and homotypic clusters to gain and/or lose a transcript (Ma-
terials and methods and Fig. 2). The model’s key parameters
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were identified based on the essential components needed to
develop nos and pgc homotypic clusters (Figs. 1 D, 2 A, and
2B and Materials and methods). Using the key parameters,
the model incorporates the following principles that dictate
the composition of germ granules and are justified from pre-
viously published and/or new biological data: 1) based on
the log-normal distribution of nos cluster size (15), as homo-
typic cluster size increases in the model, clusters have a
higher probability to gain a transcript; 2) given that Osk pro-
tein levels tend to increase within a granule over develop-
mental time (16), the carrying capacity of germ granules
generally increases over developmental time in the model;
3) modeled germ granules’ carrying capacity follows the
distribution of Osk protein found in germ granules
(Fig. S2, A and B); 4) live imaging revealed that mRNA is
stable in large homotypic clusters (16). Therefore, cluster
stability increases with homotypic cluster size in the model;
5) in the late oocyte (stages 13 and 14), nos and pgc are ex-
pressed at equivalent levels, yet nos produces larger clusters
than pgc on average (Fig. S3 A). To fine-tune cluster size
in conjunction with expression levels, the model assigns
a value called the ‘‘clustering factor’’ that influences
the recruitment of a specific mRNA type into a cluster
(Fig. 2 C).

In addition to experimentally justified parameters and
principles of germ granule development, we added theoret-
ical behaviors to the model (Fig. 2 D and E and Material and
methods): 1) as granules increase in age, they gain a higher
probability to be seeded by a transcript, we reference this
behavior as ‘‘age effect’’ and 2) as an mRNA type tries to
seed a granule that has already been seeded by a different
mRNA type, the probability for seeding is reduced by
applying a penalty to the ‘‘age effect.’’ We reference this
behavior as ‘‘seeding competition’’ and this penalty in-
creases as the age of individual granules increases. Once a
granule is seeded by a particular mRNA type, the model as-
sumes that there are four possible outcomes that can occur
with respect to homotypic cluster growth on each time
step (Figs. S1 B and S1 C).

To begin testing our model, we analyzed the size distribu-
tion of modeled nos homotypic clusters that contain four or
more transcripts in the early embryo and found that it resem-
bles the expected log-normal distribution as previously
described for biological data (Fig. S2 C) (15). Next, we tested
the model by visualizing the germ granule landscape that it
produces by outputting modeled data as a quantified matrix
called the Granule Census. In the Granule Census, each
element of the matrix represents a unique combination of
nos homotypic cluster size (x axis) and pgc homotypic cluster
size (y axis), and a colormap corresponds the number of gran-
ules with that size combination. Granules that do not contain
at least one nos or pgc transcript are not included in the ma-
trix (16). The Granule Census has been employed to depict
the transformation that occurs in the germ plasm from stage
10 to stage 13 as homotypic clusters grow (16). Comparing
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biological data and modeling data, we find that the computa-
tional model successfully reproduces these dynamics and is
visualized in the Granule Census for all stages. Specifically,
modeling data capture a gradual approximately threefold in-
crease in the average size of pgc homotypic clusters and the
approximately fourfold increase in the average size of nos ho-
motypic clusters that occurs biologically from stage 10 to
early embryo (Fig. 3). Furthermore, the model also detects
the shift that occurs in the relationship between the sizes of
nos and pgc mRNAs that reside in the same germ granule
as visualized using a line of best fit (Figs. 3 and S5). Using
the model, we predict the germ granule landscape for the lat-
est stage in oogenesis, stage 14 (Fig. S5), which is difficult to
accurately analyze biologically due to the presence of a fully
developed eggshell that interferes with probe penetration and
imaging (16). Representation of quantified biological germ
granule data is limited to fixed samples and a static Granule
Census for each stage. Using the computational model,
continuous visualization of germ granule formation is made
possible by using a dynamic Granule Census, providing a
unique monitoring prospective that cannot be accomplished
using current live imaging methods (Video S2). Together,
our computational model captures expected homotypic
growth dynamics that can be visualized continuously using
an animated Granule Census across 19 h of germ granule
development.
The computational model captures expected nos
and pgc homotypic clusters sizes

The full distribution of homotypic cluster sizes identified
within an entire germplasmcanbe summarized by identifying
the homotypic cluster with the largest number of transcripts
(max cluster size) and plotting it against the average number
of transcripts found in a homotypic cluster (average cluster
size) for nos and pgc (16). This dimension reduction allows
for the distribution of homotypic clusters to be represented
as a single point on a graph for easier comparisons (16). To
test the accuracy that our model reproduces biological
observed germ granules, we analyzed germ granule data
from10 randomlygeneratedmodeled germplasms from stage
10 to early embryo. For each modeled germ plasm, we sum-
marized the data by calculating the average and maximum
cluster sizes for nos and pgc at all stages. Plotting the summa-
rized modeled data together with biological data revealed that
both data sets qualitatively organize together in a stage-spe-
cific manner. Furthermore, our model predicts the sizes of ho-
motypic clusters that are expected at stage 14 (Fig. 4 A).

To visualize the precision of our model’s homotypic clus-
tering ability, we first marked an area of the graph where ho-
motypic cluster sizes are expected to be plotted based on
biological data (referred to as targets) and plotted modeled
data on top of the targets (Fig. 4 B). In total, 86% of the
modeled nos (43 out of 50) and 84% of modeled pgc (42
out of 50) cluster points plotted in their expected regions.
Most importantly, 100% of modeled homotypic clusters sizes
were plotted in the expected region both nos and pgc in the
embryo, the end point of germ plasm development (Fig. 4 B).

Next, we measured the frequency with which the model
produced homotypic cluster outliers in reference to biolog-
ical data (Fig. 4 C and Material and methods). Outliers pro-
duced by the model were largely restricted to nos at stage 10
at an average frequency of 0.32 5 0.01. Homotypic cluster
outliers were not observed for nos and were rarely detected
for pgc (0.04 5 0.01) in the embryo (Fig. 4 C). To quantify
how well modeling data resemble biological data, we per-
formed a k-means analysis and calculated entropy (see Ma-
terial and methods). The k-means and entropy analysis
determined that modeled data and biological data could
not be completely separated at any stage for either mRNA
type. Specifically, nos at stage 10 had the lowest entropy
at 0.38 5 0.01 (least similar), while the highest entropy
was measured for nos in the embryo at 0.95 5 0.01 (most
similar). As for pgc, entropy was measured between 0.70
and 0.97 5 0.01 across all stages (Fig. 4 D). The mixing
of modeled and biological data across all stages demon-
strates the model’s ability to replicate the development of
germ granules is comparable with biological data.

The most important goal for the computational model was
to be able to reproduce the final state of germ granules in the
germ plasm, just prior to when they induce pole cell forma-
tion and segregate into the pole cells (Fig. 1 C). Therefore,
we further tested the precision of germ granule modeling by
focusing on data from the early embryo. Specifically, we
compared the distributions of mRNA content in granules be-
tween modeled and biological data by measuring the over-
lap between density plots. The comparison revealed
considerable overlap between modeled and biological
data, 88% for nos and 90% for pgc. These overlap values
were comparable with differences in control overlaps be-
tween biological replicates, 84% for nos and 85% for pgc
(Fig. S6). In addition, the average homotypic cluster sizes
in the embryo were not significantly different between
modeled and biological data for both nos (10.7 5 0.3 vs
11.0 5 0.62, p ¼ 0.68) and pgc (6.0 5 0.13 vs 6.4, p ¼
0.21) (Fig. 3, A0 and B0). Based on the results from our
comprehensive homotypic cluster analysis, we conclude
that the computational model captures expected homotypic
cluster growth across 19 h of developmental time with a
high degree of accuracy and confidence.
Colocalization and correlation dynamics between
nos and pgc homotypic clusters are recapitulated
in modeled germ granules

The rate at which nos and pgc populate the same granule,
referred to as colocalization (co-loc), is dynamic from stage
10 (average co-loc 34 5 2.4%) to stage 13 (average co-loc
47 5 1.4%) (16). To compare how well our model captures
colocalization dynamics, we modeled the formation of germ
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granules in 10 germ plasms and measured the colocalization
rates for nos and pgc. Similar to previously published bio-
logical data, modeled colocalization rates were dynamic
from stage 10 (average co-loc 34 5 0.2%) to stage 13
(47.5 5 0.4%). Our results also show that the modeling
data recapitulate the average colocalization rate in the early
embryo (biology ¼ 54 5 1.7% and modeling ¼ 52 5
0.5%). For all developmental stages, our results demonstrate
that modeled colocalization rates between nos and pgc are
within the expected biological range and averages are not
significantly different for all stages (p > 0.21) (Fig. 5 A).

The relationship between the sizes of colocalized nos and
pgc homotypic clusters is also dynamic over developmental
time. First, at stage 10, the sizes of nos and pgc colocalized
clusters are moderately correlated (Pearson’s r ¼ 0.4) and,
by the early embryo, colocalized nos and pgc homotypic
clusters are strongly correlated (Pearson’s r ¼ 0.7) (16). In
agreement with the biological data, we found that colocal-
ized nos and pgc homotypic cluster size was moderately
correlated at stage 10 (average Pearson’s r ¼ 0.34 5
0.05) and strongly correlated in the early embryo (average
Pearson’s r ¼ 0.71 5 0.01) (Fig. 5 B). Like biological
data, modeling results also produced a moderately corre-
lated relationship between colocalized nos and pgc homo-
typic cluster size (average Pearson’s r ¼ 0.31 5 0.02),
which increased to a strong correlation in the early embryo
(0.715 0.01) (Fig. 5 B). Correlation values between biolog-
ical and modeled data were not significantly different for all
stages (p > 0.07) except for stage 12 (p ¼ 0.02). However,
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this difference was small (0.65 5 0.01 vs 62 5 0.01) and
fell within the expected biological range. We conclude
that, in addition to capturing homotypic cluster size, the
computational model produced accurate representations of
germ granule mRNA composition across all developmental
stages as measured by colocalization rates and correlation
between nos and pgc cluster sizes within shared granules
(Fig. 5, A and B).
Dynamic colocalization rate and correlation is
generated by variation in the probability for
granules to be seeded

Both colocalization rate and correlation increase over devel-
opmental time (16) (Fig. 5). To achieve these granule prop-
erties, we expanded the computational model to incorporate
two additional unreported mechanisms that function
through the germ granule protein ensemble. First, we added
a mechanism that allows for an increase in the probability
that the granule protein ensemble is seeded as it continues
to develop, referred to as ‘‘age effect’’ (see Materials and
methods and Discussion). When the age effect is not
included in the model, ‘‘no age effect model,’’ colocalization
rates between nos and pgc decrease over time, starting at
69.5 5 0.2% at stage 10 and ending at 58.8 5 0.2% in
the embryo, which is opposite to what occurs biologically
(Fig. 5, A and C). In addition, correlation between colocal-
ized nos and pgc was static at 0.565 0.001 from stage 10 to
0.58 5 0.004 in the early embryo (Fig. 5 D). The second
FIGURE 5 Colocalization and correlation dy-

namics between nos and pgc are captured by the

computational model. (A) Colocalization rates be-

tween nos and pgc homotypic clusters from both

biology and modeled data for all stages. (B) Correla-

tion between the sizes of colocalized nos and pgc ho-

motypic clusters, as measured by Pearson’s r, from

biology and modeled data for all stages. The model

generates a colocalization rate and correlation value

that is expected for stage 14 and cannot be extrapo-

lated from biological data due to experimental limi-

tations. In (A) and (B), biological data are blue and

represented to the left of modeled data (red) for

each stage. (C) Colocalization rates between nos

and pgc homotypic clusters in computational models

where there is no age effect, no competition effect, or

neither effect (No Effect). (D) Correlation coeffi-

cient, as measured by Pearson’s r, calculated be-

tween colocalized nos and pgc homotypic clusters

in computational models where there is no age ef-

fect, no competition effect, or neither effect (No Ef-

fect). In (C) and (D), no age effect is yellow, no

competition effect is green, and no effect is purple,

n > 8 biology germ plasms for each stage and n ¼
10 random simulations for modeled data.
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previously unreported granule behavior incorporated into
the model is referred to as the ‘‘seeding competition effect’’
(see Materials and methods and Discussion). When the
seeding competition effect is eliminated from the model,
referred to as the ‘‘no competition model,’’ colocalization
rates increase from stage 10 to embryo. However, the values
were higher than observed in biological data, starting at 54
5 0.28% at stage 10 and ending at 72 5 0.5% in the em-
bryo (Fig. 5 C). Furthermore, this model does not produce
a comparable Granule Census (Fig. S3 D).

To compare the performance and the overall accuracy of
the four different models, wild-type, no age, no competition,
and no effect, we developed an accuracy score that measures
how well the model generates germ granules with biological
mRNA compositions (see Materials and methods). Using
the accuracy score, we determined that the wild-type
computational model increases its overall accuracy over
time, starting at 0.70 (stage 10) and ending at 0.91 (embryo).
The no age effect model ranged from 0.27 to 0.89, no
competition 0.54 to 0.83, and no effect ranged from 0.18
to 0.75 (Fig. 6). Together, our modeling data demonstrate
that the model’s overall performance decreases without
the age and competition effects and data generated do not
resemble the biological data (Figs. 5 and 6). The combina-
tion of age and competition effects assigns germ granule
protein ensembles with varying and dynamic probabilities
to accept a seed transcript. Thus, the model reveals that
the probability that an mRNA will seed a granule varies
highly among germ granule protein ensembles (Video S3).
These modeling results support the presence of mechanisms
FIGURE 6 Quantification of the model’s overall performance and accu-

racy. (A) The model’s accuracy score (y axis) for each of the five stages (x

axis). Red circles represent the wild-type biological model, yellow dia-

monds represent data from a model that lacks the age effect, green triangles

represent data from a model that lacks the competition effect, and purple

squares are from a model with no age and no competition effect. The broken

red line is the line of best fit for the wild-type model and shows how the

model improves its accuracy over time.
that affect mRNA’s ability to seed during germ granule for-
mation and provide insight into how the protein ensemble
affects germ granule mRNA composition.
Effects from genetic perturbations are predicted
using computational modeling

Germ granule mRNA composition is affected by the expres-
sion levels of germ granule mRNAs and Osk protein (16).
To test our model and validate its performance, we conduct-
ed smFISH experiments using oocytes with reduced nos,
pgc, nos, pgc, or osk expression levels and compared biolog-
ical results to modeling results (Fig. 7). First, we determined
expression level using qPCR and determined that 1� nos
stage 13/14 oocytes had 63 5 6.7% of the wild-type nos
level, while 1� pgc oocytes had 73 5 10.5% of the wild-
type pgc level (Fig. S7, A–D). 1� osk oocytes have been
previously been reported to express 60% of wild-type Osk
levels (48). Consistent with previous findings, reducing
the levels of nos and/or pgc reduced their respective homo-
typic cluster sizes, while reducing Osk levels affected both
cluster types (Fig. 7, A–D0) (16). Next, we predicted the
Granule Census for each genetic background by configuring
the model’s parameters to match the experimental expres-
sion levels: 1� nos (RNA pool 1 ¼ 0.63), 1� pgc (RNA
pool 2 ¼ 0.73), and 1� nos and 1� pgc (RNA pool 1 ¼
0.63 and RNA pool 2 ¼ 0.73), and 1� osk (carrying
capacity ¼ 0.6 and granule number ¼ 0.6). In all genetic
backgrounds tested, the Granule Census was remarkably
similar between biological data and modeling counterparts
(Fig. 7). Specifically, average nos and pgc cluster sizes pro-
duced by the perturbed models were comparable with the
expected biological values. Average colocalization rates
generated by each perturbed model also fell within or near
the expected ranges for their biological experiment counter-
part (Figs. 7 and S7 E). Changes to germ granule mRNA
composition can be quantified by measuring the slope of
the line of best fit from plotted sizes of colocalized homo-
typic clusters (16). The perturbed models captured the
change in slope direction that agrees with previously
published data (Figs. 7 and S7). Together, these data
demonstrate the accuracy of the model in the context of
non-wild-type parameters and show the model’s robustness
by confidently capturing perturbations to germ granule
mRNA compositions by only adjusting the parameters
affected in the biological experiments.
Validation and quantification of clustering factor

The presence of ‘‘clustering elements,’’ specific regions
found within the 30 UTR of nos and pgc that regulate homo-
typic clustering, have been identified using reporter assay
experiments (17). This strategy identified a nos clustering
element within nucleotides 185 to 403 of the nos 30 UTR
(designated as the þ3 element) (17,49). To further validate
Biophysical Journal 121, 1465–1482, April 19, 2022 1475



FIGURE 7 The computational model reproduces effects caused by genetic perturbations. (A–D) Stage 13 oocytes from the indicated genetic backgrounds,

with nos (magenta) and pgc (green) mRNAs are detected using smFISH: (A) reduced nos expression (1� nos, n ¼ 5); (B) reduced pgc expression (1� pgc,

n¼ 5); (C) reduced nos and pgc expression (1� nos and 1� pgc, n¼ 9); and (D) reduced Osk expression (1� osk, n¼ 6). All images are confocal maximum

projections with the posterior germ plasm oriented to the right. (A0 –D0) Granule Census generated from biological germ plasms for each genetic background.

(A0 0–D00) Granule Census generated from modeled germ granules for each genetic background, n ¼ 10 randomly generated model simulations. Parameters

used to predict genetic effects are listed within each census. For all censuses, the average nos cluster size is indicated with a magenta vertical line, while

average pgc cluster size is indicated with a green horizontal line. The relationship between the sizes of nos and pgc mRNAs that reside in the same

germ granule is visualized using a line of best fit for colocalized nos and pgc clusters (broken gray line). The heatmaps indicate the number of granules

with each observed mRNA composition.
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the function of this element in a more native context, we
generated nos RNA null mutant flies carrying one copy of
a genomic nos rescue transgene with this region deleted
(1� nosD3) (Fig. 8 A). The expression level of 1� nosD3
mRNA is nearly equivalent to two copies of nos in wild-
type stage 13/14 oocytes (91 5 8.6%). In contrast, in 1�
nos ovaries, the level of nos is 63 5 6.7% of the wild-
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type nos level, demonstrating that the single copy of the
nosD3 rescue transgene is robustly expressed (Fig. S7 D).
Despite having comparable expression levels with wild-
type, 1� nosD3 produced nos homotypic clusters that
were on average 57% smaller than wild-type (3.24 5 0.15
vs 7.60 5 0.42, p < 0.001) and, despite having �30%
more nos transcripts than 1� nos, 1� nosD3 produced



FIGURE 8 Quantification of homotypic clustering

efficacy from a specific 30 UTR. (A) Schematic of the

wild-type (wt) nos 30 UTR and the nosD3mutant. (B)

Maximum projection of a stage 13 1� nosD3 oocyte

with nos (magenta) and pgc (green) detected by

smFISH, posterior germ plasm is to the right. (C)

Granule Census reveals that 1� nosD3 produces an

average nos cluster size of 3.24 transcripts (vertical

magenta line, n ¼ 9 germ plasms). The relationship

between colocalized nos and pgc clusters is visual-

ized with a line of best fit (broken gray line). (D)

Standard curve produced by the computational

model with the nos mRNA pool fixed at 0.91 while

the clustering factor increases from 0.10 to 0.80

(y ¼ 0.1245x � 0.0173, R2 ¼ 0.98). Fitting the

average nos cluster size of 3.24 transcripts to the

curve, we calculate that the nos þ3 element has a

clustering factor of 0.39 (n ¼ 10 random simula-

tions). (E) Granule Census produced using the

computational model where the nos transcript pool

was set to 0.91 and the clustering factor (cf) for

nos was set to 0.39 captures expected changes in

the germ plasm landscape including an average nos

cluster size of 3.00 and a shift in the slope to 1.05.
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average cluster sizes that were also smaller than 1� nos
(4.07, p < 0.005) (Figs. S7 E and 8). The decrease in nos
cluster size caused by deleting the nos þ3 element is further
apparent from the slope of the best fit line produced by co-
localized nos and pgc clusters in stage 13 oocytes. In 1�
nosD3, the average slope is 1.00 5 0.04, which is a signif-
icant shift from the slopes for wild-type (0.49 5 0.03) and
1� nos (0.75 5 0.07) (16), p < 0.002 (Figs. S7 E and 8 C).

Next, we analyzed the impact that deleting the nos þ3
element has on seeding by measuring colocalization rates
with pgc. Colocalization of 1� nosD3 mRNA with pgc
was 42.85 5 1.88%, which is not significantly different
from the colocalization rate that is expected due to a
decrease in nos cluster size (16), as determined for 1� nos
(42.77 5 1.1%, p ¼ 0.58). These data demonstrate that
deleting the nos þ3 element affects nos homotypic
clustering without affecting the ability to seed and decou-
ples expression level as the sole regulator of cluster sizes
at the transcript level. Together, our experimental findings
confirm the presence of clustering elements in the context
of a genomic nos transgene and validate the inclusion in
the model of a clustering factor parameter that can fine-
tune homotypic clusters sizes in conjunction with expres-
sion levels.
Next, we aimed to quantify the clustering efficacy of the
nos clustering element while factoring in 1� nosD3 mRNA
levels in stage 13 oocytes. First, we generated a standard
curve (y ¼ 0.1245x � 0.0173, R2 ¼ 0.98) between the clus-
tering factor and average cluster size by modeling stage 13
oocytes with the gene expression reduced to 91% of wild-
type (Figs. S3 B and 8 D). By fitting the average nos cluster
size of 3.24, which was determined from biological 1�
nosD3 data to the modeled standard curve, we determined
that 1� nosD3 had a clustering factor of 0.39, which is a
47% reduction when compared with the wild-type nos clus-
tering factor of 0.74. Furthermore, deleting the þ3 element
causes nos to have a clustering factor less than pgc’s clus-
tering factor of 0.48. To test the combined effect of nos
expression level and clustering factor, we set the model’s
nos mRNA pool parameter to 0.91 and the nos clustering
factor to 0.39. The resulting modeled Granule Census was
comparable with the expected biological Granule Census
(Fig. 8 E). Specifically, the modeled data captured an
average nos cluster size of 3.05 0.01, which was not signif-
icantly different from 1� nosD3 (p ¼ 0.16) (Figs. S7 E and
8 E). In addition, the model produced slope values and co-
localization rates that fell within the expected biological
data range (Fig. S7 E). Previous studies have relied on
Biophysical Journal 121, 1465–1482, April 19, 2022 1477
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qualitative methods to gauge the contribution of specific nos
30 UTRs to localization (49). Here, our combined modeling
and biological results demonstrate a novel quantitative
method, the clustering factor, that can measure the impact
that a specific region of a transcript has on localization.
DISCUSSION

Despite the essential roles that various classes of RNP gran-
ules play in the reproduction, stress responses, and nervous
system, investigating how RNP granules form has been
challenging for numerous class-specific reasons (50). In
Drosophila, germ granules are densely packed into a
confined space within the developing germ plasm. Thou-
sands of these membrane-less electron dense germ granules
form, each of which differs in the quantity and the types of
mRNAs that they contain (15). With the sheer number of
granules that exist and the mRNA heterogeneity observed
among individual germ granules, several experimental ap-
proaches, such as smFISH, customized 3D computational
analyses, and super-resolution microscopy have been com-
bined to provide important insights into granule formation
and composition (15,16). Although these strategies have
provided important insights, most of what is currently
known about the germ granule assembly process comes
from data collected from only a handful of mRNA types
and focuses mainly on the mRNA portion of germ granules
(15–18,32). In other systems, such as C. elegans, in vitro
studies of P granules have been instrumental in understand-
ing the role of granule proteins in regulating the overall RNP
architecture (51–53). In Drosophila, in vitro studies of germ
granules have thus far been unsuccessful, limiting our un-
derstanding of the role that the germ granule protein
ensemble plays in dictating germ granule mRNA composi-
tion and heterogeneity.

To help overcome experimental and technical limitations,
we developed a computational model to explore known and
discover unknown mechanisms that enable germ granules to
attain their mRNA compositions, including the contribution
of the protein ensemble. When the model was built using
only known parameters, many granule characteristics and
their dynamics did not agree with the biologically observed
data for nos or pgc, including the Granule Census, colocal-
ization rates, and correlation (Figs. 5, 6, and S3D). Thus, we
reasoned that other, as yet unknown, mechanisms must be at
work during the granule formation process. To capture
known germ granule mRNA characteristics, we created an
enhanced computational model that incorporates additional
mechanisms that help shape the mRNA content of germ
granules, two of which function through the granule protein
ensemble (Fig. 5).

Modeling germ granule assembly required the addition of
a parameter that controls the efficacy of homotypic clus-
tering in an mRNA type-specific manner. We name this
quantifiable ability the ‘‘clustering factor.’’ Without the
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addition of a clustering factor, homotypic cluster size regu-
lation is limited to mRNA expression levels. In the case of
nos and pgc, we found that expression levels cannot fully
explain why nos forms larger clusters on average than pgc
in the oocyte (Fig. S3 A). With the addition of a clustering
factor, homotypic cluster sizes can be regulated even
when mRNAs are expressed at similar levels. In the model,
this single parameter ultimately controls the differences be-
tween nos and pgc cluster sizes. Biologically, this clustering
factor could be achieved by a combination of factors,
including features within 30 UTRs. Indeed, by altering the
clustering factor parameter, our model predicted the ex-
pected results from experiments, with nos RNA lacking a
known clustering element (nosD3) (Fig. 8). Other factors
that may contribute to an mRNA’s clustering factor could
be affinity for proteins, such as Osk, Vas, or Tud, which
could affect mRNA dwell time. Consistent with this idea,
nos and pgc mRNAs have been shown to bind to the Lotus
domain of Osk (54). Regardless of the biological mecha-
nisms controlling the clustering ability of mRNAs, we pro-
vide modeling and biological evidence supporting a
clustering factor effect as a means for germ granules to
fine-tune homotypic cluster size and generate varying clus-
ter sizes between mRNA types in conjunction with mRNA
expression levels (Fig. 8). Surprisingly, 30 UTRs do not con-
trol the ability of two different RNA types to sort out from
each other and self-recruit to form homotypic clusters (18).
However, they do contain elements that influence cluster
size (17). Combining results from those studies with our
biological and in silico results, we propose a model where
mRNA association with the germ granule protein ensemble
requires sequences in the 30 UTR that can generate a clus-
tering factor to regulate mRNA abundance within a granule,
while self-sorting is governed by unknown mechanisms that
are independent from clustering factor 30 UTR sequences.
An additional 59 germ plasm mRNAs appear to localize
to the germ plasm in a manner similar to nos and pgc (9),
but only three of these have been analyzed for clustering el-
ements (17). Thus, we expect that our model will have
broader application in future germ granule mRNA studies
by determining clustering factor values in biological exper-
iments that investigate 30 UTR clustering elements.

The biological mechanisms regulating how colocalization
rate and correlation increase over time have not been
explored. Using modeling, we were able to simulate the bio-
logically observed increasing trends in colocalization rate
and correlation between nos and pgc by assigning an age ef-
fect to individual granule protein ensembles, a parameter
that dictates the probability for a granule ensemble to be
seeded over time (Figs. S3 E and 5). These results support
a mechanism mediated by the protein granule ensemble
that impacts colocalization and correlations between
different types of homotypic clusters. We reason that the
age effect represents protein ensemble maturation that oc-
curs downstream of osk translation and is created by the
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time needed to accumulate additional Osk and other pro-
teins within nascent germ granule protein ensembles. Spe-
cifically, measurements of Osk accumulation in granules
over time showed that the average amount of Osk protein
in a granule more than doubles from stage 10 to stage 13
(16), with up to five times more Osk present in granules
in the early embryo (Fig. S2 A). We reason that, as more
Osk is incorporated into a granule over time, the probability
for a granule to capture and hold on to a seed transcript in-
creases. Thus, Osk could be acting as a ‘‘sticker,’’ which has
been modeled in liquid-like droplets and acts to increase
mRNA dwell time when abundant, allowing for more effi-
cient seeding of a transcript in the condensate (55). The
physical size growth of granules may also have a role in
this effect given that germ granules can grow up to 1 mm
with an average of �300 nm in diameter (56). Larger gran-
ules may simply have a larger surface area to capture a seed
transcript.

Following osk localization and translation, additional
proteins, such as Vas, Tud, and Aubergine (Aub),
become incorporated into granule protein ensembles
(11,12,14,57,58). Failure to properly accumulate such pro-
teins dramatically decreases the posterior accumulation of
nos and/or pgc, demonstrating that there are indeed essen-
tial maturation steps in the formation of a germ granule
protein ensemble downstream of osk translation
(21,48,59,60). In RNP condensates that form via liquid-
liquid phase separation, the partitioning of RNA into the
condensate scaffold is thought to occur through networks
of thermodynamically favorable, multivalent RNA-RNA,
RNA-protein, and protein-protein interactions. Such multi-
valent RNA-protein interactions may be enabled by multi-
ple protein binding sites in the RNA as well as by proteins
with intrinsically disordered regions (IDRs) that can bind
multiple RNAs (25,61–63). Thus, the age effect may repre-
sent a biophysical mechanism that depends on the down-
stream accumulation of multivalent proteins and/or IDR
containing proteins within nascent germ granule ensem-
bles, which increases valency for seed transcripts as the
granule matures. To account for any of several biological
mechanisms or combination of mechanisms that could
contribute to a granule’s probability to be seeded over
time, we simply implemented an increase in the probability
to be seeded based on the developmental age of individual
protein ensembles. Future studies aim to identify the under-
lying mechanisms that generate the age effect by exploring
the roles that Vas, Tud, Aub, and IDR-containing proteins
have in ensemble maturation, transcript seeding, and ho-
motypic clustering.

Despite the addition of a clustering factor and a seeding
age effect, the modeled Granule Census, colocalization,
and correlation values were not comparable with the values
obtained from biological measurements (Figs. S3 D and 5).
To address these issues, we theorized that there may be
seeding competition that arises within the granule protein
ensemble and implemented a competition effect in the
model that is applied to granule protein ensemble when it
already contains mRNA that is different from the incoming
seed mRNA. The resulting model generated a biologically
comparable Granule Census and dynamic colocalizations
rates and correlation values between nos and pgc that
were analogous to biological data (Figs. 3 and 5). We reason
that competition can be achieved biologically through phys-
ical space limitations or that granule proteins, such as Osk,
are shared by multiple mRNA types for seeding and/or clus-
tering, limiting their capacity to accommodate additional
mRNA types when larger clusters are present. Since older
granules tend to have larger mRNA clusters (15), we simpli-
fied the competition effect by designing a larger penalty
based on a granule’s age. By using the age of germ granule
protein ensembles as the basis for increasing the competi-
tion penalty, we avoid introducing or suggesting any specific
competition between a set of mRNA types. Rather, we sug-
gest that seeding competition arises through limitations in
the availability of shared granule proteins within the germ
granule protein ensemble that are already involved in the
clustering of other mRNA types currently present. In other
types of RNP granules, such as stress granules and
P-bodies, competing protein-RNA interaction networks
control multiphase organization (62). Here, our modeling
results demonstrate that a competition effect essentially
limits the number of homotypic clusters that can form
within individual Drosophila germ granules. Thus, competi-
tion may have a conserved role in shaping RNP composi-
tions in different classes of biomolecular condensates with
varying biophysical properties.

The competition effect in the model is triggered when a
single mRNA type is present in a granule and, realistically,
at least 59 additional mRNA types could potentially form
clusters in germ granules (9). However, it is currently un-
known how many different homotypic clusters a single
granule can contain. Information regarding how many
unique mRNAs can cluster within the same germ granule
should be the focus of future biological experiments and
incorporated into the model to better quantify and under-
stand how competition emerges. Nevertheless, the applica-
tion of age and competition effects ultimately assigns
dynamic and varying probabilities to be seeded among thou-
sands of individual germ granules protein ensembles (Video
S3). This heterogeneous landscape was essential to simulate
the formation of germ granules with key biological features,
such as colocalization and correlation between nos and pgc
(Fig. 5). Thus, our modeling demonstrates that the germ
granule protein ensemble has a significant influence on
germ granule mRNA composition, which is consistent
with studies showing the importance of protein-based
condensation mechanisms in the assembly of RNA-rich P
granules in C. elegans (52,64).

Although our model accurately captures wild-type dy-
namics (Figs. 3–6), we recognize its limitations. We note
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that the presented modeling data are less variable than bio-
logical data. In the model, data are collected from the same
germ plasm developing over all stages, whereas biological
data are collected from independent samples across all
stages. Furthermore, the model collects cluster size data pre-
cisely at the end of each developmental stage, where biolog-
ically timing of stage is achieved qualitatively. These
differences, in addition to natural biological variation, likely
result in the model producing data that have less variation
and slightly higher maximum cluster sizes in some stages.
Modeling data also report more single molecules in the
Granule Census than biological data (Figs. 3 and S5). We
reason that this difference is likely due to limitations in
smFISH detection and thresholding that are necessary to
quantify germ plasm data (16). In the model, the same
germ granule mRNA compositions can be accomplished
in multiple ways by balancing mRNA expression levels
with the clustering factor. However, incorrect balancing of
mRNA expression levels with clustering factor results in
an erroneous representation of the mRNA localization pro-
cess as measured by the percentage of total transcripts that
localize to germ granules (Fig. S8). Thus, the model’s pre-
dictive power and solutions are limited to incorporating
experimentally determined mRNA expression level data
before predicting or adjusting for the mRNA’s clustering
factor value. Regardless of the limitations, the advantages
to the model include the ability to independently control pa-
rameters for different mRNA types and the protein
ensemble, allowing users to explore and identify mRNA
and protein-specific effects on the overall composition of
germ granules. In testing these controls, our model success-
fully predicted germ plasm defects caused by reduced Osk
levels and expression levels of nos and/or pgc (Fig. 7). To
separate the combined contributions of clustering factor
and expression levels have on total mRNA localization,
we demonstrate the model’s broader capabilities by intro-
ducing a new metric, the clustering factor, that can be
used to score the clustering ability of a transcript (Fig. 8).

Similarly to Drosophila, germ plasm formation in zebra-
fish is also initiated through a master protein organizer, re-
sulting in a germ plasm containing homotypic RNPs of
nanos3 and other RNAs (65,66); and, in Xenopus oocytes,
enrichment of vegetally localizing mRNAs in the L-body re-
quires specific RNA sequence features (28), resembling the
requirement for nos 30 UTR elements. Given the similar char-
acteristics among different RNA granules, our model’s prin-
ciples and parameters, such as clustering factor, age effect,
and competition effect, should be explored in other systems
to identify conserved mechanisms that influence mRNA
localization and the mRNA compositions of biomolecular
condensates. For the first time, we present a mathematical
representation of the Drosophila germ granule assembly pro-
cess that confirms previously reported development mecha-
nisms, offers new insight into how germ granules attain
their mRNA compositions that can be explored in other sys-
1480 Biophysical Journal 121, 1465–1482, April 19, 2022
tems, and provides a tool that can be integrated into biolog-
ical experiments to support future studies.
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