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Abstract

Objectives—Radiology reports contain important clinical information that can be used to 

automatically construct fine-grained labels for applications requiring deep phenotyping. We 

propose a two-turn question answering (QA) method based on a transformer language model, 

BERT, for extracting detailed spatial information from radiology reports. We aim to demonstrate 

the advantage that a multi-turn QA framework provides over sequence-based methods for 

extracting fine-grained information.

Methods—Our proposed method identifies spatial and descriptor information by answering 

queries given a radiology report text. We frame the extraction problem such that all the main 

radiology entities (e.g., finding, device, anatomy) and the spatial trigger terms (denoting the 

presence of a spatial relation between finding/device and anatomical location) are identified in the 

first turn. In the subsequent turn, various other contextual information that acts as important spatial 

roles with respect to a spatial trigger term are extracted along with identifying the spatial and 

other descriptor terms qualifying a radiological entity. The queries are constructed using separate 

templates for the two turns and we employ two query variations in the second turn.

Results—When compared to the best-reported work on this task using a traditional sequence 

tagging method, the two-turn QA model exceeds its performance on every component. This 

includes promising improvements of 12, 13, and 12 points in the average F1 scores for identifying 

the spatial triggers, Figure, and Ground frame elements, respectively.

Discussion—Our experiments suggest that incorporating domain knowledge in the query (a 

general description about a frame element) helps in obtaining better results for some of the spatial 

and descriptive frame elements, especially in the case of the clinical pre-trained BERT model. We 

further highlight that the two-turn QA approach fits well for extracting information for complex 

schema where the objective is to identify all the frame elements linked to each spatial trigger and 
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finding/device/anatomy entity, thereby enabling the extraction of more comprehensive information 

in the radiology domain.

Conclusion—Extracting fine-grained spatial information from text in the form of answering 

natural language queries holds potential in achieving better results when compared to more 

standard sequence labeling-based approaches.
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1. Introduction

Extracting important and detailed descriptions of radiographic findings from reports has 

lately been of great interest to researchers focusing on natural language processing (NLP) 

applications in radiology [1-4]. Some primary use cases of the NLP-generated labels 

include training deep image classification models to predict fine-grained diagnosis [1, 5, 

6], phenotyping [7], and automated tracking of findings [8, 9]. Traditionally, sequence 

classification methods such as conditional random fields [10, 11] and bidirectional Long 

Short-Term Memory networks [12] have been adopted for extracting information from 

clinical text including radiology reports. However, because of the availability of well-

developed machine reading comprehension (MRC) models, recent research has focused on 

formalizing information extraction (IE) as question answering (QA) [13-15], highlighting 

the many advantages of a QA framework over traditional approaches for IE tasks. 

Additionally, several studies [16-18] explored a new paradigm by formulating relation and 

event extraction (EE) tasks as multi-turn QA, an approach that involves performing multiple 

turns of MRC successively. Motivated by these studies, we propose a two-turn QA approach 

for identifying fine-grained spatial and descriptor information of radiographic findings and 

medical devices described in radiology reports. To our knowledge, this is the first work in 

radiology as well as spatial IE that employs a multi-turn QA approach for granular IE.

Radiographic findings and medical devices are usually described by radiologists with 

reference to some anatomical structures, thus there exists spatial relations between findings/

devices and anatomies often connected through spatial phrases. There are also mentions of 
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other clinically relevant contextual details associated to the spatial relations such as potential 

diagnoses and a device’s distance from the anatomical structure. Moreover, there are spatial 

and other descriptors describing a radiological entity (e.g., finding, anatomy) that enhance 

the richness of the labels for the corresponding medical images. The spatial descriptors 

represent both spatial (e.g., laterality, size, morphology) and other properties of an imaging 

observation (e.g., composition, distribution pattern, density) described in reports. Other 

descriptors include status, quantity, temporality, and negation. All these clinically important 

information are organized according to a frame semantics representation–Rad-SpatialNet 

proposed in Datta et al. [4]. In frame semantics, a lexical unit (LU) is the word or phrase 

that invokes a frame and the participants of a frame constitute the frame elements (FEs). In 

the context of spatial relation frames, an LU is either a spatial preposition/verb (which we 

refer to as a “trigger”) or a radiological entity, and all the spatial roles and descriptors linked 

to the LU form the FEs. In this work, we refer to the spatial roles (connected to a spatial 

trigger) and the spatial descriptors (connected to a radiological entity) as “Spatial Frame 

Elements” (SFEs). The other entity-specific descriptors are referred to as “Descriptive 

Frame Elements” (DFEs). Creating fine-grained labels requires identifying a wide variety 

of relations (represented through FEs), some are illustrated in Figure 1, and we focus on 

extracting such detailed relations in this work.

Recently, both in the general and biomedical domains, studies [14, 19, 20] have 

demonstrated the effectiveness of formulating named entity recognition (NER) as MRC 

instead of the traditional sequence labeling technique. Apart from NER, prior work has 

also framed relation [13] and EE [15] tasks as MRC. Moreover, MRC models have been 

utilized in a multi-turn QA setting for joint entity-relation extraction [16] and for both 

general-domain [17] and biomedical [18] EE. Advantages of framing extraction tasks as 

MRC include leveraging prior knowledge through queries, jointly modeling entities and 

relations in the form of natural language questions, and making use of advanced MRC 

models. In addition, multi-turn QA captures the hierarchical dependency of entities and is 

therefore suitable for complicated scenarios where extraction of certain entities depends on 

previously extracted entities. As shown in Figure 1, identification of SFEs (e.g., hemorrhagic 
foci) depends on extracting the associated spatial trigger in. Similarly, extracting elements 

such as enhancing and right are entity-specific. Previous approaches have formulated spatial 

trigger and element (or role) extraction as a sequence labeling task either in a pipelined 

or joint learning fashion [4, 21]. However, inspired by the advantages that multi-turn QA 

provides, we propose to adopt a two-turn QA technique by harnessing MRC models for 

fine-grained spatial IE from radiology text. A high-level overview of our approach is shown 

in Figure 2. As can be seen in this figure, framing our IE task as two-turn QA as opposed to 

single-turn QA is better realized as the FEs are described at the level of each spatial trigger 

or radiological entity.

In this paper, we aim to extract a comprehensive set of relations pertaining to the common 

spatially-grounded radiological entities that are of significance to facilitating automated 

image diagnosis. For this, we frame the problem as two-turn QA where spatial triggers 

and the main radiological entities (e.g., clinical finding, anatomy) are identified in the first 

turn and all the SFEs and DFEs (e.g., status descriptors of a finding) in the second. We 

extract answer spans from the report text by answering template questions (in the form of 
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natural language queries) constructed separately for entity and FE extraction. The query 

for the second turn includes the trigger or the radiological entity extracted in the first turn. 

This makes the query for FE extraction more informative. We experiment with two query 

variations for extracting the FEs. Our QA framework is based on the pre-trained language 

model BERT [22]. We compare the performance of our BERT-based two-turn QA approach 

for extracting spatial information with a sequence labeling approach [4] used as a baseline. 

Our main contributions are enumerated as follows:

1. Frame the task of spatial IE as two-turn QA.

2. Demonstrate the advantages of applying a QA-based approach over a traditional 

sequence labeling method for extracting spatial information.

3. Extract more comprehensive information from multiple types of radiology 

reports targeted toward fine-grained medical image labeling.

2. Materials and Methods

2.1. Data

We use 400 radiology reports from MIMIC-III [23] to extract fine-grained information of 

radiographic findings and medical devices from three types of reports: chest X-rays, brain 

MRIs, and babygrams. The entities and frame elements are described in Tables 1 and 2, 

respectively. Example frame element relations from the dataset are illustrated in Figures 1 

and 2. More details can be found in prior work [4].

2.2. Problem Formulation

We formulate the spatial IE problem as a machine comprehension problem where 

information is extracted from a given text (treated as a context paragraph) using templates 

posed as queries to elicit specific information (triggers and FEs). The answer spans returned 

by the MRC system are treated as the extracted entities. In case the system returns a special 

token NONE, this indicates that the specific entity that is queried for is not present in the 

report text. Analogous to how a conventional entity-relation extraction system is employed, 

i.e., first identifying the target entity and then identifying the related entities, our MRC 

formulation is also designed in two turns/steps as one-time QA is not sufficient to capture 

this dependency in the information extracted. The target entities extracted in the first turn are 

mentioned in Table 1. These entities cover a wide range of common radiology terms curated 

as part of the radiology lexicon, RadLex [24] (see Table 1). The second turn identifies the 

SFEs associated with a spatial trigger (e.g., Figure, Ground, Diagnosis) as well as spatial 

(e.g., Laterality) and descriptive (e.g., Status) FEs associated with a radiological entity.

2.3. Query Construction

Entity and frame element (FE) type modification.—The entity and FE types are used 

in forming the queries. The entity types except ‘Spatial Trigger’, ‘Location Descriptor’, and 

‘Quantity’ are modified, as shown in Table 3, while incorporating in a query. We modified 

the entity types to incorporate more information about the entities in the queries as well as 

to make the queries sound more natural. The FE types (corresponding to element names) 
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are used in the queries of the second turn without modification except for the ‘Diagnosis’ 

element in which case it is modified to ‘Potential diagnosis’.

Target entity extraction.—The modified entity type (of a spatial trigger and a main 

radiological entity) is converted to a query using a template. This query variant is referred to 

as Queryfind (shown in Table 4).

Spatial and descriptive frame element extraction.—Each FE is converted to a query, 

Queryfind (see Table 4), such that the query asks for identifying the text span (belonging to a 

specific entity type) from the report that has the particular FE relation to a target entity type. 

The query template contains a slot corresponding to the target entity type (ENT1) that is filled 

by the previously extracted entity (ENT1_SPAN) from the first turn. Thus, this query jointly 

extracts the FE relation (REL) as well as the related entity (of type ENT2) in the form of an 

answer span that is predicted by the MRC model. Using this template, queries are formed 

such that all FE relations are covered for all possible pairs of target and related entity types. 

For example, “find all medical device entities in the context that have a figure relationship 
with spatial trigger entity above.” is the query constructed for the triplet {spatial trigger, 

Figure, medical device} where spatial trigger is ENT1, Figure is REL, and medical device is 

ENT2 that is extracted by answering this query. If the answer is NONE, this means there is no 

such related entity in the text that is associated to the target entity through REL.

We also experiment with another query variation for the second turn. In this, we encode 

domain knowledge in the query by incorporating a general description of the FE. That is, 

we prepend a description of the SFE or DFE at the beginning of a query. We refer to this 

query variation as Queryfind + desc (see Table 4 for template and example). The descriptions 

developed for each of the FEs are listed in Supplementary Table 1.

2.4. MRC Framework

The MRC architecture is based on the pre-trained language model BERT [22]. Previous 

work achieved promising results using BERT-based MRC models for QA [22, 25, 26]. 

We select this model framework owing to the promising performance of using BERT for 

QA as well as to tackle multi-answer QA. We follow the standard format to feed input 

into the BERT model for answering queries. We split the whole content of a radiology 

report into overlapping passages by sliding window and use each passage as context c 
into the BERT model after combining with the query q. This sliding window technique 

proved to be effective as evidenced by prior work [16, 27]. After WordPiece tokenization 

of both query and context, we merge the query q and the context c as [[CLS] q [SEP] c 
[SEP]] to construct the input sequence where [CLS] and [SEP] are special BERT tokens. 

As explored in previous work [14, 16], the span extraction mechanism enables queries that 

have multiple answers given the context passage. Traditional approaches strategize span 

extraction as two n-class classification problems where one classifier predicts the start index 

and the other predicts the end index from all the context tokens (n refers to the length of the 

context passage). However, this strategy is only applicable for single-answer QA settings. 

To overcome this shortcoming, the two n-class classification task is converted to n 5-class 

classifications where the softmax function is applied to each token in the context to predict 
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a BMESO (B-begin, M-middle, E-end, S-single, O-outside) label. This is suitable to our 

problem where there can be multiple entities of the same spatial or descriptor role that are 

associated to a single spatial trigger or a radiological finding (see Figure 3). The BERT 

models for both target entity (turn 1) and FE extraction (turn 2) are trained jointly. The MRC 

framework and the training mechanism are adopted from a previous work [16].

2.5. Sequence Labeling Baseline

We compare our approach to the BERT-based sequence labeling approach proposed in Datta 

et al. [4]. In that paper, a BERTLARGE model pre-trained on MIMIC-III is fine-tuned to first 

extract all the spatial triggers in a sentence and then extract the spatial FEs associated with 

each trigger. A report sentence is represented as [[CLS] sentence [SEP]] to feed into BERT 

to identify the triggers and FEs. Additionally, while extracting the spatial FEs, we mask the 

spatial trigger identified in the first step to better encode the position of the specific spatial 

trigger in a sentence for which the FEs are to be identified. The encoder output is then 

fed into a linear classification layer to predict labels per token. The BIO (B-begin, I-inside, 

O-outside) scheme is used to tag the triggers and the FEs.

2.6. Experimental Settings and Evaluation

We experiment with both cased and uncased BERTLARGE variants in the MRC framework 

(referred to as Uncased and Cased hereafter). Additionally, we also experiment using a 

BERTLARGE cased version that is pre-trained on MIMIC-III clinical notes for 300K steps 

[28] (referred as MIMIC+Cased). The hyperparameters used in our experiments are selected 

based on the validation set and are shown in Table 5. For training the MRC model in the 

second turn, we only consider the relationships between target and related entities where 

there is at least one instance of such a relationship in the training data.

We perform 10-fold cross-validation (CV) for evaluating our MRC approach for spatial IE. 

For each of the 10 iterations, we split the dataset such that reports in 8 folds are used 

for training and 1 fold each are used for development and testing. We report the average 

F1 measures for extracting the FEs. Since the query format is the same for the first turn 

(i.e., target entity identification) and only varied in the second turn (corresponding to using 

Queryfind and Queryfind + desc), we report the average of the two 10-fold CV runs for target 

entity extraction. We use exact match to evaluate the performance of the MRC approach for 

both target entity and FE extraction on the test splits. Exact matches of both the target and 

the related entity spans are required to consider a FE relation extraction as a true positive. 

We compare our approach to the baseline method for identifying spatial triggers and SFEs 

connected to triggers. For a fair comparison, we use the same fold settings for 10-fold CV 

for both the MRC and the baseline methods. The baseline method is also evaluated using 

exact match for spatial trigger and SFE extraction.

3. Results

The average F1 measures of 10-fold CV evaluation for extracting the spatial and descriptive 

FEs are shown in Table 6. This includes the results for both the query variations. The 

average F1 scores of the BERT-based sequence labeling baseline method are also shown 
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in Table 6 for comparison. Since density descriptor and modality characteristics occur very 

infrequently in the dataset (5 and 2 times, respectively), we do not report the results for these 

two FEs. For extracting SFEs associated with triggers, we see that Queryfind + desc helps 

in achieving a better performance than Queryfind for all elements (except for Hedge) in the 

case of MIMIC+Cased model. Whereas, for Uncased and Cased variants, Queryfind + desc 

performed better for some of such SFEs. We also note that the performance of less frequent 

FEs: Reason and Associated Process improved to 49.81 and 54.63 compared to baseline 

system’s F1 (0 for both). For the majority of the FEs associated with a radiological entity, 

the average F1 scores lie in the range of 60-75. However, for Laterality and Size Descriptor, 

the values are relatively high with the highest F1 scores being 89.35 and 78.98, respectively.

The results for target entity extraction are shown in Table 7. We observe that the best F1 

score for identifying the spatial triggers obtained by our proposed method (90.07) is around 

12 points higher compared to the baseline system’s performance of 77.89 (as reported 

before [4]). A later work [29] improved on the sequence labeling baseline specifically for 

extracting the spatial triggers (and not the FEs) where a hybrid technique combining a 

BERT classifier with domain constraints was employed. This improved the average F1 to 

81.10 when compared with the baseline’s F1 of 77.89. Thus, we see that our QA approach 

proposed here still outperforms the hybrid system’s result by 8.9 points, though in theory 

a similar hybrid technique could potentially improve upon our current result further. The 

entity labels of the target entities are included during the FE extraction to make the queries 

more informative and are not part of the FE performance evaluation.

4. Discussion

The results in Tables 6 and 7 demonstrate the performance improvement in extracting 

spatial information from radiology reports when the problem is framed as MRC compared 

to traditional sequence labeling. The improvements are high: for example, improvement of 

average F1 scores from 65.12 to 78.13 and 71.51 to 83.77 for common FEs like Figure 

and Ground, respectively. This highlights the advantages of framing IE as MRC that we 

described in Section 1. We also note that casting IE problems as MRC is still under-explored 

on clinical domain datasets except for Banerjee et al. [20]. This is the only other case we 

are aware of MRC being used for IE from clinical reports, and there it is used only for 

entity extraction, not relation extraction and not with a two-turn QA approach. Moreover, 

we emphasize that our work covers more detailed radiological information from spatial and 

descriptor perspectives and extracts information from reports of multiple imaging modalities 

and anatomies (as opposed to previous work [1-3] focusing on either single modality or 

anatomy). This is the first study to use MRC both for spatial IE and for extracting important 

radiology information.

Our investigation using two query variations for FE extraction suggests that incorporating 

more information about the element in the query helps in obtaining better results, especially 

in cases where the meaning of FE is not obvious solely based on the FE type name. For 

example, we see performance improvement for Position Status for all model variants when 

the following description about Position Status is included in the query:
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Position status refers to any position-related information, usually in context to a 

device. Examples include terminates and expected position.

This provides more prior knowledge about what is meant by Position Status in a radiology 

report context. We also find that our proposed approach tends to perform better than 

sequence labeling for less frequent FEs (e.g., Reason). Note that the MIMIC pre-trained 

BERT model underperforms both the original Uncased and Cased models for the majority 

of the infrequent FEs such as Associated Process, Composition Descriptor, and Size/

Measurement.

Alongside starting the queries with ‘Find all’, we explored two other query variations – 

beginning the queries with ‘Get all’ and ‘What’ (inspired by previous work [20]). Although 

these variations performed better than the baseline, we did not find any clear performance 

trend when compared to the ‘Find all’ variant. An exhaustive comparison of query variations 

could be investigated further, but that was not the focus of this work.

The moderate performance values as well as the performance variation for some FEs could 

be due to the infrequency of annotations in the dataset. This indicates that there is still scope 

for improving the results and we aim to evaluate our approach on an enlarged dataset that 

will have more such FEs. Although we apply our proposed method on a dataset that covers 

three types of radiology reports, we further intend to evaluate the generalizability of this 

method on multi-institutional datasets and on other imaging modalities (e.g., ultrasound and 

CT reports of different body parts) in a subsequent work.

5. Conclusion

We frame the problem of fine-grained radiology spatial IE as two-turn QA. This approach 

outperforms traditional transformer-based sequence labeling in extracting both spatial 

triggers and their corresponding SFEs from the radiology reports. The average F1 score for 

identifying spatial triggers is 90.07 and the average F1s for identifying important FEs like 

Figure and Ground are 78.13 and 83.77, respectively. Extracting radiology findings/devices 

with enough contextual information facilitates various downstream clinical applications.
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Summary Table

Already known:

• Formulating IE tasks as question answering helps obtain improved results 

over traditional methods such as sequence labeling in the general and 

biomedical literature domains though its impact in the clinical domain is less 

clear.

• Important clinical information are extracted from radiology reports using NLP 

for different informatics applications.

What this study added:

• We proposed a two-turn QA framework based on BERT to extract important 

spatial and descriptor information from radiology reports by answering 

questions using report text. This improved the best-reported results (using 

a BERT-based sequence tagger) on the spatial IE task.

• This is the first study to apply a multi-turn QA approach for extracting 

spatial information (spatial triggers and spatial frame elements associated 

with both triggers and radiological entities) as well as for identifying granular 

information from radiology reports.

• We extracted more detailed contextual information from the reports including 

clinical findings, medical devices, anatomical structures, potential diagnoses, 

various finding and anatomy-specific radiology descriptors, as well as 

uncertainty and negation phrases associated with each identified finding and 

diagnosis.
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• Two-turn question answering for extracting spatial relations from radiology 

reports

• First turn extracts radiology entities (e.g., finding, device) and spatial triggers

• Second turn extracts spatial relations from these terms

• Incorporating domain knowledge in the question improves performance

• Better performance compared to a standard BERT-based baseline
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Figure 1: 
Spatial and descriptive frame elements in radiology text. Figure, Ground, Hedge, and 

Reason are the spatial frame elements of the frame instantiated by the spatial trigger in. 
Enhancing denotes a status descriptor and is a descriptive element of the frame evoked by 

the finding entity hemorrhagic foci whereas right is the laterality and is a spatial frame 

element of the frame evoked by the anatomical entity occipital region. The underlined and 
italicized texts indicate the lexical units of the frames.
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Figure 2: 
Overview of two-turn QA approach for radiology spatial information extraction. Entities 

a-f are extracted in turn 1 and frame elements 1-5 are extracted in turn 2. The bold and 
italicized texts in the queries for turn 2 indicate that they are extracted from turn 1. Only 

a subset of queries for which there is no answer (indicated using NONE) are shown for 

brevity. The example sentence contains two radiographic findings–ischemic sequela and 

volume loss, described through extensive and prominent, respectively.
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Figure 3: 
(1) Two Ground elements are linked to a spatial trigger and (2) two status descriptors are 

linked to a radiological finding. For (1), the query for extracting anatomical locations with 

respect to the spatial trigger in should return two spans – paraventricular white matter and 

centrum semi-ovale. For (2), an MRC model is expected to return the spans corresponding 

to Multilevel and mild as output when queried for the status descriptive elements of 

degenerative disc disease.

Datta and Roberts Page 15

Int J Med Inform. Author manuscript; available in PMC 2023 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Datta and Roberts Page 16

Table 1:

Target entities extracted in turn 1.

Target entity type Description RadLex Class

Spatial trigger Spatial prepositions (e.g., in), verbs (e.g., demonstrate), verb followed by 
prepositions (e.g., projected at), etc. Not applicable

Finding Terms related to radiological observations, clinical findings (including those 
suggesting diagnoses)

Clinical finding, Imaging 
observation

Anatomy Anatomical location Anatomical entity

Device Medical device Medical device

Tip Tip of a medical device Portion of medical device

Location descriptor Describing how a finding is located with respect to an anatomy Location descriptor

Other descriptor Modifiers describing a radiological observation or finding RadLex descriptor (except Location 
and Certainty)

Assertion Uncertainty and negated phrases used by radiolo-
gists Certainty descriptor

Position Position status of a device (e.g., good position) Not applicable

Quantity Any quantitative term in the report text (e.g., 3 mm) Not applicable

Process Describing motion, change, etc. Process
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Table 2:

Frame Elements extracted in turn 2, their descriptions, and associated entity types. ST - Spatial Trigger. Desc - 

Descriptor.

Frame Elements Description Entity Types of Related Entities

SPATIAL

Figure Object whose location is described ST; Finding/Anatomy/Device/Tip

Ground Anatomical location of Figure ST; Anatomy

Hedge Uncertainty expressions used by radiologists ST; Assertion

Diagnosis Clinical condition or disease associated with a radiological finding ST; Finding

Position Status Any position-related information, usually in context to a device ST; Position

Relative Position Terms used for describing the orientation of a radiological entity wrt to 
an anatomical location

ST; Location descriptor

Distance Actual distance of finding or device from the anatomical location ST; Quantity

Reason Clinical condition or disease that acts as the source of a radiological 
finding

ST; Finding

Associated Process Any process or activity associated with a spatial relation ST; Process

Morphologic Indicates shape Finding/Anatomy; Desc

Size Desc Indicates size description Finding/Anatomy/Device; Desc

Distribution Pattern Indicates distribution patterns Finding/Anatomy; Desc

Composition Indicates composition of a radiological finding Finding/Anatomy; Desc

Laterality Indicates side Finding/Anatomy/Device; Desc

Size/Measurement Actual size of a finding Finding; Desc

DESC

Status Indicates status of entities Finding/Anatomy/Device; Desc

Quantity Indicates quantity of a radiological entity Finding/Anatomy/Device; Desc

Temporal Indicates temporality Finding/Device; Desc

Negation The associated negated phrase Finding/Anatomy; Desc
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Table 3:

Modified entity types to be used in queries.

Target entity type Modified entity type

Finding Clinical finding

Anatomy Anatomical structure

Device Medical device

Tip Medical device tip

Other descriptor Descriptor

Assertion Assertion-related

Position Position-related

Process Associated process
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Table 4:

Query template and example. Qf: Queryfind. Qf + d: Queryfind + desc.

Extraction 
step

Query template Example

Target entities
Entity type : ENT
Qf: find all ENT entities in the context.

Entity type : Spatial trigger
Qf : find all spatial trigger entities in the context.

Spatial and 
descriptive 

frame 
elements

Frame element type : REL
Target Entity type : ENT1

ENT1 span from turn 1 : ENT1_SPAN
Related Entity type : ENT2

Qf : find all ENT2 entities in the context that have a/an 
REL relationship with ENT1 entity ENT1_SPAN.
Qf + d : a general description about REL + Qf

Frame element type : Figure
Target Entity type : Spatial trigger
Spatial trigger span from turn 1 :
in
Related Entity type : Clinical finding
Qf : find all clinical finding entities in the context that have a 
figure relationship with spatial trigger entity in.
Qf + d : Figure refers to finding or device or tip entities that are 
described with respect to an anatomical structure. + Qf
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Table 5:

Hyperparameters used in the experiments.

Parameter Value

Sliding window size for context passage 200

Overlap between adjacent windows 45

Maximum number of training epochs 10

Learning rate 2e–5

Trade-off between two turns 0.25

Maximum norm for gradients 1

Warmup ratio 0.1
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Table 6:

Average F1 measures of BERTLARGE models over 10-fold CV for spatial and descriptive frame element 

extraction. DESC: Descriptive. Qf: Queryfind. Qf + d: Queryfind + desc. M+Cased: MIMIC+Cased. Count: 

Number of annotations in the dataset. Dash (−): not available for baseline method.

FRAME ELEMENTS

Proposed approach

Baseline
M+Cased CountUncased Cased M+Cased

Qf Qf + d Qf Qf + d Qf Qf + d

SPATIAL

Figure 78.13 77.29 76.72 77.57 76.44 77.40 65.12 1491

Ground 83.76 83.40 83.31 82.27 83.17 83.77 71.51 1537

Hedge 75.47 76.44 77.18 76.42 75.90 74.97 57.82 249

Diagnosis 69.32 73.32 73.94 72.67 65.47 67.92 50.76 190

Position Status 68.72 68.75 66.98 67.12 68.43 70.37 60.37 167

Relative Position 77.19 76.42 77.53 76.71 75.78 76.15 66.33 398

Distance 84.65 86.54 85.36 85.20 87.94 90.09 88.05 45

Reason 39.51 32.34 39.51 49.81 17.71 44.89 0 33

Associated Process 48.52 54.63 43.15 42.29 38.95 41.36 0 21

Morphologic 52.48 58.14 49.92 60.52 48.04 45.53 – 69

Size Desc 76.16 73.80 78.16 78.94 78.56 78.98 – 93

Distribution Pattern 57.45 63.62 59.74 64.01 59.22 66.03 – 65

Composition 41.46 33.63 41.67 46.88 26.49 20.48 – 17

Laterality 88.43 88.51 89.35 87.49 87.78 87.32 – 612

Size/Measurement 45.43 48.44 41.51 43.59 34.46 32.06 – 23

DESC

Status 64.67 62.60 63.38 61.67 59.17 59.09 – 452

Quantity 72.56 72.32 72.82 71.61 72.47 73.11 – 130

Temporal 70.87 70.63 70.5 71.47 67.31 71.78 – 113

Negation 58.08 61.06 67.75 65.04 60.95 61.83 – 103
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Table 7:

Average F1 measures of BERTLARGE models over two 10-fold CVs for target entity extraction. M+Cased: 

MIMIC+Cased.

Target entities Uncased Cased M+Cased

Spatial trigger 89.99 89.50 90.07

Finding 76.89 78.26 76.11

Anatomy 87.56 87.40 87.46

Device 91.87 92.68 93.12

Tip 99.18 98.41 99.32

Location descriptor 81.50 81.21 80.89

Other descriptor 84.19 84.24 84.09

Assertion 78.48 80.85 79.40

Position 69.68 71.41 72.81

Quantity 85.54 85.37 83.23

Process 60.93 59.26 60.19
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