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The role of mineralocorticoid receptor activation in
kidney inflammation and fibrosis
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Chronic kidney disease is characterized by progressive
scarring that results in loss of normal tissue in the kidney
and eventually end-stage kidney disease. Interstitial fibrosis
and tubular atrophy have been most closely correlated
with decline in renal function. Potential mechanisms
include profibrotic changes in tubules, influx of profibrotic
rather than healing reparative macrophages, and an
increase in activated myofibroblasts. Aldosterone activates
the mineralocorticoid receptor in the collecting duct to
increase sodium reabsorption, resulting in increased blood
pressure. Aldosterone also promotes inflammation and
fibrosis in the kidney by activating the mineralocorticoid
receptor in other cellular compartments, including
podocytes, mesangial cells, epithelial cells, and myeloid
cells. Aldosterone also may act indirectly by stimulating
factors in epithelial tissues that contribute to inflammatory
macrophage polarization, myofibroblast differentiation,
and progressive fibrosis. This review discusses the potential
mechanisms by which aldosterone and mineralocorticoid
receptor activation promotes inflammation and fibrosis via
nonclassical pathways in the kidney.
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C hronic kidney disease (CKD) is characterized by pro-
gressive scarring that results in loss of normal tissue in
the kidney and eventually end-stage kidney disease.1

Interstitial fibrosis and tubular atrophy have been correlated
most closely with decline in renal function.2 This finding
may reflect the fact that interstitial fibrosis and tubular atro-
phy involves a larger number of nephrons than the small
number of glomeruli present in a kidney biopsy sample.
Glomerular scarring, resulting in downstream injury to tu-
bules with subsequent atrophy of tubules and interstitial
fibrosis, is well recognized. Understanding the elements that
drive progressive interstitial fibrosis and tubular atrophy is
key to targeting and modulating ongoing progressive kidney
disease.2 Potential mechanisms include profibrotic changes
in tubular cells, influx of profibrotic rather than healing
reparative macrophages, and an increase in activated
myofibroblasts.3,4

Injury to proximal tubular cells can result in either healing
and return to a normal state or ongoing progression from
acute kidney injury (AKI) to CKD. Single-cell RNA
sequencing studies have shown that fibroblasts in the kidney
cortex after acute injury return to a normal quiescent state, in
contrast to the medulla, where these cells maintain an acti-
vated profibrotic myofibroblast–like state.5,6 Thus, these
proximal tubular cells fail to repair. These cells signal to
endothelium, leukocytes, and fibroblasts, via mechanisms
including platelet-derived growth factor receptors.4,6 The
candidates that form the myofibroblast-like cells include
circulating cells, or tubular epithelial cells having undergone
so-called epithelial–mesenchymal transition, fibroblasts, and
pericytes. Elegant lineage-tracing studies demonstrated that
tubules do not enter the interstitium to become myofibro-
blasts. Circulating cells also do not contribute to kidney
myofibroblasts.7 In recent, elegant, single-cell RNA
sequencing studies, human kidney specimens and mouse
experimental models were investigated in depth.7 To increase
resolution and understanding of pathways activated in
different cell types, cells were sorted into nonproximal versus
proximal tubular cells. Mapping from this approach showed
distinct cell populations in patients with hypertension-
associated nephrosclerosis. Potential myofibroblast-like cells
were studied further by honing in on the cells that highly
expressed collagens, glycoproteins, and proteoglycans. These
cells appeared to derive from pericytes and fibroblasts and
were positive for platelet-derived growth factor receptors
alpha and beta.7
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How, then, do these events in the tubules affect glomeruli?
Glomerular scarring causing downstream injury, either by
toxic effects of proteinuria or tubular/interstitial ischemia
resulting from scarred glomeruli, is well recognized as pro-
moting tubulointerstitial fibrosis.4 More recently, we and
others have shown that tubules also can have a deleterious
effect to sensitize glomeruli to additional injuries. We devel-
oped an experimental model in which tubular injury was
followed by podocyte-specific injury. Those mice with pre-
ceding recovered AKI with resulting very mild tubulointer-
stitial fibrosis had marked enhancement of glomerular injury
after the second hit, compared with mice without AKI.4

Limiting injury by stabilizing hypoxia-inducible factor
ameliorated this adverse crosstalk.8 One possibility is that
aldosterone antagonism could similarly decrease adverse
tubule–glomerular crosstalk, based on mechanisms of action
discussed below.

Possible mediators of this effect include direct effects of
interaction via the tubules to parietal epithelial cells, which
may migrate to the glomerular tuft, either replacing injured
podocytes or becoming profibrotic and contributing to
glomerulosclerosis. Because of this cellular migration from
one compartment to another, signaling in one compartment
can contribute to fibrosis in another, and interventions that
target only one aspect of kidney injury (e.g., macrophage
infiltration) may not adequately prevent progressive kidney
fibrosis.

Potential pathogenic roles of aldosterone and the
mineralocorticoid receptor
Mineralocorticoid receptor (MR) antagonists (MRAs) reduce
kidney inflammation and fibrosis, and recent studies using
tissue-specific MR deletion demonstrate that the beneficial
effects are mediated via actions in multiple cell types and that
many effects are blood pressure–independent. Nakamura
et al.9 detailed the specific actions of the MR in myeloid cells,
vascular smooth muscle, podocytes, mesangial cells, and fi-
broblasts, which may mediate these effects on kidney
inflammation and fibrosis. Therefore, MR antagonism may
protect against glomerular, tubule, and interstitial injury in
part via direct actions in multiple cell types in these tissue
compartments.9 Aldosterone and MR activation in one tissue
may stimulate inflammatory cytokines or growth factors in
this tissue. These cytokines and growth factors may then
reach other compartments to promote or alleviate inflam-
matory or profibrotic pathways.10 Further investigations
could determine whether aldosterone contributes to myofi-
broblast differentiation directly via MR activation or indi-
rectly via activation of platelet-derived growth factor receptor
beta by epithelium-derived factors.7,11

Aldosterone stimulates inflammation and fibrosis
Classically, aldosterone acts on the MR in principal cells of the
cortical collecting duct (CCD), which stimulate sodium
reabsorption and potassium excretion via the epithelial
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sodium channel (Figure 1). This process is essential for
maintenance of circulating plasma volume and survival in
states of low-sodium diet but becomes maladaptive in the
setting of chronic excess sodium intake.9,12 Our current un-
derstanding of how aldosterone, even within normal limits,
contributes to development of hypertension remains in flux.
Hypertension due to primary aldosteronism is clearly detec-
ted in only a small minority of patients with the disease,
because of low screening rates.13–15 Even with relatively
normal circulating aldosterone concentrations, inappropriate
aldosterone signaling in the presence of excess sodium pro-
motes hypertension, which may contribute directly to
glomerular injury and kidney fibrosis.13,16

Models of hypertension typically provoke cardiovascular
and renal injury via excess endogenous angiotensin II (Ang II)
or Ang II administration, which produces hypertension not
only via actions on vascular angiotensin type 1 receptors, but
also by stimulating aldosterone production.17 A substantial
proportion of this injury, including cardiac, kidney, and
vascular injury, is attributable to aldosterone and MR acti-
vation, which can be prevented via adrenalectomy, aldoste-
rone synthase inhibition, MR antagonism, or a combination
of these interventions.18–20 Aldosterone administration, even
in the absence of Ang II, produces glomerular injury, inter-
stitial inflammation, and progressive fibrosis in the kid-
ney,21,22 clearly demonstrating that aldosterone-dependent
MR activation contributes significantly to this process.
Other steroids, such as cortisol and corticosterone, could
activate the MR and contribute to tissue injury, whereas their
11-ketosteroid metabolites (cortisone and 11-
dehydrocorticosterone 11b-hydroxysteroid dehydrogenase
products) can blunt the effect of mineralocorticoids.23,24

Exogenous glucocorticoids also can contribute to MR-
mediated injury, but steroid-induced complications, such as
diabetes and hypertension, contribute as well. Studies using
specific aldosterone synthase inhibitors or aldosterone
synthase–deficient mice demonstrate a specific role for aldo-
sterone in inflammation and fibrosis.18–20 For example,
aldosterone synthase inhibition prevents Ang II–induced
kidney injury and inflammation, as assessed by albumin-
uria, monocyte/macrophage infiltration, and interstitial type
IV collagen deposition.18 More recently, endogenous
nonsteroidal ligands have been shown to activate the MR and
contribute to podocyte injury. The Rac1-MR pathway is
activated by hyperglycemia and salt loading, independent of
aldosterone, and contributes to podocyte injury.25,26 Activa-
tion of the MR in many tissues characteristically increases
multiple pathways, which either contribute to inflammation
and fibrosis locally (e.g., plasminogen activator inhibitor-1
[PAI-1], transforming growth factor [TGF]-b, interleukin
[IL]-6, monocyte chemoattractant protein-1 [MCP-1]) or
signal to other cells, such as myeloid cells. These myeloid cells
can further augment this injurious cascade by releasing pro-
fibrotic molecules or promoting chemotaxis of other in-
flammatory cells.27–29
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Figure 1 | Potential adverse effects of mineralocorticoid receptor (MR) signaling on inflammation and kidney fibrosis. MR activation in
vascular smooth muscle, vascular endothelium, and tubular epithelial cells contributes to glomerular injury via hypertension. In addition, MR
activation in mesangial cells and podocytes increases plasminogen activator inhibitor-1 (PAI-1), transforming growth factor-b (TGF-b), nuclear
factor (NF)-kB, and interleukin (IL)-6, contributing to glomerular injury. Glomerular injury leads to downstream tubular injury, and conversely,
tubular injury can sensitize glomeruli to further injury, thus completing an adverse tubular–glomerular crosstalk cycle. Epithelial cell MR
activation contributes to hypertension via increased serum/glucocorticoid regulated kinase 1 (SGK1), epithelial sodium channel (ENaC), and
sodium reabsorption, and it promotes inflammation and fibrosis by upregulating PAI-1, NF-kB, and IL-6. Direct MR activation within
monocytes/macrophages also promotes M1 macrophage polarization to the M2 phenotype, which enhances fibrosis. Tubular and glomerular
factors and direct MR activation may also promote kidney fibrosis via myofibroblast differentiation from fibroblasts and pericytes.
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PAI-1 and TGF-b as potential mediators of aldosterone-
induced fibrosis

One well-characterized mediator of fibrosis is PAI-1, which
directly inhibits tissue plasminogen activator and urokinase.
Aldosterone stimulates PAI-1 expression via MR activation in
multiple tissues, including in the heart, kidney, and aorta.28

Increased PAI-1 expression contributes to progressive kid-
ney injury by inhibiting plasmin activation, which results in
decreased matrix metalloproteinase activation and increased
extracellular matrix accumulation and fibrosis.28,29 PAI-1 may
also affect fibrosis via vitronectin-binding mechanisms.30 In
the kidney, aldosterone stimulates PAI-1 expression via the
MR in podocytes, macrophages, mesangial cells, and tubular
epithelial cells.29,31 Interventions that prevent kidney injury
by MR blockade are typically accompanied by decreased
Kidney International Supplements (2022) 12, 63–68
PAI-1 expression, and genetic deletion or pharmacologic in-
hibition of PAI-1 prevents cardiac and interstitial fibrosis.29

Tubule-specific deletion of PAI-1 also protects against tubu-
lointerstitial fibrosis in the unilateral ureteral obstruction
model.32 Although PAI-1 is traditionally viewed as an anti-
fibrinolytic factor, it may also affect the release of other
growth factors, such as fibroblast growth factor 23, although
its clinical significance remains unclear.33 TGF-b1 promotes
fibrosis by stimulating cell transformation to fibroblasts,
acting synergistically with aldosterone to increase PAI-1
expression and decrease matrix metalloproteinases.31 The
effects of TGF-b1 on kidney fibrosis are complex, such that
simply eliminating TGF-b1 signaling with a global or prox-
imal tubule TGF-b1–type 2 receptor knockout worsens
interstitial fibrosis.34–36 This effect may be caused by resulting
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increased inflammation. Similarly, a T cell–specific TGF-b1–
type 2 receptor knockout produced increased interstitial
fibrosis at baseline, but additional treatment with aldosterone
did not worsen this profibrotic effect.37 These findings suggest
that additional strategies to not only block these key profi-
brotic mediators but also decrease adverse inflammatory in-
filtrates could be beneficial in preventing or ameliorating
scarring.

Despite the success with pharmacologic PAI-1 inhibitors,
clinical benefits have proven difficult to achieve because of
issues with selectivity and toxicity.30 Likewise, inhibition of
TGF-b1 has proven difficult because of its diverse actions in
multiple tissues.1 MRAs provide an attractive option for
preventing the pathologic effects of aldosterone on PAI-1 and
TGF-b1, and beneficial effects of MRAs are likely mediated in
part by these actions.

MR activation stimulates inflammatory pathways in the
glomerulus and epithelium
Aldosterone administration stimulates PAI-1, TGF-b1, nu-
clear factor (NF)-kB, and IL-6 in glomeruli and in cultured
mesangial cells via MR activation.12,31 In addition to sodium
transporters, aldosterone stimulates proinflammatory medi-
ators in CCD epithelial cells, such as the nuclear transcription
factor NF-kB, and these responses are blocked by spi-
ronolactone.12 Other downstream inflammatory markers,
including IL-6, MCP-1, and PAI-1, were similarly increased.12

These cytokines may promote fibrosis by recruiting inflam-
matory cells or promoting M1 macrophage polarization.3,29

MR activation promotes macrophage polarization and kidney
inflammation
Macrophages may be classically activated in vitro to an M1
macrophage phenotype by interferon-g or lipopolysaccha-
ride, which promotes ongoing inflammation.3 Alternative
activation to an M2 macrophage phenotype by IL-4, IL-13,
and IL-33 can promote resolution of inflammation.3

Macrophage infiltration and polarization in AKI is charac-
terized by an early proinflammatory M1 phenotype during a
period of tubular injury and apoptosis, transitioning to an
alternatively activated M2 phenotype during the reparative
tubular injury phase.38,39 Secreted factors from kidney
epithelial cells influence macrophage polarization indepen-
dently of the typical IL-4Ra–signal transducer and activator
of transcription 6 (STAT6) signaling pathway, in part via the
granulocyte-macrophage colony-stimulating factor and acti-
vation of signal transducer and activator of transcription 5
(STAT5).38 Polarization to M2 macrophages is hypothesized
to reduce the severity of acute injury and the risk of pro-
gressive kidney disease, although persistence of M2 macro-
phages in the setting of incomplete recovery may be
maladaptive and contribute to ongoing fibrosis.40 A better
understanding of these secreted factors, inflammatory cell
responses, and progression of fibrosis is essential for devel-
oping treatments to target these pathways. Ongoing clinical
studies that affect macrophage polarization by altering IL-6,
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IL-10, TGF-b, and connective tissue growth factor (a down-
stream mediator of TGF-b actions) pathways will help define
whether this approach can prevent CKD progression.1,27,38

Targeting the MR may also reduce progressive kidney
fibrosis and CKD by changing the balance of inflammatory
cells, including M1/M2 macrophages, either directly in mac-
rophages or via altering epithelial cell crosstalk.41 Myeloid
cell–specific MR is essential for M1 polarization in vitro, and
myeloid-specific MR knockout reduces cardiac interstitial and
perivascular fibrosis.42 Similarly, myeloid-specific MR
knockout increased M2 polarization and reduced kidney
fibrosis in an ischemic AKI model.9,27 Administration of
aldosterone plus a high-sodium diet for 3 weeks increased
protein expression of M1 phenotype markers (inducible nitric
oxide synthase and interferon-g) in rat kidneys, and this ef-
fect was prevented by spironolactone.10 Treatment with
clodronate reduced M1, but not M2, kidney macrophage
markers, and partially reduced tubulointerstitial fibrosis.10

Spironolactone and other MRAs reduce inflammatory cyto-
kine production in animal models and humans, which may
provide a portion of the antifibrotic effects in the kidney.10 In
a genetic model of Ang II excess, aldosterone synthase inhi-
bition or adrenalectomy reduced kidney injury and macro-
phage/monocyte cell infiltration to the same extent as losartan
treatment, demonstrating the essential role of aldosterone in
macrophage infiltration in kidney injury.18 The nonsteroidal
MRA finerenone also reduces glomerular MCP-1 and PAI-1
gene expression and macrophage (F4/80þ cells) infiltration
in a db/db mouse diabetic model exacerbated by unin-
ephrectomy and a high-sodium diet.26

Clinical benefits of MR antagonism on progressive kidney
disease
Although MR antagonism with spironolactone is known to
effectively treat heart failure, resistant hypertension, and
proteinuria,43–45 no randomized trials had demonstrated a
benefit on hard kidney outcomes, such as risk of progression
to dialysis, until recent studies with the nonsteroidal MRA
finerenone. Consistent with results during treatment with
spironolactone, the initial finerenone phase 2b Mineralo-
corticoid Receptor Antagonist Tolerability Study in Diabetic
Nephropathy (ARTS-DN) study demonstrated a dose-
related decrease in albuminuria in participants with dia-
betic nephropathy who were already on an angiotensin-
converting enzyme inhibitor or angiotensin receptor
blocker.46 The follow-up Finerenone in Reducing Kidney
Failure and Disease Progression in Diabetic Kidney Disease
(FIDELIO-DKD) study demonstrated for the first time that
an MRA decreases the risk of diabetic CKD progression, as
determined by kidney failure, at least 40% decreased esti-
mated glomerular filtration rate, or death from renal causes
(hazard ratio 0.82; 95% confidence interval 0.73–0.93; P ¼
0.001), with an incidence of 17.8% with finerenone versus
21.1% with placebo over a median follow-up of 2.6 years.47

Finerenone carries a modest risk of hyperkalemia, compared
to that found in historical studies of other MRAs. Of note,
Kidney International Supplements (2022) 12, 63–68



JM Luther and AB Fogo: Mineralocorticoid receptor activation in CKD rev i ew
these studies were designed and conducted prior to the
demonstration of sodium–glucose co-transporter-2 (SGLT-
2) inhibitor effectiveness for diabetic nephropathy, and the
kidney benefits of this combination are undetermined.
Secondary analyses of the Study to Evaluate the Effect of
Dapagliflozin on the Incidence of Worsening Heart Failure
or Cardiovascular Death in Patients with Chronic Heart
Failure (DAPA-HF) in the subset of 3370 participants also
taking an MRA demonstrates additional benefit of this
combination on heart failure outcomes.48,49 The additive
benefits of these 2 interventions on top of renin–angiotensin
system inhibition are of note. If similar results are
confirmed in CKD, this could suggest that complementary
mechanisms account for the benefits of these multipronged
interventions.

The mechanisms by which MR antagonism prevents pro-
gressive kidney disease extend beyond blood pressure reduc-
tion, and they likely involve decreased profibrotic and
inflammatory mediators. These actions involve MR antago-
nism extending beyond the collecting duct across multiple cell
types in the kidney, and actions in one tissue may alter the
fibrotic response in an adjacent compartment. Thus,
improvement of injury responses in the tubular compartment
is postulated to contribute to decreased adverse crosstalk to
glomeruli, thus further contributing to decreased scarring.
Additional anti-inflammatory effects beyond classic sodium–

potassium handling are likely also important elements of effi-
cacy in treating progressive kidney scarring. Better under-
standing of thesemechanisms should guide the development of
additional therapies to preserve residual kidney function.26,41
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