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Abstract

Privacy-preserving genomic data sharing is prominent to increase the pace of genomic research, 

and hence to pave the way towards personalized genomic medicine. In this paper, we introduce 

(ϵ, T)-dependent local differential privacy (LDP) for privacy-preserving sharing of correlated data 

and propose a genomic data sharing mechanism under this privacy definition. We first show that 

the original definition of LDP is not suitable for genomic data sharing, and then we propose a 

new mechanism to share genomic data. The proposed mechanism considers the correlations in 

data during data sharing, eliminates statistically unlikely data values beforehand, and adjusts the 

probability distributions for each shared data point accordingly. By doing so, we show that we 

can avoid an attacker from inferring the correct values of the shared data points by utilizing the 

correlations in the data. By adjusting the probability distributions of the shared states of each data 

point, we also improve the utility of shared data for the data collector. Furthermore, we develop 

a greedy algorithm that strategically identifies the processing order of the shared data points with 

the aim of maximizing the utility of the shared data. Our evaluation results on a real-life genomic 

dataset show the superiority of the proposed mechanism compared to the randomized response 

mechanism (a widely used technique to achieve LDP).
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1 INTRODUCTION

Recent advances in genome sequencing technologies have enabled individuals to access 

their genome sequences easily, resulting in massive amounts of genomic data. On one 

hand, sharing this massive amount of data is important for the progress of genomics 

research. Genomic data collected by research laboratories or published in public repositories 

leads to significant breakthroughs in medicine, including discovery of associations between 

mutations and diseases. On the other hand, since genomic data contains sensitive 

information about individuals, such as predisposition to diseases and family relationships, 

individuals are generally hesitant to share their genomic data. Therefore, how to facilitate 

genomic data sharing in a privacy-preserving way is a crucial problem.

One way to preserve privacy in genomic data sharing and analysis is to utilize cryptographic 

techniques. However, encrypted data can only be used for a limited number of operations 

and high computation costs decrease the applicability of these techniques for large scale 

datasets. Local differential privacy (LDP) is a state-of-the-art definition to preserve the 

privacy of the individuals in data sharing with an untrusted data collector, and hence it 

is a promising technology for privacy-preserving sharing of genomic data. Perturbing data 

before sharing provides plausible deniability for the individuals. However, the original LDP 

definition does not consider the data correlations. Hence, applying existing LDP-based data 

sharing mechanisms directly on genomic data makes perturbed data vulnerable to attacks 

utilizing correlations in the data.

In this work, our goal is to provide privacy guarantees for the shared genomic sequence of 

a data owner against inference attacks that utilize correlations in the data while providing 

high data utility for the data collector. For that, we develop a new genomic data sharing 

mechanism by defining a variant of LDP under correlations, named (ϵ, T)-dependent LDP. 

We use randomized response (RR) mechanism as a baseline since the total number of states 

for each genomic data point is 3 and the RR provides the best utility for such a small number 

of states [30]. Moreover, RR uses the same set of inputs and outputs without an encoding, 

which allows the data collector to use perturbed data directly. We first show how correlations 

in genomic data can be used by an attacker to infer the original values of perturbed data 

points when RR mechanism is directly used. We describe a correlation attack and show 

how estimation error of the attacker (a commonly used metric to quantify genomic privacy) 

decreases due to the direct use of RR.

In the correlation attack, the attacker detects (and eliminates) the data values that are not 

consistent with the other shared values based on correlations. Thus, in the proposed data 

sharing scheme, we consider such an attack by-design and do not share the values of the 

shared data points which are inconsistent with the previously shared data points. During 

sharing of each data point (single nucleotide polymorphism - SNP) with the data collector, 

the proposed algorithm eliminates a particular value of a shared SNP if the corresponding 

value of the SNP occurs with negligible probability considering its correlations with the 

other shared SNPs (to prevent an attacker utilize such statistically unlikely values to infer 

the actual values of the SNPs). Then, the algorithm adjusts the sharing probabilities for the 

non-eliminated values of the SNP by normalizing them and making sure that the attacker’s 
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distinguishability between each possible values of the SNP is bounded by eϵ, which achieves 

(ϵ, T)-dependent LDP.

To improve utility, we introduce new probability distributions (for the shared states of 

each SNP), such that, for each shared SNP, the probability of deviating significantly from 

its “useful values” is small. Useful values of a SNP depend on how the data collector 

intends to use the collected SNPs. For this, we focus on genomic data sharing beacons 

(a system constructed with the aim of providing a secure and systematic way of sharing 

genomic data) and show how to determine probability distributions for different states of 

each shared SNP with the aim of maximizing the utility of the collected data (this can easily 

be extended for other uses of genomic data, such as in statistical databases). In the proposed 

mechanism, SNPs of a genome donor are processed sequentially. Although the proposed (ϵ, 

T)-dependent LDP definition is satisfied in any order, the number of eliminated states for 

each SNP can be different based on the order of processing. Hence, we also show how to 

determine an optimal order of processing (which provides the highest utility) via Markov 

decision process (MDP) and provide a value iteration-based algorithm to optimize the utility 

of shared data. Furthermore, due to complexity of the optimal algorithm, we propose an 

efficient greedy algorithm to determine the processing order of the SNPs in the proposed 

data sharing mechanism.

We conduct experiments with a real-life genomic dataset to show the utility and privacy 

provided by the proposed scheme. Our experimental results show that the proposed scheme 

provides better privacy and utility than the original randomized response mechanism. We 

also show that using the proposed greedy algorithm for the order of processing, we improve 

the utility compared to randomly selecting the order of processed SNPs.

The rest of the paper is organized as follows. We review the related work in Section 2 

and provide the technical preliminaries in Section 3. We present the proposed framework 

in Section 4. We propose an algorithm for optimal data processing order in Section 5. We 

evaluate the proposed scheme via experiments in Section 6. Finally, we conclude the paper 

in Section 7.

2 RELATED WORK

In this section, we discuss relevant existing works.

2.1 Genomic Privacy

Genomic privacy topic has been recently explored by many researchers [22]. Several works 

have studied various inference attacks against genomic data including membership inference 

[24, 29] and attribute inference [2, 11, 17]. To mitigate these threats, some researchers 

proposed using cryptographic techniques for privacy-preserving processing of genomic 

data [1, 3, 36]. The differential privacy (DP) concept [13] has also been used to release 

summary statistics about genomic data in a privacy-preserving way (to mitigate membership 

inference attacks) [19, 35]. Unlike the existing DP-based approaches, our goal is to share the 

genomic sequence of an individual, not summary statistics. To share genomic sequences in 

a privacy-preserving way, techniques to selectively share (or hide) data points (SNPs) have 
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been proposed [18, 33]. However, they do not provide formal privacy guarantees. For the 

first time, we study the applicability of LDP for genomic data sharing and develop a variant 

of LDP for correlated data.

2.2 Local Differential Privacy

Differential privacy (DP) [13] is a concept to preserve the privacy of records in statistical 

databases while publishing statistical information about the database. Although DP provides 

strong guarantees for individual privacy, there may be privacy risks for individuals when 

data is correlated. Several approaches have been proposed [7, 20, 26] in order to protect the 

privacy of individuals under correlations. Since these works focus on privacy of aggregate 

data release (e.g., summary statistics about data), they are not suitable for individual data 

sharing. Local differential privacy (LDP) is a state-of-the-art definition to preserve the 

privacy of the individuals in data sharing with an untrusted data collector. However, a 

very limited number of tasks, such as frequency estimation [30], heavy hitters [4], frequent 

itemset mining [31], and marginal release [9] have been demonstrated under LDP and the 

accuracy of these tasks are much lower than performing the same task under the central 

model of differential privacy. Collecting perturbed data from more individuals decreases the 

accuracy loss due to randomization. Hence, practical usage of LDP-based techniques needs 

a high number of individuals (data owners), which limits the practicality of LDP-based 

techniques. To overcome the accuracy loss due to LDP, a shuffling technique [14] has 

recently been proposed. The main idea of shuffling is to utilize a trusted shuffler which 

receives the perturbed data from individuals and permutes them before sending to data 

collector. However, requiring a trusted shuffler also restricts the practical usage of this 

method.

Another approach to improve utility of LDP is providing different privacy protection for 

different inputs. In the original definition of LDP, indistinguishability needs to be provided 

for all inputs. Murakami et al. divided the inputs into two groups as sensitive and non-

sensitive ones [21]. They introduced the notion of utility-optimized LDP, which provides 

privacy guarantees for only sensitive inputs. Gu et al. [15] proposed input-discriminative 

LDP, which provides distinct protection for each input. However, grouping inputs based 

on their sensitivity is not realistic in practice due to the subjectivity of sensitivity. In this 

work, we discriminate the inputs based on their likelihood instead of their sensitivity. We 

focus on how correlations can be used by an attacker to degrade privacy and how we 

mitigate such degradation. Hence, we provide indistinguishability between possible states by 

eliminating the states that are rarely seen in the population using correlations. By doing so, 

we aim to decrease the information gain of an attacker that uses correlations for inference 

attacks. Furthermore, both of these works [15, 21] aim to improve utility by providing 

less indistinguishability for non-sensitive data and providing more accurate estimations. In 

our work, the accuracy does not rely on estimations. Instead, we provide high accuracy 

by eliminating rare values from both input and output sets. We also improve the utility by 

increasing the probability of “useful values” considering the intended use of the shared data.
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3 TECHNICAL PRELIMINARIES

In this section, we give brief backgrounds about genomics and LDP.

3.1 Genomics Background

The human genome contains approximately 3 billion pairs of nucleotides (A, T, C, or G). 

Approximately 99.9% of these pairs are identical in all people. When more than 0.5% of 

the population does not carry the same nucleotide at a specific position in the genome, this 

variation is considered as single-nucleotide polymorphism (SNP). More than 100 million 

SNPs have been identified in humans. For a SNP, the nucleotide which is observed in the 

majority of the population is called the major allele and the nucleotide which is observed in 

the minority of the population is called the minor allele. Each person has two alleles for each 

SNP position, and each of these alleles are inherited from a parent of the individual. Hence, 

each SNP can be represented by the number of its minor alleles, which can be 0, 1, or 2. 

In this work, we study the problem of sharing the values of SNPs in a privacy-preserving 

way. It is shown that SNPs may have pairwise correlations between each other (e.g., linkage 

disequilibrium [25]). Since an attacker can use such correlations to infer the original values 

of the shared SNPs, privacy of the family members should also be considered in genomic 

data sharing.

3.2 Definition of Local Differential Privacy

Local differential privacy (LDP) is a variant of differential privacy that allows to share 

data with an untrusted party. In LDP settings, each individual shares her data with the 

data collector after perturbation (randomization). Then, the data collector uses all collected 

perturbed data to estimate statistics about the population. During data perturbation, the 

privacy of the individuals are protected by achieving indistinguishability.

In this work, we adopt the general definition of LDP [12], which is expressed as follows:

DEFINITION 1 (LOCAL DIFFERENTIAL PRIVACY [12]). A randomized mechanism A satisfies 
ϵ-local differential privacy if

sup
y ∈ σ(Y), dα, dβ ∈ X

Pr y ∣ A x = dα
Pr y ∣ A x = dβ

≤ eϵ,

where dα and dβ are two possible values of an element x, y is the output value, Y is the 
collection of all possible output values of x, and σ Y  denotes an appropriate σ-filed on Y.

Definition 1 captures a type of plausible-deniability, i.e., no matter what input value of x 
is released, it is nearly equally as likely to have come from any of its possible values. The 

parameter ϵ is the privacy budget, which controls the level of privacy. Randomized response 

(RR) [32] is a mechanism for collecting sensitive information from individuals by providing 

plausible deniability. We use the general definition of LDP (i.e., Definition 1), instead of the 

commonly used one, i.e., Pr (A(x) ∈ Range(A))/Pr (A(x′) ∈ Range(A)) ≤ eϵ (x and x′ are 

a pair of user’s possible private data element, and Range(A) is the range of the mechanism 
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A) [4, 31], because the general definition explicitly considers the possible (statistical likely) 

input and output values of each data point by using σ-algebra, which is more convenient for 

us to incorporate correlation models and develop dependent LDP (Section 4.3). Although 

RR is originally defined for two possible inputs (e.g., yes/no), this mechanism can also 

be generalized. In generalized RR [31], the correct value is shared with probability p = 

eϵ/(eϵ+m−1) and each incorrect value is shared with probability q = 1/(eϵ+m−1) to achieve 

ϵ-LDP, where m is the number of states.

4 PROPOSED FRAMEWORK

In this section, we first introduce the problem and explain genomic data sharing with an 

untrusted data collector by directly applying RR mechanism. We then present a correlation 

attack that utilizes correlations between SNPs and show the significant decrease in privacy 

after the attack. We also show how to simultaneously improve privacy against the correlation 

attacks and improve utility for genomic analysis. Finally, we present our proposed genomic 

data sharing mechanism.

4.1 Problem Statement

System Model.—Figure 1 shows the overview of the system model and the steps of the 

proposed framework. We focus on a problem, where genome donors share their genomic 

data in a privacy-preserving way with a data collector who will use collected data to answer 

queries about the population. In genomic data sharing scenario, there are n individuals 

(I1, …, In) as genome donors. A genome donor Ij has a sequence of SNPs denoted by 

Xj = x1
j, …, xl

j . Since each SNP is represented by the number of minor alleles it carries, 

each xi
j has a value from the set {0, 1, 2}. Today, individuals can obtain their genomic 

sequences via various online service providers, such as 23andMe, and they also share their 

sequences with other service providers or online repositories (e.g., for research purposes). 

Hence, the proposed system model has real-world applications, where individuals want to 

preserve privacy of their genomic data when they share their genomic sequences.

Threat Model.—The data collector is considered as untrusted. It can share the data directly 

with another party or use it to answer queries. Hence, we assume the attacker has data 

shared by all genome donors with the data collector, however, it does not know the original 

values of any SNPs. In addition, we assume that the attacker knows the pairwise correlations 

between SNPs (which can be computed using public datasets), the perturbation method, and 

the privacy budget ϵ. Thus, the attacker can infer whether the shared value of a SNP is equal 

to its original value using correlations.

Data Utility.—The data collector uses data collected from genome donors to answer 

queries. Therefore, we define the utility as the accuracy of data collector to answer such 

queries. For genomic data, typically, the utility of each value of a SNP is different and the 

utility of a SNP may change depending on the purpose of data collection (e.g., statistical 

genomic databases, genomic data sharing beacons, or haploinsufficiency studies). Thus, one 

of our aims is to improve the utility of LDP-based data collection mechanism by considering 

data utility as a part of the data sharing mechanism.
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Genomic Data Sharing Under Local Differential Privacy.—In [30], several 

approaches have been explained for estimating frequency of inputs under LDP such as direct 

encoding, histogram encoding, and unary encoding. As shown in [30], when the size of input 

set is less than 3eϵ +2, direct encoding is the best among these approaches. Since the size 

of input set for genomic data is 3, we also use direct encoding approach for genomic data 

sharing. In direct encoding approach, no specific encoding technique is applied to inputs 

before perturbation and randomized response (RR) mechanism (introduced in Section 3.2) is 

used for perturbing inputs. To apply RR mechanism and achieve ϵ-LDP for genomic data, 

the value of a SNP is shared correctly with probability p = eϵ /(eϵ + 2) and each incorrect 

value is shared with probability q = 1/(eϵ+ 2). After receiving perturbed values from n 
individuals, the data collector estimates the frequency of each input in the population as 
ci − n ⋅ q

p − q , where ci is the number of individuals who shared i ∈ {0, 1, 2}.

4.2 Correlation Attack Against LDP-Based Genomic Data Sharing

When multiple data points are shared with the RR mechanism, ϵ-LDP is still guaranteed if 

the data points are independent. However, it is known that SNPs have pairwise correlations 

between each other (e.g., linkage disequilibrium [25]). An attacker can use the correlations 

between SNPs to infer incorrectly or correctly shared SNPs as a result of the RR 

mechanism.

To show this privacy risk, we consider a correlation attack that can be performed by an 

attacker in the following. We represent a SNP i as SNPi and we represent the value of SNPi 

for individual Ij as xi
j. We assume that all pairwise correlations between SNPs are publicly 

known. Hence, Pr(SNPi = dα | SNPk = dβ) is known by the attacker for any i, k ∈ {1,…, 

l} and dα, dβ ∈ {0, 1, 2}. Let Yj = y1
j, …, yl

j  be the perturbed data that is shared by Ij 

with the data collector (potential attacker whose goal is to infer the actual SNP values). 

Without using the correlations, the attacker’s only knowledge about any xi
j is the probability 

distribution of RR mechanism. However, using the correlations, the attacker can enhance 

its knowledge about the probability distribution of xi
j by eliminating the values that are not 

likely to be observed (i.e., that have low correlation with the other received data points).

To achieve this, for each SNPi of Ij, using all other received data points y1
j, …, yl

j  (except 

for yi
j), the attacker counts the number of inconsistent instances in terms of correlations 

between different values of SNPi and all other received data points (i.e., having correlation 

less than a threshold). Let τ be the correlation threshold of the attacker. The attacker 

keeps a count for the number of instances for each SNPk (k ∈ {1, …, l},k ≠ i) having 

Pr xi
j = 0 ∣ xk

j = yk
j < τ, Pr xi

j = 1 ∣ xk
j = yk

j < τ, and Pr xi
j = 2 ∣ xk

j = yk
j < τ as ci, 0

j , ci, 1
j , and 

ci, 2
j , respectively. If any of these values is greater than or equal to γ · l (where γ is an attack 

parameter for the number of inconsistent data points), the attacker eliminates that value in 

the probability distribution of xi
j and considers the remaining values for its inference about 

the correct value of xi
j.
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To show the effect of this correlation attack on privacy, we implemented the RR mechanism 

for genomic data and computed the attacker’s estimation error, a metric used in genomic 

privacy, to quantify the distance of the attacker’s inferred values from the original data, 

before and after the attack. Our results (in Figure 5, Section 6.1) clearly show the 

vulnerability of directly using RR in genomic data sharing. For instance, when ϵ = 1, the 

attacker’s estimation error decreases from 0.8 to 0.4 after the correlation attack. In general, 

we observed that the attacker’s estimation error decreases approximately 50% by using this 

attack strategy.

4.3 (ϵ, T)-dependent Local Differential Privacy

To handle data dependency in privacy-preserving data sharing, some works, such as [7, 

20] extend the definition of traditional differential privacy by considering the correlation 

between elements in the dataset. However, there is a lack of such variants for local 

differential privacy models, which hinders the application of LDP-based solutions for 

privacy-preserving genomic data sharing. In this paper, inspired by [20], which handles 

data dependency by considering the number of elements that can potentially be affected by a 

single element, we propose the following definition.

DEFINITION 2. An element x in a dataset X is said to be T-dependent under a correlation 
model (denoted as Corr) if its released value y depends on at most other T elements in X. 
The dependency is measured in terms of the conditional probability of x taking value y given 
the knowledge on the value of another element in X.

Furthermore, let Qi be the set of elements on which a T-dependent element xi ∈ X is 

dependent (through model Corri) Qi ≤ T , A Qi  be the set of released values of elements 

in Qi, and dα ∣ A Qi , corri represent the possible value(s) of xi that can be released due to the 

releasing of A Qi  and model Corri. Note that it is possible for some elements to have only 

one possible value to be shared under a specific correlation model. If the only possible value 

happens to be the true value of that element, we call these elements ineliminable elements, 

whose privacy will be inevitably compromised for the sake of the utility improvement of the 

entire shared elements (we formally investigate this issue in Section 5). Thus, we propose 

the following definition.

DEFINITION 3 (DEPENDENT LOCAL DIFFERENTIAL PRIVACY). A randomized mechanism A is said 
to be (ϵ, T)-dependent local deferentially private for an element that is not ineliminable if

sup
y ∈ σ(Y), dα ∣ A Qi , Corri, dβ ∣ A Qi , Corri

Pr y ∣ A xi = dα ∣ A Qi , Corri
Pr y ∣ A xi = dβ ∣ A Qi , Corri

≤ eϵ .

Definition 3 can be considered as a specialization of the general LDP definition (Definition 

1) by having dα = dα ∣ A Qi , Corri and dβ = dβ ∣ A Qi , Corri. Essentially, Definition 3 means 

that any output of a T-dependent element x is nearly equally as likely to have come from any 

of its possible input values given other already shared elements (i.e., A Qi  and a correlation 
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model Corri). In other words, a specific element xi, taking value of dα ∣ A Qi , Corri or 

dβ ∣ A Qi , Corri, will be almost equally perturbed as y ∈ σ(Y) by the randomized mechanism 

A.

REMARK. It is noteworthy that our definition of dependent local differential privacy does 
not compromise the privacy guarantee of the conventional LDP, because if we assume no 
correlation model, i.e., Corri = ∅, ∀i, then dependent LDP reduces to the conventional 
LDP. By incorporating the correlation model, given the same privacy guarantee with 
conventional LDP, our proposed dependent LDP can achieve higher data utility by 
eliminating statistically unlikely values.

4.4 Achieving (ϵ, T)-dependent LDP in Genomic Data Sharing

Our experimental results show the vulnerability of directly applying RR mechanism for 

genomic data sharing.

Thus, here, our goal is to come up with a genomic data sharing approach achieving (ϵ, 

T)-dependent LDP that is robust against the correlation attack. The definition of LDP states 

that given any output, the distinguishability between any two possible inputs needs to be 

bounded by eϵ. In Section 4.2, all values in set {0, 1, 2} are considered as possible inputs for 

all SNPs during data sharing. However, we know that the attacker can eliminate some input 

states using correlations. Hence, for the rest of the paper, we consider the possible input 

states as the ones that are not eliminated by using correlations. In other words, we provide 

indistinguishability between the values that are statistically possible.

In the correlation attack described in Section 4.2, the attacker uses two threshold values. The 

correlation values less than τ are considered as low correlation. In addition, if the fraction 

of SNPs having low correlation with a state of a particular SNP is more than γ, such state 

of the SNP is eliminated by the attacker. In the data sharing scheme, we also use these two 

parameters to eliminate states. However, the parameters used by the algorithm may not be 

same with the ones used by the attacker. Hence, to distinguish the parameters used by the 

algorithm and the attacker, we represent the parameters used in the algorithm as τ  and γ
(which are the design parameters of the proposed data sharing algorithm). We describe this 

algorithm for a donor Ij as follows.

In each step of the proposed algorithm, one SNP xi
j is processed. The algorithm first 

determines the states to be eliminated by considering previously processed SNPs. Then, 

the algorithm selects the value to be shared yi
j  by limiting the distinguishability of non-

eliminated states by eϵ. Hence, the order of processing may change the number of eliminated 

states for a SNP, which may also change the utility of the shared data. For instance, when a 

SNP is processed as the first SNP, all its three states are possible (for sharing) since there is 

no previously shared SNP. However, processing the same SNP as the last SNP may end up 

eliminating one or more of its states (due to their correlations with previously shared SNPs). 

We propose an algorithm to select the optimal processing order (considering utility of shared 
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data) in Section 5. In the following, we assume that a processing order is provided by the 

algorithm in Section 5 and SNPs are processed one by one following this order.

For xi
j, the algorithm considers the previously processed data points and identifies the states 

which will be eliminated. As explained in the correlation attack, the algorithm counts the 

number of previously processed SNPs which have low correlation with states 0, 1, and 2 of 

xi
j.

Thus, the algorithm keeps counts for the previously processed SNPs (SNPk) having 

Pr xi
j = 0 ∣ xk

j = yk
j < τ , Pr xi

j = 1 ∣ xk
j = yk

j < τ , Pr xi
j = 2 ∣ xk

j = yk
j < τ  as ci, 0

j , ci, 1
j , and ci, 2

j , 

respectively. If any of these values is greater than or equal to γ ⋅ i, the algorithm eliminates 

such value from the possible outputs of xi
j. Let p = eϵ/(eϵ + 2) and q = 1/(eϵ + 2), and the 

value of xi
j be 0. Then, the algorithm assigns the probabilities of non-eliminated states as 

follows:

• If there are three possible outputs (i.e., no eliminated state), the algorithm uses 

the same probability distribution with the RR mechanism as (p, q, q). Thus, 

Pr yi
j = 0 = p and Pr yi

j = 1 = Pr yi
j = 2 = q.

• If there are two possible outputs (i.e., one eliminated state) and xi
j (state 0) is not 

eliminated, the algorithm uses an adjusted probability distribution as (p/(p + q), 

q/(p + q), 0) (or (p/(p + q), 0, q/(p + q)), depending on which state is eliminated).

• If there are two possible outputs (i.e., one eliminated state) and xi
j is eliminated, 

the algorithm uses an adjusted probability distribution as (0, 0.5, 0.5).

• If there is one possible output (i.e., two eliminated states), the corresponding 

state is selected as the output.

• If there is no possible output (i.e., three eliminated states), the algorithm uses the 

same probability distribution as the RR mechanism.

For other values of xi
j, the algorithm also works in a similar way. The probability 

distributions for sharing a data point are also shown in Figure 2. Based on these 

probabilities, the algorithm selects the value of yi
j. If the attacker knows τ  and γ  used 

in the algorithm, it can compute the possible values for each SNP using perturbed data 

Yj = y1
j, …, yl

j , τ , γ  and the correlations between the SNPs. Since eϵ ratio is preserved in 

each case, the attacker can only distinguish the possible inputs with eϵ difference.

4.5 Improving Utility by Adjusting Probability Distributions

In Section 4.4, we proposed a data sharing mechanism to improve the privacy of RR 

mechanism against the correlation attack. The mechanism guarantees that the perturbed 

data Yj = y1
j, …, yl

j  belonging to Ij does not include any value that have low correlation 

with other SNPs. However, consistent with existing LDP-based mechanisms, the algorithm 
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assigns equal sharing probabilities for each incorrect value of a SNP i. However, this 

may cause significant utility loss since the accuracy of genomic analysis may significantly 

decrease as the values of shared SNPs deviate more from their original values (e.g., in 

genomic data sharing beacons or when studying haploinsufficiency). For genomic data, 

typically, the utility of each value of a SNP is different and the utility of a SNP may change 

depending on the purpose of data collection. Here, our goal is to improve the utility of 

shared data by modifying the probability distributions without violating (ϵ, T)-dependent 

LDP.

To improve utility, we introduce new probability distributions, such that, for each shared 

SNP, the probability of deviating high from its “useful values” is small. Useful values of a 

SNP depend on how the data collector intends to use the collected SNPs. For instance, for 

genomic data sharing beacons, changing the value of a shared SNP with value 2 to 1 does 

not decrease the utility, but sharing it as 0 may cause a significant utility loss. Similarly, 

while studying haploinsufficiency, obfuscating a SNP with value 2 results in a significant 

utility loss while changing a 0 to 1 (or 1 to 0) does not cause a high utility loss. Here, to 

show how the proposed data sharing mechanism improves the utility, we focus on genomic 

data sharing beacons without loss of generality (similar analysis can be done for other uses 

of genomic data as well).

Genomic data sharing beacons allow users (researchers) to learn whether individuals with 

specific alleles (nucleotides) of interest are present in their dataset. A user can submit a 

query, asking whether a genome exists in the beacon with a certain nucleotide at a certain 

position, and the beacon answers as “yes” or “no”. Since having at least one minor allele 

is enough for a “yes” answer, having one minor allele (a SNP value of 1) or two minor 

alleles (a SNP value of 2) at a certain position is equivalent in terms of the utility of beacon’s 

response. Therefore, if the correct value of a SNP is 1 or 2, sharing the incorrect value as 2 

or 1 will have higher utility than sharing it as 0. Considering this, we change the probability 

distributions of the data sharing mechanism (given in Section 4.4) as shown in Figure 3) to 

improve the utility. As in Section 4.4, p = eϵ/(eϵ + 2) and q = 1/(eϵ + 2). These probability 

distributions still preserve the eϵ ratio between states. Note that for eliminating the states, the 

same process is used as described in Section 4.4. To determine the processing order of the 

SNPs, the algorithm in Section 5 is used.

4.6 Proposed Data Sharing Algorithm

In Section 4.4, we described how to improve privacy by eliminating statistically unlikely 

values for each SNP. In Section 4.5, we explained how to modify probability distributions 

to improve utility of shared data for genomic data sharing beacons. Using these two ideas, 

we describe our proposed genomic data sharing algorithm in the following and provide the 

details for an individual Ij in Algorithm 4.1. The algorithm processes all SNPs one by one 

and in each iteration, it computes a value to share for the SNP being processed (eventually, 

all SNPs are processed and they are shared at the same time with the data collector). The 

algorithm first eliminates the states having low correlations with the previously processed 

SNPs, as described in Section 4.4. Two thresholds τ  and γ  are used to determine the 

eliminated states. We evaluate the effect of these threshold values on utility and privacy in 
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Section 6.2. Then, the algorithm decides the shared value of the SNP using the probability 

distribution in Figure 3. This process is repeated for all SNPs and the SNP sequence to be 

shared (i.e., output) is determined. Since we consider all pairwise correlations, changing the 

order may change the utility of the proposed scheme by eliminating different states. We 

discuss the optimal selection of this order (in terms of utility) in Section 5 and Algorithm 

5.1 outputs the optimal order for each individual Ij (i.e., πj*). Due to the computational 

complexity of Algorithm 5.1, we also propose a greedy algorithm in Section 5.2. Thus, 

either the output of the optimal or the greedy algorithm is used as the input for the proposed 

data sharing algorithm.

LEMMA 4.1. Given a processing order, Algorithm 4.1 achieves (ϵ, l − 1)-dependent local 
differential privacy for each genomic data point that is not ineliminable.

PROOF. The proof directly follows from the reallocation of probability mass used in the 

RR mechanism. Since Corri is the pairwise correlation between SNPs, we have T = l −1. 

Besides, the eϵ ratio is preserved in the modified RR mechanism, and hence the condition in 

Definition 3 can always hold for ineliminable SNPs. □

5 OPTIMAL DATA PROCESSING ORDER FOR THE PROPOSED GENOMIC 

DATA SHARING MECHANISM

Algorithm 4.1 considers/processes one SNP at a time and as discussed, different processing 

orders may cause elimination of different states of a SNP, which, in turn, may change the 

utility of the shared data. Assuming there are totally l SNPs in Xj of an individual Ij, 

Algorithm 4.1 can process them in l! different orders. As a result, determining an optimal 

order of processing to maximize the utility of the shared sequence of SNPs is a critical and 

challenging problem. In this section, we formulate the problem of determining the optimal 

order of processing as a Markov Decision Processes (MDP) [27], which can be solved by 

value iteration using dynamic programming. Note that the algorithm locally processes all 

SNPs, and then perturbed data is shared all at once. Hence, the data collector does not see or 

observe the order of processing.
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Since we consider genomic data sharing beacons to study the utility of shared data (as in 

Section 4.5) and the proposed sharing scheme is non-deterministic, we aim at achieving the 

maximum expected utility for the beacon responses using the shared SNPs. Note that similar 

analysis can be done for other uses of genomic data as well. Beacon utility is typically 

measured over a population of individuals, however, in this work, we consider an optimal 

processing order, which maximizes the expected beacon utility for each individual. The 

reason is twofold: (i) an individual does not have access to other individuals’ SNPs and (ii) a 

population’s maximum expected beacon utility can be achieved if all individuals’ maximum 

expected beacon utility are obtained due to the following Lemma, whose proof is given in 

[34].

LEMMA 5.1. Maximizing the expectation of individuals’ beacon utility is a sufficient 
condition for maximizing the expectation of a population’s beacon utility.

The sufficient condition in Lemma 5.1 can easily be extended to other genomic data sharing 

scenarios as long as the individuals share their SNPs independently from each other.

5.1 Determining the Optimal Processing Order via Markov Decision Processes (MDP)

Here, we proceed with obtaining the optimal order of processing which maximizes 

individuals’ expected beacon utility. First, we model the SNP state elimination and 

processing order as an agent-environment interaction framework, where the agent is 

a specific individual (donor), the environment is the proposed SNP sharing scheme 

considering correlations (in Algorithm 4.1), and the interaction between the agent and 

environment follows a MDP.
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For instance, consider the individual (donor) Ij in the population. Then, her MDP interaction 

with the environment is characterized as a tuple Sj, s1
j, Aj, Prj( ⋅ ), ℛj, Hj , where Sj is the 

set of all MDP states of individual Ij, s1
j is her initial MDP state, Aj is her action set, Prj(·) 

is the transition probability between two MDP states of Ij, ℛj is her set of rewards, and 

Hj is the horizon of the MDP (i.e., number of rounds in discrete time). In our case, H = l 

(number of SNPs to be processed), and s1
j = ∅. At each time step i ∈ {1, 2, ⋯, H} (i.e., 

when individual Ij processes her ith SNP), the agent chooses an action ai
j from her action 

pool Ai
j ⊂ Aj (i.e., selects a specific SNP from her remaining unprocessed SNPs), where 

Ai
j is the set of remaining unprocessed SNPs and Aj is the set of all SNPs of individual 

Ij. Then, the environment provides the agent with a MDP state si
j and a reward ri

j. In 

particular, si
j = y1

j, y2
j, ⋯, yi

j  (i.e., the list recording all observations of previously processed 

SNPs of individual Ij) and ri
j is the utility of the beacon response on yi

j, and hence, we have 

ri
j ∈ ℛj = 0, 1 .

After observing si
j and receiving ri

j, the agent takes the next action 

ai + 1
j ∈ Ai + 1

j , which causes si
j to transit to si + 1

j  via the transition probability 

Pr si + 1
j ∣ si

j, ai
j, si − 1

j , ai − 1
j , ⋯, s1

j, a1
j = Pr si + 1

j ∣ si
j, ai

j . Here, the equality holds due to the 

Markov property [27] and Pr si + 1
j ∣ si

j, ai
j  is determined by the probability distribution with 

improved utility in Figure 3. An illustration of the MDP interaction between the agent 

(individual Ij) and the environment (Algorithm 4.1) at time step i (processing the ith SNP) is 

shown in Figure 4.

Since the optimal order can be predetermined and should be invariant in time, we model 

the agent’s (individual Ij) decision policy at time step i as a deterministic mapping as 

πi
j:Sj Ai

j, i.e., ai
j = πi

j si , ∀i ∈ {1, 2, ⋯, l}. Let πj = π1
j, π2

j, ⋯, πl
j  be the sequence 

of decision policies of the agent. Due to the nondeterministic behavior of Algorithm 4.1, 

we characterize the environment’s behavior on individual Ij as a probabilistic mapping as 

p:Sj × Ai
j Sj × ℛj (i.e., Pr si + 1

j ∣ si
j, ai

j ). Furthermore, we define the future cumulative 

return for individual Ij starting from MDP state si
j as Ri

j = ∑η = i
η = lrηj and the state-value 

function of MDP state si
j under policy πi

j as vπi
j

si = Up Ri + 1
j ∣ si

j  (Up[ ⋅ ] indicates that 

utility is considered in an expected manner with respect to the environment’s probabilistic 

mapping p). Then, to maximize an individual’s expected beacon utility at time step i, the 

agent takes the optimal decision πi
j* ∈ argmaxπi

jvi
πi

j
si , ∀si

j ∈ Sj and ∈ suggests that πi
j* may 

not be unique.
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Thus, we have formulated the optimal order of processing problem as a finite-horizon MDP 

problem, whose state, action, and reward sets are all finite and dynamics are characterized 

by a finite set of probabilities (i.e., Pr si
j ∣ si − 1

j , ai − 1
j ). The finite-horizon MDP problem is 

P-complete, as it can be reduced from the circuit value problem, which is a well-known 

P-complete problem [23]. In the literature, exact optimal solution of finite-horizon MDP 

problem can be obtained by quite a few methods, for example value iteration, policy 

iteration, or linear programming [5]. In Algorithm 5.1, we provide a value iteration [27] 

based approach to determine the optimal order of processing for an individual.

Algorithm 5.1 is implemented using dynamic programming starting from the last time 

step, and it has a computational complexity of O Sj 2 Aj  for individual Ij [27]. For finite-

horizon MDP, the number of MDP states grows exponentially with the number of variables, 

which is known as the curse of dimensionality. For example, in our case, at time step i, 
Algorithm 5.1 needs to calculate the state-value function for 3i states. In the literature, many 

approaches have been proposed to address this issue, such as state reduction [10] and logical 

representations [6], which, however are outside the scope of this paper. Therefore, Algorithm 

5.1 may be computationally expensive to process large amount of data, and hence in the 

following section, we also propose a heuristic approach to process long sequence of SNPs.

5.2 A Heuristic Approach

In this work, we consider sharing thousands of SNPs of individuals in a population. 

As a consequence, it is computationally prohibitive to obtain the exact optimal order 

of processing for each individual. We propose the following heuristic approach for an 

individual Ij to process her SNPs in a local greedy manner. Specifically, at each time 

step i, the algorithm selects the SNP with the maximum expected beacon utility, i.e., 

ai
j = argmaxaj ∈ Ai

jUaj, where Ai
j is the set of remaining SNPs of individual Ij, and Uaj

denotes the expected immediate utility if individual Ij selects SNP aj and it can be 

determined by the adjusted state distribution in Figure 3. After evaluating the state 

elimination condition using a specific SNP, we greedily choose one SNP to share. For 

example, without loss of generality, assume that at time step l – 1, SNPs xi
j and xk

j are left 
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in Al − 1
j , after the elimination check, xi

j has state distribution 0, p
p + q , q

p + q  withU = 1, and 

xk
j has state distribution q

p + q , 0, q
p + q  with U = q

p + q . Then, the heuristic algorithm selects 

SNP xi
j to process at time step l − 1. If there is a tie between two SNPs, we randomly choose 

one. As a result, the computational complexity of the heuristic approach is O Aj 2
. The 

difference between the heuristic approach and Algorithm 5.1 is that Line 7 in Algorithm 5.1 

is replaced with the maximizer of Uaj. For finite-horizon MDP problem, the gap between 

the optimal and heuristic solution can be established by exploring the asynchronous value 

iteration that updates a subset of the states of an MDP at each iteration [16], which, however, 

is outside the scope of this work. We will compare the heuristic approach with the optimal 

algorithm (in Algorithm 5.1) experimentally in Section 6.3.

6 EVALUATION

We implemented the proposed data sharing scheme in Section 4.6 and used a real genomic 

dataset containing the genomes of the Utah residents with Northern and Western European 

ancestry (CEU) population of the HapMap project [8] for evaluation. We used 1000 SNPs 

of 156 individuals from this dataset for our evaluations. Using this dataset, we computed 

all pairwise correlations between SNPs. For each 1 million (1000 × 1000) SNP pairs, 

we computed 9 (3 × 3) conditional probabilities. Hence, we totally computed 9 million 

conditional probabilities (for all pairwise correlations between all SNPs). Note that, to 

quantify the privacy of the proposed scheme against the strongest attacks, we used the 

same dataset to compute the attacker’s background knowledge. However, in practice, the 

attacker may use different datasets to compute such correlations and its attacks may become 

less successful when less accurate statistics are used. We also assumed that each donor 

has the same privacy budget (ϵ). To quantify privacy, we used the attacker’s estimation 

error. Estimation error is a commonly used metric to quantify genomic privacy [28], which 

quantifies the average distance of the attacker’s inferred SNP values from the original data 

Xj  as

E = ∑
v ∈ 0, 1, 2 ; k ∈ 1, …, l

Pr xk
j = v xk

j − v /l,

where Pr xk
j = v  is the attacker’s inference probability for xk

j being υ. We assume the 

attacker’s only knowledge is p and q initially, which are computed based on ϵ. Then, using 

the correlations, the attacker improves its knowledge by eliminating the statistically less 

likely values. For the eliminated states, attacker sets the corresponding probability to 0. 

Since xk
j − v  can be at most 2 for genomic data, E is always in the range [0, 2], where 

higher E indicates better privacy. Thus, when the attacker’s estimation error decreases, the 

inference error of the attacker (e.g., to infer the predisposition of a target individual to 

a disease) decreases accordingly. To quantify the utility, we used the accuracy of beacon 

responses. For each SNP, we first run the beacon queries using the original values and then 
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run the same queries with the perturbed values. Let the number of beacon responses (SNPs) 

for which we obtain the same answer for both original data and perturbed data be ns. We 

computed the accuracy as A = ns/l (l is the total number of beacon queries), which is always 

in the range [0, 1].

In the following, we first compare the proposed algorithm with the original RR mechanism 

in terms of privacy and utility. Then, we evaluate the effect of the design parameters on 

privacy and utility. Finally, we show the effect of the order of processing on utility.

6.1 Comparison with the Original Randomized Response Mechanism

As we discussed in Section 4.2, the original randomized response (RR) mechanism is 

vulnerable to correlation attacks because when a given state of a SNP is loosely correlated 

with at least γ · l other SNPs, the attacker can eliminate that state, and hence improve its 

inference power for the correct value of the SNP. In Figure 5, we show this vulnerability 

in terms of attacker’s estimation error (blue and red curves in the figure). We observed that 

attacker’s estimation error is the smallest (i.e., its inference power is the strongest) when the 

correlation threshold of the attacker (τ) is 0.02 and inconsistency threshold of the attacker 

(γ) is 0.03, and hence we used these parameters for the attack.

Under the same settings, we also computed the estimation error provided by the proposed 

algorithm when τ = 0.02 and γ = 0.03. Therefore, during data sharing, we eliminated states 

of the SNPs having correlation less than τ = 0.02 (the correlation threshold of the algorithm) 

with at least γ = 0.03 of the previously shared SNPs (in Section 6.2, we also evaluate the 

effect of these parameters on privacy and utility). We also let the attacker conduct the 

same attack in Section 4.2 with the same attack parameters as before. Figure 5 shows the 

comparison of the proposed scheme with original RR mechanism (green curve in the figure 

is the privacy provided by the proposed scheme). The results clearly show that the proposed 

method improves the privacy provided by RR after correlation attack. For instance, for ϵ = 1, 

the proposed scheme provides approximately 25% improvement in privacy compared to the 

RR mechanism. Note that the privacy of RR before the attack (blue curve in the figure) is 

computed by assuming the attacker does not use correlations. Hence, when the attacker uses 

correlations, it is not possible to reach that level of privacy with any data sharing mechanism 

and the privacy inevitably decreases. With the proposed scheme, we reduce this decrease in 

the privacy. To observe the limits of the proposed approach, we performed the correlation 

attack by assuming the attacker has 0 value for all SNPs (which is the mostly observed 

value in genomic data) and we observed the attacker’s estimation error as 0.66 (under the 

same experimental settings) after the correlation attack. Hence, with any mechanism it is not 

possible to exceed 0.66 after correlation attack and the privacy provided by the proposed 

scheme is remarkable.

Focusing on genomic data sharing beacons, we also compared the utility of shared data 

using the proposed scheme with the original RR mechanism in terms of accuracy of beacon 

answers (using the accuracy metric introduced before). We randomly selected 60 people 

from the population and used their 1000 SNPs to respond to the beacon queries. For 257 

SNPs there was no minor allele, and hence the original response of the beacon query was 
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“no”. There was at least one minor allele in 60 people for the remaining 743 SNPs (and 

hence, the original response of the beacon query was “yes”).

For the original RR mechanism, we shared 1000 SNPs of 60 individuals after perturbation. 

In the RR mechanism, the data collector eliminates the noise by estimating the frequency 

of each value using the sharing probabilities as described in Section 4.1. Hence, if 60 · p 
or more individuals report 0 for the value of a SNP (after perturbation), we considered the 

answer of beacon as “no”. For the proposed data sharing scheme, we did not apply such an 

estimation since in the proposed scheme, the sharing probabilities of the states are different 

for each SNP. Figure 6 shows the accuracy of the beacon for 1000 queries. We observed 

that our proposed scheme provides approximately 95% accuracy even for small values of ϵ, 

while the accuracy of the RR mechanism is less than 70% for small ϵ values and it only 

reaches to 85% when ϵ increases. We provide the accuracy evaluation for the “yes” and “no” 

responses separately in [34]. Note that we do not quantify the utility over the probability 

of correctly reporting a point. We quantify the utility over the accuracy of beacon answers. 

When the answer of the beacon query is “yes”, the original response of the beacon is mostly 

preserved after perturbation in both the original RR and the proposed mechanism (while the 

proposed mechanism still outperforms the RR mechanism, especially for smaller ϵ values). 

On the other hand, when the original answer of a beacon query is “no”, all individuals must 

report 0 for that SNP (to preserve the accuracy of the response). In this case, applying the 

original RR cannot provide high accuracy when ϵ is small, because with high probability, at 

least one individual reports its SNP value as 1 or 2 (i.e., incorrectly). Hence, our proposed 

approach significantly outperforms the RR mechanism in terms of the accuracy of the “no” 

responses. We conclude that the proposed scheme provides significantly better utility than 

the original RR mechanism.

Although here we evaluated utility for genomic data sharing beacons, similar utility analyses 

can be done for other applications as well. Since the proposed scheme eliminates statistically 

unlikely values, the proposed scheme will still outperform the original RR mechanism under 

similar settings. Since the proposed data sharing mechanism considers the correlations with 

the previously shared data points (as in Algorithm 4.1) its computational complexity is O l2 , 

where l is the number of shared SNPs of a donor.

One alternative approach to improve privacy in the original RR mechanism can be adding 

a post-processing step that includes identifying the SNPs having low correlations with 

the other SNPs and replacing them with the values that have high correlations. Such an 

approach can be useful to prevent correlation attacks due to eliminating less likely values. 

However, this approach provides much lower utility compared to the proposed mechanism 

since the proposed mechanism improves utility by adjusting probability distributions and 

optimizing the order of processing. We also implemented this alternative post-processing 

approach and compared with the proposed mechanism. We observed similar estimation error 

with the proposed mechanism, which shows that this approach can also prevent correlation 

attacks. However, as shown in Table 1, post-processing approach provides even lower utility 

than the original RR mechanism without post-processing, because it becomes harder to do 
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efficient estimation after the post-processing. Hence, the proposed mechanism outperforms 

the original RR mechanism even if post-processing is applied.

6.2 The Effect of Parameters on Utility and Privacy

In Section 6.1, we used the correlation threshold of the attacker (τ) as 0.02 and inconsistency 

threshold of the attacker (γ) as 0.03 in its correlation attack. In our experiments, these 

parameters provided the strongest attack against the original RR mechanism. In Table 2, we 

show how the estimation error of the attacker changes for different values of γ when ϵ = 1 

and τ = 0.02. When ϵ = 1 in the original RR mechanism, we computed the estimation error 

before the attack as 0.78. Increasing γ results in eliminating less states by the attacker. For 

instance, if attacker selects γ = 0.5, it cannot eliminate any states and the estimation is still 

0.78. As γ decreases, more states are eliminated and the estimation error keeps decreasing 

up to a point (up to γ = 0.03 in our experiments, which provides the smallest estimation 

error). As we further decreased γ beyond this point, we observed higher estimation error 

values, since as γ approaches to 0, all 3 states are eliminated for more SNPs. Also, when γ 
= 0, we computed the estimation error as 0.78 as well. We also observed similar results for 

different values of ϵ. Similarly, when γ = 0.03, we obtained the smallest estimation error for 

the attacker (and hence the strongest attack) when τ = 0.02.

Since the attack against the original RR mechanism is the strongest when τ = 0.02 and γ = 

0.03, we set the correlation parameters of the proposed data sharing algorithm the same as 

the attack parameters (i.e., τ = 0.02 and γ = 0.03) in Section 6.1. Here, we study the effect 

of changing these parameters on the performance of the proposed mechanism. We assume 

that the attacker does not know the parameters (τ  and γ) used in the algorithm and uses the 

parameters providing the strongest attack (τ = 0.02 and γ = 0.03) against the original RR 

mechanism. First, we evaluated the effect of correlation threshold τ  on privacy and utility 

(all correlations that are smaller than τ  are considered as low by the algorithm). Our results 

are shown in Table 3. We observed that increasing τ  increases the attacker’s estimation error 

since we assume the attacker does not know τ  and uses τ = 0.02 in its attack. However, using 

τ = 0.02 provided the best utility for the proposed algorithm. Since there is no correlation 

(conditional probability) that is less than 0.02 in our dataset, the minimum possible value 

that we can use for τ  in the algorithm is 0.02. We also show the privacy and utility of the 

proposed scheme for different values of γ  in Table 4. We observed that increasing γ  slightly 

increases utility, however, the privacy also decreases at the same time.

In the previous experiments (Table 3 and 4), we assumed that the attacker does not know the 

parameters used in the experiments and uses τ = 0.02 and γ = 0.03. However, the attacker 

can perform stronger attacks if it knows the design parameters (τ  and γ) of the algorithm. 

Thus, we also computed the attacker’s estimation error by assuming it knows the parameters 

used in the algorithm (τ = 0.02 and γ = 0.03)). Estimation error of the attacker for different 

values of τ and γ are shown in Table 5. When we increased τ up to 0.1, we observed a slight 

decrease in the estimation error. For instance, when τ = 0.1 and τ = 0.02, we observed the 

estimation error of the attacker as 0.42. Similarly, the attacker can decrease the estimation 

error to 0.434 by knowing the value of γ  and selecting γ = 0.01. We also observed that for 

τ values greater than 0.1 and γ values less than 0.01, the decrease in attacker’s estimation 
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error converged. Overall, we conclude that the attacker can slightly reduce its estimation 

error by knowing the design parameters of the proposed mechanism, however, the gain of 

the attacker (in terms of reduced estimation error) is negligible (at most 0.07). Furthermore, 

the proposed scheme still preserves its advantage over the original RR mechanism in all 

considered scenarios. These results show that varying design parameters only slightly affect 

the performance of the proposed scheme.

In our experiments, we assume that the attacker has the same background knowledge (i.e., 

correlations between SNPs) as the data owner. If the attacker’s knowledge is weaker than 

this assumption (e.g., if the computed correlations on the attacker’s side are not accurate), 

then its estimation error will be higher than the one we computed in our experiments. On 

the other hand, if the attacker’s knowledge about the correlations in the data is stronger than 

the data owner, it can perform more successful attacks. To validate this, we added Gaussian 

noise to the correlations computed by the data owner and observed that the attacker’s 

estimation error decreases when the amount of noise increases. For instance, when ϵ = 1, the 

mean is equal to 0 and standard deviation is 0.1 in Gaussian distribution, estimation error 

decreases from 0.491 to 0.451. In the worst case scenario, when the data owner does not 

know (or use) the correlations in the data, the estimation error of the attacker becomes equal 

to its estimation error when it performs the attack to the original RR mechanism (i.e., solid 

line marked with triangles in Figure 5). In [34], we discuss more how attacker’s background 

knowledge affects the privacy guarantees.

6.3 The Effect of the Processing Order on Utility

In this section, we show the effect of different order of processing on the utility of the 

beacon responses. For all experiments, we set the parameters the same as in Section 6.1 (i.e., 

τ = 0.02 and γ = 0.03) and we also quantified the accuracy in terms of the fraction of correct 

beacon responses for a population. We reported the results averaged over 100 trials.

To demonstrate that the greedy order of processing (in Section 5.2) outperforms the random 

order and provides an accuracy that is close to the optimal order (in Algorithm 5.1), we 

first compared them using a small dataset of 10 SNPs of 10 individuals (obtained from the 

same HapMap dataset [8] introduced before). When processing the SNPs of an individual 

Ij using the random order, we randomly permuted the order of her SNP sequence and then 

fed it into Algorithm 4.1. Assuming each donor has the same privacy budget (ϵ) and varying 

the privacy budget from 0.2 to 2, we show the results in Figure 7. We observed that for 

all the privacy budgets, the accuracy obtained by the greedy order is close to that obtained 

by the optimal order (when ϵ ≥ 1, the accuracy provided by both orders differ only by less 

than 2%). Whereas, the accuracy achieved by the random order is the lowest for all the 

privacy budgets because the random order does not try to maximize individuals’ expected 

beacon utility. These results show that greedy order of processing (in Section 5.2) performs 

comparably to the optimal algorithm (in Algorithm 5.1), and hence we use the greedy 

algorithm for our evaluations with larger datasets.

Next, we compared the accuracy achieved by the greedy and random orders on the original 

dataset (i.e., 1000 SNPs of 156 individuals). The experiment results are shown in Figure 

8. We observed that compared to the small dataset, the accuracy is improved significantly. 
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For example, even under very limited privacy budgets (e.g., ϵ ≤ 0.4), both orders can 

achieve an accuracy over 93% since large dataset contains stronger (and more) correlations 

among SNPs. Correlations in the data is critical for the utility of the proposed data sharing 

mechanism, since when data is correlated, the proposed algorithm eliminates statistically 

unlikely states and adjusts the probability distributions of the remaining states in such 

a way that deviating highly from the “useful values” of the shared SNPs is small (as 

discussed in Section 4.5). From Figure 8, we also observed that the accuracy achieved by the 

greedy order consistently outperforms that obtained by the random processing order. This 

suggests that the utility varies under different processing orders and we can improve the 

utility of shared data points (SNPs) in a strategic way (e.g., by selecting them in a greedy 

manner). This outcome can also be generalized when sharing other types of correlated data. 

Another advantage of determining the processing order using the greedy algorithm is its 

computational complexity O l2 , where l is the number of shared SNPs of a donor), whereas 

the computational complexity of the optimal algorithm (in Algorithm 5.1) is O 3l .

7 CONCLUSION

In this paper, we have introduced (ϵ, T)-dependent LDP and proposed a data sharing 

scheme for genomic data sharing achieving (ϵ, T)-dependent LDP. We have first described 

a correlation attack to show that directly applying the randomized response mechanism to 

correlated data causes vulnerabilities. To improve privacy against the correlation attacks, 

we have proposed a scheme that eliminates certain states of a SNP (and does not use such 

states during data sharing) which are loosely correlated with the previously shared SNPs. 

The proposed scheme decides a value to share among the non-eliminated states by providing 

formal privacy guarantees. To improve the utility of the shared data, we have shown how 

to adjust probability distributions for the non-eliminated states of the SNPs while still 

guaranteeing (ϵ, T)-dependent LDP. We have also proposed an optimal algorithm and a 

greedy algorithm to determine the processing order of SNPs in the proposed data sharing 

algorithm to optimize utility. We have implemented the proposed scheme and evaluated 

its privacy and utility via experiments on a real-life genomic dataset. The proposed data 

sharing mechanism can also be utilized for sharing of similar sensitive information that 

includes correlations (e.g., location patterns). In future work, we will evaluate the proposed 

mechanism considering different application of the data collector. We will also study how to 

compute the data sharing probabilities for different values of the SNP as a donor shares data 

with more data collectors.
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CCS CONCEPTS

• Security and privacy → Privacy-preserving protocols; • Applied computing → 
Genomics.
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Figure 1: 
System Model.
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Figure 2: 
Probability distribution used by the data sharing mechanism after eliminating states using 

correlations as described in Section 4.4. p = eϵ /(eϵ + 2), q = 1/(eϵ+ 2), p′ = p/(p + q), and q′ 

= q/(p + q). Red columns represent the eliminated states.
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Figure 3: 
Probability distribution used by the data sharing mechanism to improve utility of beacon 

queries (in genomic data sharing beacons). p = eϵ/(eϵ +2),q = 1/(eϵ +2), p′ = p/(p + q), and 

q′ = q/(p + q). Red columns represent the eliminated states. The differences with Figure 2 

are highlighted with yellow.
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Figure 4: 
The interaction between the agent (individual Ij) and the environment (Algorithm 4.1) at 

time step i, i.e., when processing the ith SNP (xi
j) of individual Ij.
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Figure 5: 
Comparison of the proposed method with original RR mechanism in terms of attacker’s 

estimation error.
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Figure 6: 
Comparison of the proposed method with RR mechanism in terms of utility, which is 

measured as the accuracy of responses provided from a genomic beacon.
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Figure 7: 
Accuracy of beacon responses on 10 SNPs from 10 individuals using optimal (Algorithm 

5.1), greedy (Section 5.2), and random orders of processing.
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Figure 8: 
Accuracy of beacon responses on the original dataset using greedy and random orders of 

processing.
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Table 1:

Comparison of the proposed method with original RR mechanism (with and without post-processing) in terms 

of utility (accuracy of responses provided from a genomic data sharing beacon).

ϵ 0.4 0.8 1.2 1.6 2

RR without post-processing 0.697 0.791 0.808 0.831 0.849

RR with post-processing 0.667 0.715 0.734 0.765 0.788

Proposed method 0.934 0.941 0.945 0.952 0.961
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Table 2:

Privacy (in terms of estimation error) of the original randomized response mechanism after the correlation 

attack for different values of γ (inconsistency threshold of the attacker) when τ = 0.02 and ϵ = 1.

γ 0.01 0.02 0.03 0.04 0.05

Estimation error (E) 0.491 0.380 0.348 0.368 0.415
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Table 3:

Privacy (in terms of estimation error) and utility (in terms of accuracy of beacon responses) of the proposed 

scheme for different values of τ  (correlation threshold) when γ = 0.03.and ϵ = 1. Estimation error is computed 

by assuming the attacker uses τ = 0.02 and γ = 0.03.

τ 0.02 0.04 0.06 0.08 0.1

Estimation Error (E) 0.483 0.486 0.492 0.499 0.503

Accuracy (A) 0.950 0.942 0.918 0.892 0.865
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Table 4:

Privacy (in terms of estimation error) and utility (in terms of accuracy of beacon responses) of the proposed 

scheme for different values of γ  (inconsistency threshold) when τ = 0.02 and ϵ = 1. Estimation error is 

computed by assuming the attacker uses τ = 0.02 and γ = 0.03.

γ 0.01 0.02 0.03 0.04 0.05

Estimation Error (E) 0.490 0.487 0.483 0.479 0.476

Accuracy (A) 0.932 0.940 0.950 0.954 0.959
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Table 5:

Privacy (in terms of estimation error) of the proposed scheme for different values of τ (correlation threshold 

of the attacker) and γ (inconsistency threshold of the attacker) when ϵ = 1. The parameters used in the data 

sharing algorithm are τ = 0.02 and γ = 0.03.

τ (γ = 0.03) 0.02 0.04 0.06 0.08 0.10

Estimation Error (E) 0.483 0.478 0.462 0.446 0.420

γ (τ = 0.02) 0.01 0.02 0.03 0.04 0.05

Estimation Error (E) 0.434 0.468 0.483 0.497 0.508
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