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Abstract

The intrinsic activity of the human brain, observed with resting-state fMRI (rsfMRI) and 

functional connectivity, exhibits macroscale spatial organization such as functional networks 

and gradients. Dynamic analysis techniques have shown that functional connectivity is a mere 

summary of time-varying patterns with distinct spatial and temporal characteristics. A better 

understanding of these patterns might provide insight into aspects of the brain’s intrinsic activity 

that cannot be inferred by functional connectivity or the spatial maps derived from it,such as 

functional networks and gradients. Here, we describe three spatiotemporal patterns of coordinated 

activity across the whole brain obtained by averaging similar ∼20-second-long segments of 

rsfMRI timeseries. In each of these patterns, activity propagates along a particular macroscale 

functional gradient, simultaneously across the cerebral cortex and in most other brain regions. 

In some regions, like the thalamus, the propagation suggests previously-undescribed gradients. 

The coordinated activity across areas is consistent with known tract-based connections, and 

nuanced differences in the timing of peak activity between regions point to plausible driving 

mechanisms. The magnitude of correlation within and particularly between functional networks 

is remarkably diminished when these patterns are regressed from the rsfMRI timeseries, a 

quantitative demonstration of their significant role in functional connectivity. Taken together, our 

results suggest that a few recurring patterns of propagating intrinsic activity along macroscale 

gradients give rise to and coordinate functional connections across the whole brain.

Introduction

The intrinsic activity of the brain is widely studied with resting-state functional magnetic 

resonance imaging (rsfMRI) and functional connectivity (Biswal et al., 1995). Commonly 

calculated as the Pearson correlation between rsfMRI timeseries from different pairs of 

brain areas, functional connectivity reflects aspects of the brain’s spatial organization. For 

instance, based on the functional connectivity profile of each area and similarity of profiles 

across areas, the brain can be parcellated into macroscale functional networks (Yeo et al., 

2011; Buckner et al., 2011; Buckner and DiNicola, 2019) or described by a few macroscale 

functional gradients (Margulies et al., 2016; Marquand et al., 2017; Guell et al., 2018; Vos 

De Wael et al., 2018). These networks and gradients have links to task-related activity 

and behavioral measures (Fox and Raichle, 2007; Smith et al., 2009; Smith et al., 2015; 

Margulies et al., 2016; Marquand et al., 2017; Guell et al., 2018), evidence not only for 
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their neuronal basis but also that the spatial organization of the intrinsic activity serves a 

fundamental purpose.

Despite the success and prevalence of functional connectivity-based analyses, the resulting 

time-averaged spatial maps provide a limited window into the rich dynamics of the 

brain’s intrinsic activity. More recent analysis techniques that are sensitive to time-varying 

activity (e.g., windowed analysis (Keilholz et al., 2013; Allen et al., 2014), coactivation 

patterns (Petridou et al., 2013; Liu et al., 2018a), Hidden Markov Models (Chen et al., 

2016; Vidaurre et al., 2017)) have convincingly argued, and in some cases, quantitatively 

demonstrated that functional connectivity is a mere summary of recurring patterns of 

activity with distinct spatial and temporal characteristics. A better understanding of the 

spatiotemporal characteristics of these patterns might provide insight into aspects of the 

brain’s intrinsic activity that cannot be gained by functional connectivity or the spatial maps 

derived from it, such as functional networks or gradients. The consideration of time-varying 

features of intrinsic activity explains behavioral variability in task performance and improves 

sensitivity of biomarkers to clinical alterations (Hutchison et al., 2013; Calhoun et al., 2014; 

Keilholz et al., 2017; Preti et al., 2017; Thompson, 2018), an indication that the time-varying 

features can capture additional important aspects of the underlying intrinsic brain dynamics.

One of the recurring spatiotemporal patterns of activity is the quasiperiodic pattern (QPP), 

obtained by identifying and averaging similar segments of rsfMRI timeseries (Majeed et al., 

2011, 2009). The primary QPP (QPP1) in humans is approximately 20 seconds in duration 

and involves a cycle of activation and deactivation of different brain areas with various 

phases; most prominently, the cortical areas recognized as the task positive network (TPN) 

exhibit the opposite phase relative to the cortical areas known as the task negative or default 

mode network (DMN) (Majeed et al., 2011; Yousefi et al., 2018; Abbas et al., 2019a, 2019b; 

Briend et al., 2020). Focal phase shifts resulting in propagation of activity is also observed, 

for example, along the medial prefrontal cortex (Majeed et al., 2011). The stereotyped 

activity represented by QPP1 recur frequently during rsfMRI and is remarkably similar 

across individuals (Yousefi et al., 2018). As expected, given the documented anticorrelation 

between the TPN and DMN in functional connectivity-based studies (Fox and Raichle 

2007), QPP1 contributes substantially to functional connectivity within and between these 

two networks (Abbas et al., 2019a, 2019b).

To better understand the spatiotemporal characteristics of QPP1 as a contributor to 

functional connectivity, we built upon our recent method improvements (Yousefi et al., 

2018) to obtain the group QPP1 across the whole brain, utilizing the high quality and 

large dataset of the Human Connectome Project (HCP) (Van Essen et al., 2013). First, we 

inspected whether there is a principled propagation in QPP1 across the cerebral cortex and 

whether it has a relationship with the primary cortical gradient reported by Margulies et al. 

(2016). This gradient involves gradual changes in the similarity of functional connectivity 

profiles and is related to the geodesic distance between areas across the cortical sheet. 

Moreover, the TPN and DMN are situated with opposite signs along this gradient (Margulies 

et al., 2016), consistent with their anticorrelation during QPP1. Second, we examined 

whether QPP1 reveals time-locked activity in brain regions other than the cerebral cortex 

(more precisely, neocortex), which could also propagate consistent with the existing reports 
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of functional gradients in the cerebellum (Guell et al., 2018), hippocampus (Vos De Wael 

et al., 2018) and striatum (Marquand et al., 2017). Third, we explored the differences in 

the time of peak activity between brain regions during QPP1 for suggestions about the 

plausible driving mechanisms. Fourth, we developed a method to detect additional QPPs, 

and examined QPP2 and QPP3 for principled propagation across the whole brain and timing 

differences between brain regions. Finally, we quantified the extent of the contribution of the 

first three QPPs to functional connectivity, the basis from which a number of widely cited 

functional networks and gradients are derived. Our results provide novel insights into the 

brain’s intrinsic activity, revealing aspects of whole-brain coordination that are only partially 

captured by functional networks and gradients.

Methods

We built upon our recent method improvements (Yousefi et al., 2018) and developed new 

approaches for this work, described broadly in the text that follows. All required details can 

be found in the supplementary figures and materials (diagrams, table and additional text). 

Analyses of robustness to various methodological choices throughout are included at the 

end.

Data and further preprocessing.

We used the minimally preprocessed grayordinate and FIX de-noised rsfMRI scans of 

the HCP S900 young healthy adult dataset (Glasser et al., 2013) and included all 817 

individuals with four complete scans (fMRI repetition time of 0.72s, ∼15 minutes per 

scan). The following preprocessing steps were additionally applied to each scan (Fig.S1). 

The grayordinate timeseries (∼62K cortical vertices and ∼30K non-cortical voxels) were 

demeaned and filtered (0.01 – 0.1Hz). Gray matter (GM), white matter (WM) and 

cerebrospinal fluid (CSF) signals were regressed, which is equivalent to global signal 

regression (GSR). The spatial dimension was reduced to 360 cortical parcels (Glasser et 

al., 2016), and each parcel’s timeseries was normalized to zero mean and unit standard 

deviation.

Main algorithm to detect a QPP.

The original method to detect a QPP, developed by Majeed and colleagues (Majeed et al., 

2011), is centered around an algorithm that identifies similar segments of a rsfMRI scan 

using an iterative, correlation-based approach, then averages these segments to create a 

representative spatiotemporal template. In this algorithm (Fig.S2), a segment with a preset 

duration (here, ∼20s or 30 consecutive timepoints) is initially selected. This initial segment 

is rearranged from a 2D array of vertices by time to a 1D vector (“flattened”) and correlated 

with all the segments of the scan, which are selected and flattened one after another in 

a sliding fashion. This results in a timecourse of correlation between the initial segment 

and the rsfMRI scan, where timepoints corresponding to local maxima above a preset 

threshold (referred to as maxima for brevity) are then identified. The segments of the scan 

starting at those maxima are similar to the initial segment and are averaged together. The 

process is then repeated with the average of segments in place of the initial segment until 

negligible change between iterations is reached. The outputs of the algorithm are the final 
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spatiotemporal QPP template obtained by averaging similar segments, and the correlation 

timecourse that shows the correlation of the final template with the scan at each point 

in time. The maxima in the correlation timecourse indicate the start of the segments that 

contribute to the final template, also referred to as the timepoints when the final template 

occurs.

Obtaining group QPP1: an overview.

The original method to obtain the group QPP1 (Majeed et al., 2011) involved concatenating 

the rsfMRI scans of individuals, running the described algorithm for a limited number of 

randomly selected initial segments, and from the resulting final templates, selecting the most 

similar one to the others as the QPP. We implemented a number of modifications to the 

original method, described in the sections that follow.

Robust detection of QPP1 in individuals.

To obtain group QPP1, we built upon our recent method improvements (Yousefi et al., 

2018) by first robustly detecting QPP1 of individuals (Fig.S3). After concatenating the four 

preprocessed scans of each individual, all possible initial segments were examined using the 

main QPP algorithm. For each resulting template, the sum of correlation values at maxima 

was found. QPP1 was selected as the template with the maximum sum, which reflects 

a combination of high strength and frequent occurrence. In humans, QPP1 is ∼20s long 

(Majeed et al., 2011; Yousefi et al., 2018; Abbas et al., 2019a,b; Briend et al., 2020); hence, 

we preset the segment duration to 30 timepoints (21.6s). In the prior studies (Majeed et 

al., 2011; Yousefi et al., 2018; Abbas et al., 2019a, 2019b; Belloy et al., 2018a, 2018b) the 

correlation threshold was set to 0.1 for the first three iterations of the main algorithm, and 

0.2 for the remaining iterations; however, we increased this threshold to 0.2 for the first 

two iterations and 0.3 for the remaining iterations, mainly because of high quality and large 

dataset used here.

Phase-adjusting individual QPP1s.

A QPP is a spatiotemporal template that involves a cycle of activation and deactivation of 

different areas with different phases, and the detected QPP of each individual can be at 

any phase of the cycle in a given area. Proper averaging of the QPPs across individuals to 

move to the group level requires each QPP to have a certain phase in a reference parcel 

(referred to as the seed parcel for phase-adjustment; here chosen as left early visual cortex 

(V2)). For example (Fig.S4a), in an ideal phase-adjusted QPP, the 30-timepoint timecourse 

in V2 starts around zero at timepoint 1 and reaches its maximum before timepoint 15. To 

phase-adjust QPP1 of individuals, we used a roughly similar procedure to Yousefi et al., 

(2018) that involves comparison of each QPP1 with all other templates, corresponding to all 

the examined initial segments. Out of the similar templates to QPP1, the one that met the 

criteria for an ideal phase was selected (see Fig.S4b for detailed description). Note that when 

comparing QPP1 with any other template, to account for minor differences in their phases, 

we used a fine phase-matching procedure, which involves shifting QPP1 a few timepoints 

forward and backward, and taking the maximum correlation across different time-shifts (see 

Fig.S5 for detailed description).
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Fine-tuned averaging of individual QPP1s.

Before averaging the phase-adjusted QPP1 from all individuals, we included a fine phase-

matching stage to mitigate the imperfections of the phase-adjustment procedure (see Fig.S6 

for detailed description). We then used the template resulting from averaging the individual 

QPP1s as a prior for group QPP1. We correlated this prior template with all the scans of all 

individuals, identified the supra-threshold local maxima in the correlation timecourse, and 

used those timepoints as the start of the contributing segments to the final group QPP1. This 

last stage further mitigated any imperfections in the phase-adjustment procedure and ensured 

that group QPP1 (hereon, referred to as QPP1 for brevity) is simply an average of similar 

segments across the individuals.

QPP1 in grayordinates.

The reduction of the spatial dimensions from grayordinates to cortical parcels is a very 

effective and practical step that facilitates identification of the segments that contribute to 

QPP1. QPP1 in grayordinates can then be constructed by averaging the same contributing 

segments over the grayordinate timeseries instead of the parcellated timeseries (Fig.S1b). 

Unlike prior work, we did not place a threshold on the amplitude of QPP1 when visualizing 

in grayordinates, making it possible to observe more subtle trends of activation and 

deactivation. For all analysis beyond qualitative visualization, however, only vertices/voxels 

that exhibit statistically significant activation or deactivation at some time interval during 

the 20s duration of the QPP1 were included. Statistically significant activity was defined 

as surpassing the 99th percentile of a null distribution of activity created by averaging 

randomly selected spatiotemporal segments (for detailed description, see Supplemental 

Material: Statistical evaluation of activity within QPPs, parts 1.1,1.2; also see Fig.S7-8).

Summarizing the activity within QPP1 as a basis for further statistical analyses.

To obtain a coarse summary of the activity within QPP1 in grayordinates, we clustered its 

timecourses, by comparing each pair of timecourses with the fine phase-matching procedure 

(maximum timeshift: ±2 timepoints). The upper triangle of the comparison matrix was then 

used to build the distance vector for the hierarchical clustering. We set the cut-off to 0.1 and 

kept the first ten largest clusters. These values, although somewhat arbitrary, have negligible 

influence on the results and do not change our conclusions. The two largest clusters of 

QPP1’s timecourses are prominently larger than the others. One has the most spatial overlap 

with the cortical nodes of the default mode network (DMN), and we designated it as the 

first cluster (appearing first in all figures and tables). The other large cluster has timecourses 

which are strongly anticorrelated with those of the first cluster, and we designated it as 

the second cluster. Other clusters of QPP1 were sorted based on their median times of 

peak activation and deactivation, out of which, the clusters with intermediate timing and 

location relative to the first two clusters are referred to as the transitory clusters. To obtain a 

more detailed summary of the activity within QPP1, for each timecourse of QPP1, we also 

found the times of peak activation and deactivation (the latter as supplementary results; also 

called time of dip). For both coarse and fine summary maps, which are also the basis for 

further statistical evaluations or comparisons, we only included the timecourses that exhibit 

statistically significant activity.
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Evaluating the coordinated propagation of activity within QPP1.

To evaluate the coordinated propagation of of activity within QPP1, t-tests between pairs 

of clusters of timecourses, corrected for multiple comparisons, were used to determine 

significant differences in the time of peak/dip (see Supplementary Material part 2 for 

detailed description). The progression of times of peak/dip across clusters of timecourses, 

taken together with the spatial order of the clusters, demonstrates propagation of activity. 

Moreover, time-locked activity (coactivity) between non-adjacent areas across the whole 

brain is demonstrated by those non-adjacent areas being part of the same cluster.

Existing parcellations, functional networks and gradients.

Activity within QPP1, as a simple average of similar segments of rsfMRI timeseries, can 

be described and evaluated at the level of the whole brain, without the need for division 

into anatomical regions, networks or parcels. However, for multiple purposes, one being 

to compare QPP1 with the existing networks and gradients, we adopted the parcellation 

and gradient schemes listed in Table S1 for seven brain regions of cerebral cortex 

(more precisely, neocortex), cerebellum, thalamus, hippocampus, amygdala, brainstem and 

deep brain nuclei, and striatum (also see Fig.S9). To quantify such comparison (see 

Supplementary Material part 3 for detailed description), first, we found the correlation 

between QPP1’s time of peak map and the primary cortical gradient (Margulies et al., 

2016); the strong correlation observedindicates that propagation of activity within QPP1 is 

also consistent with thisgradient. We only qualitatively compared QPP1’s summary maps 

with the existing gradients across regions other than the cerebral cortex; however, note that 

the statistically evaluated summary maps of QPP1 per each region were the basis for such 

comparison. Next, we grouped QPP1’s timecourses into the cortical networks (Yeo et al., 

2011) and performed t-tests between pairs of groups, corrected for multiple comparisons, 

to determine the significance of differences in the time of peak activation; shifts of a few 

timepoints between pairs of networks support our statements about the sequential activation 

of cortical networks within QPP1. Finally, we found the size of each cluster of QPP1’s 

timecourses per network/parcel per brain region, to show the extent of correspondance 

between QPP1 and particularly the non-neocortical parcellation schemes.

The adopted parcellations were also used to identify different brain areas, as well as to 

describe the activity within QPP1 using established terminology. For example, we refer to 

the cortical areas that belong to the first cluster as the cortical nodes of the DMN, because of 

the extensive spatial overlap described earlier. As another example, we refer to the cerebellar 

areas that belong to the first cluster as the cerebellar areas that coactivate with the cortical 

nodes of the DMN.

Definition of new terms.

To simplify the description of the activity within a QPP, we define two new terms, again 

utilizing the adopted parcellation and gradient schemes. (I) Propagation axis. Within a QPP, 

simultaneous and consistent propagation of activity from all the nodes that constitute a 

functional network (e.g., N1) to all the nodes that constitute another functional network 

(e.g., N2) often occurs. We state that the activity propagates from the N1 to N2 or that the 

propagation axis is N1→N2. When an existing functional gradient maximally separates N1 
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and N2, we also state that the activity propagates along that gradient. (II) LPCC switching 
timepoints. As a reference for describing the timing of activity within a QPP, we built a 

timecourse by averaging all the QPP’s timecourses that belong to the five central parcels of 

the left posterior cingulate cortex (LPCC) (Glasser et al., 2016). We define the coarse range 

of timepoints that the LPCC switches from deactivated to activated, or vice versa, as the 

LPCC switching timepoints. Any parcel could have been chosen for reference to describe 

the timing of activity within QPPs (for example, left V2, which was used as the seed parcel 

for phase-adjustment). We chose the LPCC because it is a prominent node of the DMN and 

the DMN is a prominent network in QPP1.

Timing diffferences between brain regions.

To examine the nuanced timing differences between brain regions that can suggest plausible 

driving mechanisms between them, per each region, we found the number of vertices/voxels 

with a significant peak at each timepoint of QPP1, resulting in a histogram with 30 bins 

corresponding to the timepoints of QPP1. These historgrams are mostly bimodal, because 

of the two large anticorrelated clusters, and for the scope of this work, we only focused on 

the second mode, identified as the entries above the mid point of the cortical distribution. 

Only including the times of peak later than such midpoint, we used t-tests between pairs 

of regions, corrected for multiple comparisons, to determine the significant differences (see 

Supplementary Material part 4 for detailed description).

Detection of additional QPPs.

To examine whether additional recurring spatiotemporal patterns of activity are present in 

the rsfMRI timeseries, we regressed QPP1 and reanalyzed the residuals. Two methods for 

regression were implemented, both using GLM, and performed at the individual level for 

each of the four scans. First, scan-wise regression (Fig.S10a), where QPP1 was convolved 

with its correlation timecourse to build the regressor. Since QPP1 is a spatiotemporal 

pattern and its timecourse are different for each parcel, the timecourse for each parcel was 

convolved with the QPP1’s correlation timecourse and the result was regressed from that 

parcel’s timeseries. Second, segment-wise regression (Fig.S10b), where QPP1 was regressed 

from each of its contributing segments, which were replaced by the residuals. To ensure no 

similar segments to QPP1 exist in this residual scan, QPP1 was correlated with the residual 

scan and was regressed from segments corresponding to any detected supra-threshold local 

maxima. The two regression methods have similar outcomes (Fig.S11a), and we based our 

group-level report on the scan-wise regression, which runs faster.

After QPP1 of each individual was regressed per scan, each parcel’s timeseries was 

normalized to zero mean and unit standard deviation and concatenated across the four 

scans. The secondary QPP (QPP2) was then detected and phase-adjusted following the same 

methods used for QPP1. We further regressed QPP1 and QPP2 of individuals and reanalyzed 

the residuals to detect and phase-adjust QPP3. We limited the scope of this work to QPPs 1 

to 3. When building QPP2 and QPP3, averaging the contributing segments over the original 

scans or the residual scans resulted in nearly identical templates (Fig.S11b). We therefore 

averaged the segments from the original scans to avoid possible minor distortions induced 

by regression. Group QPPs 2 and 3 were obtained in the parcellated space and then in 
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grayordinates, summarized and statistically evaluated using the same methods as for group 

QPP1.

QPP basic metrics and transition count.

For each QPP, we can readily find its strength (the median of the supra-threshold local 

maxima in the QPP’s correlation timecourse with the scan) and its occurrence interval 

(the median of the time interval between successive maxima in the correlation timecourse). 

These metrics reflect how well each QPP represents its contributing segments, and how 

often it occurs. The strength and occurrence interval of QPPs 1–3 were calculated at the 

individual level and averaged across individuals. We also characterized transitions between 

QPPs, by counting the number of times that a contributing segment of QPPi was followed by 

a contributing segment of QPPj. This resulted in a 3×3 matrix for each individual, which was 

summed across individuals to obtain the group level matrix.

Contribution to functional connectivity.

To examine the extent to which patterns of activity represented by the QPPs contribute 

to functional connectivity, we calculated the Pearson correlation between each pair of 

the 360 cortical areas using the original timeseries and the residual timeseries after 

regressing QPPs 1–3, using the scan-wise method. For this calculation, we first sorted 

the 360 cortical parcels based on the seven functional networks (Yeo et al., 2011), using 

a simplified rule to assign each parcel to the network with which it has maximal overlap. 

The resulting functional connectivity matrices were averaged across individuals after Fisher 

transformation. To characterize these matrices at a high level, we created histograms of 

correlation values for all pairs of areas for four cases: before regression of any QPPs, 

after regression of QPP1, after regression of QPPs1 and 2, and after regression of QPPs 

1–3. We then determined the percentage of correlation values above 0.1 or below −0.1 for 

each case (0.1 was chosen somewhat arbitrarily to be qualitatively meaningful but is above 

the 99th percentile of null values built by phase-shuffling the timeseries and applying the 

abovementioned procedure). We further performed the following complementary analyses. 

First, the variance of the functional connectivity matrix before and after regression of each 

QPP was calculated. To obtain null values, the QPPs were convolved with their shuffled 

correlation timecourses, regressed scan-wise, and the variance of the functional connectivity 

matrix was found. Second, the correlation between the functional connectivity matrix before 

regression of any QPP and the functional connectivity matrix after regression of each 

QPP was calculated. Finally, the correlation between 360 cortical areas within each QPP 

(i.e., functional connectivity within QPP, over the ∼20s timecourses) was calculated and 

qualitatively compared with the functional connectivity matrices before and after regression 

of that QPP.

Robustness analyses.

In our preprocessing pipeline, GM signal was regressed along with WM and CSF signals, 

together equivalent to performing GSR. Although GSR is a controversial practice (Power 

et al., 2017), our recent work indicates that it improves the similarity of QPPs across 

individuals in terms of the spatial extent of the first two anticorrelated clusters of 

timecourses (Yousefi et al., 2018). To examine the influence of GSR on our results, we 
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averaged the contributing segments of each QPP over the WM and CSF regressed timeseries 

and compared the resulting template with that QPP (obtained after GSR) at the individual 

level. To further examine the effects of any nuisance regression or filtering on the main 

features of the QPPs at the group level in grayordinates, we averaged the contributing 

segments of each QPP over timeseries that were only demeaned and visually compared the 

resulting template to that QPP (obtained after filtering and nuisance regression). To examine 

the effect of choosing a particular area as the seed for phase-adjustment, for each group QPP, 

we chose another seed parcel to obtain a template with a reversed phase to that QPP and 

visually compared the results (LPCC was used for QPP1, left supramarginal gyrus (smg) for 

QPP2, and left primary motor area (M1) for QPP3). To examine the effect of correlation 

threshold, we compared group QPPs of forty randomly selected individuals detected based 

on the setting here (0.2 and 0.3) versus the setting in the prior work (0.1 and 0.2). To test the 

reproducibility of the QPPs, individuals were randomly divided into two equal subgroups, 

50 times, QPPs 1–3 were obtained for each subgroup, and compared across subgroups.

All codes of this work are openly available at https://github.com/GT-EmoryMINDlab and 

QPP analysis is also implemented in the C-PAC pipeline (www.nitrc.org).

Results

Coordinated propagation of activity within QPP1.

As previously reported, QPP1 involves a cycle of activation and deactivation of different 

brain areas with different relative timings and includes propagation of activity in the medial 

prefrontal cortex (Fig.1). New to this study, the cycle of activity and propagation extends 

throughout and beyond the cerebral cortex to the entire brain, including the cerebellum, 

thalamus, striatum, hippocampus, amygdala and brainstem (Fig.1, Video 1, Table 1). An 

in-depth description of the most prominent features is as follows.

Across the cerebral cortex, activity propagates along the primary cortical gradient, from 

areas that belong to the somatomotor network (SMN) to all nodes of the DMN. Deactivation 

begins in the lower and upper limb areas of the SMN and spatially expands to the 

supplemental motor area and the surrounding nodes of the dorsal attention network (DAN), 

such as the premotor area and the superior parietal lobe (Fig.1 timepoints 11–16). Activation 

expands from each node of the ventral attention network (VAN) to a neighboring node of, 

first, the frontoparietal network (FPN), and later, the DMN (Fig.1 timepoints 16–19). For 

example, activity expands from the anterior cingulate cortex to the ventromedial prefrontal 

cortex (see Table 2 for the list of all nodes). Clusters of QPP1’s timecourses, with their 

spatial order (Fig.2a,b) and significant progression of timing (Fig.S12a-d, Cortex), together 

with the times of peak activity of QPP1’s timecourses (Fig.2c), which is strongly correlated 

with the primary cortical gradient (Fig.S13a), summarize the propagation of activity along 

the primary cortical gradient (also see Fig.S13c-e, S14a that support the sequential activity 

of networks).

Although the FPN is known to be part of the TPN (Petersen and Posner, 2012), within 

QPP1, it is positively correlated with the DMN and anticorrelated with the DAN and 

VAN (Fig.S13d). Moreover, the visual network (VN) is anticorrelated with the FPN/DMN. 

Yousefi and Keilholz Page 9

Neuroimage. Author manuscript; available in PMC 2022 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/GT-EmoryMINDlab
http://www.nitrc.org/


The primary visual area (V1), however, exhibits clear propagation of activity from the 

peripheral areas to the foveal areas, with the foveal areas being positively correlated with 

the FPN/DMN (Fig.S15a-b). By visual inspection, such focal propagation is along the V1’s 

primary functional gradient (Haak et al., 2018) and in line with Hindriks et al., (2019).

In addition to the cerebral cortex, most other regions of the brain exhibit propagation of 

activity, time-locked to the cortical propagation, in directions that are consistent with the 

cortical propagation and which appear to lie along all functional gradients reported so 

far. Summary maps of activity generally match the adopted parcellation schemes and the 

known cortico-subcortical tract-based connections. A detailed description for each region 

follows (for each region, see Fig.2a-d as the spatial reference, Fig.S12a-d and Table S2 for 

quantitative support).

Cerebellar activity generally matches the adopted parcellation scheme (Buckner et al., 

2011), in that the cerebellar areas recognized as DMN, for instance, in that scheme are 

strongly correlated with the cortical nodes of the DMN within QPP1. As in the cerebral 

cortex, cerebellar areas that coactivate with the cortical FPN and DMN are positively 

correlated with each other and are anticorrelated with the cerebellar areas that coactivate 

with the cortical DAN/VAN. At the LPCC switching timepoints, activation expands from 

areas that coactivate with the DAN/VAN to areas that coactivate with the FPN/DMN. By 

visual inspection, such propagation is along the primary cerebellar gradient (Guell et al., 

2018).

Thalamic areas that are coactive with the cortical areas of the SMN and DAN are mainly 

located posterolaterally, in line with their tract-based connections (Behrens et al., 2003). For 

example, the most posterolateral part of the thalamus (possibly the foot area of the ventral 

posterior nucleus (Sherman and Guillery, 2013)) is coactive with the medially located 

cortical foot area. As in the cerebral cortex, activity expands from areas coactive with the 

SMN to areas coactive with the FPN/DMN. Given the synchrony and spatial consistency 

of thalamic and cortical activity and the finding that cortical activity sweeps the primary 

cortical gradient during QPP1, the propagation of activity across the thalamus suggests a 

previously-undescribed macroscale functional connectivity-based gradient for this region.

The posterior part of the hippocampus coactivates with the cortical nodes of the DMN, while 

its anterior part coactivates with the amygdala. This is in accord with the consensus that 

the hippocampus is a node of the DMN and exhibits functional specialization along its long 

axis, with its anterior part closely interacting with the amygdala (Robinson et al., 2016). 

Activity propagates along the hippocampus from posterior to anterior, or based on visual 

inspection, along the primary hippocampal gradient (Vos De Wael et al., 2018).

Propagation of activity towards the amygdala via the hippocampus happens at the same 

time that activity propagates from the medial temporal lobe towards the superior temporal 

lobe (Fig.S15a,c). Deactivation propagates across the amygdala from the center to the 

sides, qualitatively sweeping across the main parcels (Tyszka and Pauli, 2016), suggesting 

a functional connectivity-based gradient across the amygdala that matches a focal gradient 

across the cerebral cortex.
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Brainstem and deep brain nuclei primarily coactivate with the cortical nodes of the FPN/

DMN. While difficult to resolve, the probable locations of dopaminergic substantial nigra 

pars compacta contains the most voxels with the earliest peak times, with the majority of the 

earliest voxels not belonging to any adopted map of nuclei (note Fig.S12d versus Table S2 

also Fig.S16). Voxels which are anticorrelated with the FPN/DMN seem to be located in the 

pons, possibly in the pontine nucleus that relays the cortical inputs to the cerebellum.

Striatal areas are mostly coactive with the cortical nodes of the FPN/DMN. The ventrolateral 

striatum and the tail of the caudate (for the latter, note Fig.S16), however, are coactive 

with the cortical transitory clusters. Activation expands from areas that are coactive with 

the cortical transitory areas to the areas that coactivate with the cortical FPN/DMN. By 

visual inspection, this propagation is along the striatal gradients (Marquand et al., 2017) 

and matches the topographical cortico-striatal tract-based connections (Choi et al., 2012; 

Marquand et al., 2017).

Timing differences between brain regions within QPP1.

As activity propagates in most brain regions within QPP1, the numbers of vertices/voxels 

that peak at each timepoint of QPP1 in each region (Fig.3a) suggest plausible driving 

mechanisms. The cerebellum slightly but significantly lags the cerebral cortex (see Fig.S17 

for statistical support throughout this part), and such lag is in line with Marek et al., (2018). 

In contrast, as activity propagates to the cortical nodes of the FPN/DMN, the coactive 

thalamic areas lead by a median of 4 timepoints (2.9s). Brainstem and deep brain nuclei 

also peak earlier than the cortical nodes of the FPN/DMN, leading with a median peak 

time of 2 timepoints (1.4s). Interestingly, timing differences between the abovementioned 

regions remain similar if only the vertices/voxels that belong to the first cluster of QPP1 are 

considered (Fig.S12a-c), where, for example, the thalamus leads the cortex by 3 timepoints.

Coordinated propagation of activity within additional QPPs.

QPPs 2 and 3 have distinct spatiotemporal characteristics (compared to QPP1 and to each 

other) but still involve a coordinated propagation of activity throughout the whole brain. 

The direction of propagation is consistent with the existing gradients and generally matches 

the adopted parcellation schemes and the known tract-based connections (for the following 

results, refer to Fig.1, Fig.2e-f, Video 1 and Table 1–2, and for the statistical support see 

Fig.S18-23 and Table S3-4).

Within QPP2, activity propagates along the tertiary cortical gradient. Deactivation initially 

starts in the areas of the DAN that lie in the border with the SMN and VN, and from there 

deactivation spatially expands to the SMN and VN. Furthermore, activity expands from 

nodes of the DMN to neighboring nodes of the FPN, then the VAN, and finally the DAN. 

As in QPP1, V1 exhibits distinct activity compared to other areas of the VN, with the foveal 

area now in phase with the FPN/VAN.

Within QPP2, cerebellar areas labelled as DMN in the adopted parcellation scheme are 

strongly correlated with the cortical nodes of the DMN and anticorrelated with the cerebellar 

areas labeled as DAN, VAN, and FPN (or collectively TPN). As in the cerebral cortex, at the 

LPCC switching timepoints, activation expands from areas that coactivate with the cortical 
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DMN to areas that coactivate with the cortical TPN, which is consistent with the secondary 

cerebellar gradient (Guell et al., 2018).

Thalamic areas coactive with the cortical SMN and VN are mainly located posterolaterally. 

The majority of the remaining thalamus is coactive with the cortical FPN/VAN, a smaller 

medial portion is coactive with the cortical transitory clusters (particularly note Fig.S20), 

and a very small medially-located portion, likely in the mediodorsal nucleus (MD), is 

coactive with the cortical DMN. Consistent with the cerebral cortex, at the LPCC switching 

timepoints, activity expands from the medial-MD to the lateral-MD and further to the 

antero-lateral thalamus. This may be evidence for the existence of another macroscale 

functional gradient across the thalamus.

Hippocampus and amygdala are coactive with the cortical DMN, yet peak slightly 

earlier (particularly the amygdala; note Fig.S20). Furthermore, the posterior part of the 

hippocampus slightly lags the anterior, which indicates propagation along the long axis, or 

seemingly along the primary hippocampal gradient, but now from anterior to posterior.

Brainstem and deep brain nuclei now primarily coactivate with the cortical nodes of the 

FPN/VAN, with an increased number of the early voxels compared to FPN/VAN (compare 

Fig.S18d with S12d, also note Fig.S20).

Striatal areas are mostly coactive with the cortical nodes of the FPN/VAN. As in the cerebral 

cortex and most other regions, at the LPCC switching timepoints, activity expands from the 

DMN-coactive to the FPN/VAN-coactive areas, along both rostro-caudal and medial-lateral 

directions, which based on visual inspection are also along the striatal gradients.

Within QPP2, as in QPP1, the cerebellum slightly but significantly lags the cerebral cortex 

(Fig.3b, S17). As activity propagates to the cortical nodes of the FPN/VAN, the thalamus 

leads by a median of 4 timepoints (2.9s), and the brainstem and deep brain nuclei lead by 

a median of 3 timepoints (2.1s). Unlike in QPP1, the thalamus and brainstem areas are now 

more comparable in timing. As in QPP1, timing differences between the abovementioned 

regions remain the same when only the vertices/voxels that belong to the second cluster of 

QPP2 are considered (Fig.S18a-c).

Within QPP3, activity is consistent with the secondary cortical gradient. The cortical areas 

of the SMN and VN exhibit a simple cycle of activation and deactivation with an opposite 

phase relative to one another. Nodes of the VAN and DMN are correlated with the SMN and 

nodes of the DAN and FPN are correlated with the VN. As activation levels are switching in 

the areas of the VN and SMN and for a short time afterwards, focal propagations occur via 

the VAN to the SMN and later towards the DMN.

Within QPP3, cerebellar coactivity still generally matches the adopted parcellation scheme 

and exhibits propagation consistent with the cortex with a slight yet significant lag (Fig.3c, 

S17). Note the lobules I-IV, labeled as primary SMN in the adopted scheme, exhibit strong 

activity, not present in QPPs 1 and 2. Other than a small area in the posterolateral thalamus 
that is coactive with the cortical VN, the remaining thalamic areas, hippocampus, amygdala, 

posterior putamen, and pons (or possibly the pontine nucleus) are all mostly coactive with 
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the cortical SMN/DMN. The striatum and amygdala lead cortical SMN/DMN by a median 

of 2 timepoints (1.4s).

QPPs basic metrics and transition counts.

QPPs 2 and 3 are comparable to QPP1 in strength, but they occur less often than QPP1 

(Table 3). Each of QPPs 1–3 is more often followed by a QPP of a different type rather than 

by the same type (Table 4). The QPP transition count matrix reflects the finding that QPP1 

occurs most often, as most transitions occur to or from QPP1. Each QPP exhibits a unique 

pattern of correlation between pairs of areas, i.e., each QPP exhibits unique functional 

connectivity (note Fig.S13c, S19c, S22c, also Fig.4c). The correlation between pairs of 

matrices of functional connectivity within each QPP is 0.07 for QPPs 1 and 2, 0.04 for QPPs 

1 and 3, and 0.1 for QPPs 2 and 3.

Contribution to functional connectivity.

The strong recurring coordinated activity represented by QPPs contributes substantially to 

correlation between brain areas, which in turn is used to derive functional networks and 

gradients. Regression of QPPs 1–3 from the rsfMRI timeseries progressively reduces the 

correlation between pairs of areas, within and particularly between functional networks 

(Fig.4a). In total, QPPs 1–3 account for ∼61% (Fig.4c, based on start and end points in 

black) of the correlation values with a magnitude greater than 0.1. The number of pairs of 

areas with strong negative correlation (−1 to −0.1) is more drastically reduced by regression 

of QPPs (∼79%, Fig.4c in blue) than the number of pairs of areas with strong positive 

correlation (0.1 to 1; ∼43%, Fig.4c in red).

From the perspective of variance in the functional connectivity matrix, QPP1 explains 

∼37% of the original functional connectivity, QPPs 1–2 explain ∼53%, and QPPs 1–3 

explain ∼63%. When shuffled correlation timecourses of QPPs are used, the variances 

of the resulting functional connectivity matrices after progressive regression of QPPs 

(corresponding to the lower triangles in Fig.4a) remain unchanged. After regression of 

QPP1, QPPs 1–2, or QPPs 1–3, the original functional connectivity matrix (upper triangles 

in Fig.4a) and the resulting functional connectivity matrices (lower triangles in Fig.4a) are 

uncorrelated (r<0.004). Within each functional network, particularly in the VN, SMN and 

DAN, functional connectivity between homologous parcels in the right and left hemispheres 

are the least affected by regressing QPPs 1–3 (note the parallel bands to the diagonal).

Robustness analyses.

When averaging the contributing segments of each QPP using the timeseries from which 

only the white-matter and CSF signals were regressed, we obtain patterns that are nearly 

identical to that QPP (Fig.S24); this shows that the reported QPPs are not influenced 

by the addition of the gray matter signal as a regressor, suggesting robustness to global 

signal regression. When averaging the contributing segments of group QPPs using the 

grayordinate timeseries that are only demeaned, but not filtered or nuisance-regressed, we 

obtain patterns that qualitatively have all the main characteristics reported here (Video 2), 

the most important being the coordinated propagation of activity across the whole brain; this 

proves the prominent features of QPPs are not artifacts of the additional preprocessing steps 
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applied here. QPPs with the reversed phase (Video 3, Fig.S25, also see Fig.S26) exhibit 

all the main characteristics, proving robustness to the settings in the phase-adjustment. The 

slight change of the correlation threshold compared to previous works has no effect on the 

reported QPPs (Fig.S26). When individuals were randomly divided into two sub-groups, 50 

times, the sub-group QPPs were nearly identical (medians across repetitions were 0.99, 0.98 

and 0.97, for QPPs 1–3), proving QPPs are reproducible across different groups of young 

healthy adult participants of the Human Connectome Project.

Discussion

We have described threes spatiotemporal patterns of activity (QPPs 1–3) that encompass the 

whole brain, propagate across the known macroscale functional gradients, and account for 

most of the functional connectivity within and particularly between functional networks. 

These patterns provide novel insights into the brain’s intrinsic activity that cannot be 

inferred by functional connectivity or the functional networks and gradients derived from 

it.

Functional connectivity, functional networks and gradients.

Functional connectivity, typically calculated as the Pearson correlation between timeseries 

of different brain areas, describes the average relationships between areas over the course of 

an entire scan (e.g., ∼10 minutes). Besides, time-lagged relationships can manifest as a lack 

of correlation or even anticorrelation between areas. In contrast, the spatiotemporal patterns 

of QPPs, which are the major contributors to functional connectivity, can describe nuanced 

time-lagged relationships that might vary between the same areas over the course of the 

scan.

Functional connectivity is the basis to derive a number of widely cited spatial maps of 

functional networks and gradients, both of which indicate spatial organization of the brain’s 

intrinsic activity with links to task-related activity and behavior. First few QPPs are major 

contributors to functional connectivity, involve sequential activity of functional networks and 

propagation of activity along functional gradients. Therefore, very likely, first few QPPs 

also majorly contribute to functional networks and gradients, the extent of which can be 

quantified by analyzing residuals after regressing the QPPs. Put in other words, functional 

networks and gradients are likely snapshots of a few propagating patterns of coordinated 

activity that encompass the whole brain, from the brainstem to the cerebral cortex, and 

involve nuanced timing relationships between brain areas and regions. Note each QPP, that 

represents certain set of time intervals during the course of the rsfMRI scan, corresponds to 

a particular cortical gradient, but the overlaid summary maps of QPPs correspond to cortical 

networks.

A noteworthy insight provided by QPPs is about the widely documented intrinsic 

anticorrelated activity between the task positive network (TPN) and task negative or default 

mode network (DMN) (Fox and Raichle 2007). First, this intrinsic anticorrelation involves 

propagation of activity between the TPN and DMN, which might possibly be the case in 

the dynamics of task-related activity, similar to Kucyi et al., (2020). Second, the executive 
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control or the frontoparietal network (FPN), which is a subnetwork of the TPN (Petersen 

and Posner, 2012), is in fact, positively correlated with the DMN at some time intervals (that 

contribute to QPP1) during the course of the rsfMRI scan.

Another noteworthy insight provided by QPPs is about the coactivation maps of the non-

cortical regions with the cortical networks. For example, while the posterolaterally located 

unimodal thalamic areas coactivate with the unimodal cortical areas within all QPPs, a given 

voxel in other thalamic areas can coactivate with one cortical network (or the bordering 

areas between two networks) in one QPP and another cortical network (or the bordering 

areas between two other networks) in another QPP. Therefore, it might be a more sensitive 

approach to perform cortical-network-based parcellation in the thalamus using only certain 

time intervals of the rsfMRI scan and incorporate a few coexisting parcellation schemes 

(even consider coactivity with the bordering areas between cortical networks), which is 

unlike the common approaches (Zhang et al., 2010; Ji et al. 2018). The same note holds 

for other non-cortical regions, such as the brainstem, striatum, amygdala and even the 

cerebellum.

Timing differences between regions.

While evidence derived from timing differences in the QPPs is indirect and cannot prove 

causal interactions between areas, the timing differences highlight areas that may be of 

particular importance for coordinating large-scale brain activity. For example, the thalamus, 

brainstem and deep brain areas lead the cerebral cortex as activity propagates between the 

cortical nodes of the TPN and DMN in both QPP1 and QPP2, with the thalamus ∼1.5 s and 

0.7 s ahead of the brainstem. This suggest a specific and key role for the thalamus in the 

intrinsic switching of the activity between areas involved in the externally oriented attention 

(TPN) and internally oriented attention (DMN), in line with the general role of the thalamus 

in the attentional control (Halassa and Kastner, 2017). It also suggests that the brainstem and 

deep brain nuclei, which promote arousal and reinforce attentiveness (Avery and Krichmar, 

2017), join the thalamus in this key role.

Comparison to other reports of propagation of activity.

Propagation of activity is a prominent feature of the QPPs and has been reported in previous 

rsfMRI-based studies. Hindriks et al. (2019) reported propagation from the TPN to the DMN 

and simultaneously, from anterior to posterior V1, which are consistent with our results. 

Their argument that functional networks are likely to arise from propagating patterns is 

quantitatively illustrated here, as we show that three QPPs account for the vast majority 

of functional connectivity. Mitra and colleagues have reported propagation in terms of lag 

threads, which while intriguing, is complementary rather than comparable to our findings 

(Mitra et al., 2015, 2016). In their work, functional networks arise from one-directional 

motifs which are common among a few reproducible lag threads, no network leads or 

lags the other, and the range of lags in the threads are ∼±1 second. In contrast, functional 

networks are readily observable within QPPs and they clearly exhibit lead/lag relationships 

at much longer time scales. To our knowledge, the extent of the coordination of propagation 

across the whole brain reported here and its relationship to the common descriptors of the 

brain organization are unique.
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QPP4 and above.

While we have described the three most prominent QPPs, the residuals after regression of 

these patterns can be reanalyzed to detect QPP4, and so on. Our additional analysis on 

forty randomly selected individuals showed QPPs 1–5 on average explain ∼36% of the 

variance of the cortical parcels’ timeseries (QPPs 1–3 explain ∼27%), with a wide range of 

∼8%−62% across parcels (∼5%−52% for QPPs 1–3). QPP4 and above progressively explain 

less variance without a clear cutoff. Our focus on QPPs 1–3 was because they readily 

match the first three cortical gradients and account for a substantial portion of the functional 

connectivity.

What is the underlying neuronal mechanism of the QPPs?

Multimodal studies in both animals (Pan et al., 2013; Thompson et al., 2014) and humans 

(Grooms et al., 2017) have shown that the QPPs detected with rsfMRI are linked to 

underlying infraslow electrical activity (loosely defined as < 1 Hz). Given the poorly 

characterized sources of infraslow activity, its relationship to the QPPs provides limited 

insight into the latter’s underlying mechanism. In fact, it may instead be that QPPs provide 

insight into the mechanisms underlying the infraslow electrical activity.

Coordinated activity throughout the whole brain, as demonstrated within QPPs, must occur 

over the framework of the brain’s anatomical architecture. One possibility then is that QPPs 

represent a sort of “resonance” of the brain’s structural network. This is inspired by a 

number of studies showing that the neural mass models, coupled with an estimated structural 

network obtained with diffusion-weighted MRI, can reproduce some aspects of the empirical 

rsfMRI-based functional connectivity (Deco et al., 2013; Cabral et al., 2017). However, 

when we applied QPP analysis to the output of these models (Kashyap and Keilholz, 2019), 

we found that while they capture some qualitative aspects of QPPs, such as the division of 

the brain into two anticorrelated clusters of areas, they are less successful at reproducing the 

complex dynamics observed within the QPPs, suggesting that other factors are involved.

Another neuronal mechanism proposed to underlie functional connectivity and therefore 

QPPs is spatially patterned input from subcortical neuromodulatory sources (e.g., the basal 

nucleus of Meynert (Chang et al., 2016; Liu et al., 2018b) or the rostral ventrolateral 

medulla (Drew et al., 2008)). These areas have widespread projections that differ in 

their density and/or receptor types, potentially allowing patterned modulation of ongoing 

brain activity that could manifest as QPPs. A growing body of work is exploring how 

neuromodulatory input affects functional connectivity. For example, Zerbi et al. (2019) 

recently showed that chemogenetic activation of the locus coeruleus (LC) increases the 

connectivity throughout the brain. Applying QPP analysis using the data and paradigm of 

such studies has the potential to reveal aspects about the neuronal mechanism underlying 

QPPs. Nevertheless, the old finding might turn out to be of particular importance. For 

example, Aston-Jones and Bloom (1981) has shown that the LC exhibits activity that varies 

in the infraslow range, matching the time scale of the QPPs. Moreover, since there are 

multiple QPPs, it is possible that different neuromodulatory sources dominate each QPP 

type, an intriguing avenue for future exploration.
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Timing and hemodynamics.

Our results are based on timing differences in the blood oxygenation level dependent 

(BOLD) signals of different brain areas and regions. Because rsfMRI is sensitive to 

hemodynamics (instead of directly measuring neural activity), differences in neurovascular 

coupling, hence, hemodynamic response functions (HRFs) across areas could confound the 

timing differences attributed to their neuronal activity. If there is a gradual variation in the 

HRF’s time-to-peak across adjacent areas, the synchronous neural activity of these areas 

could result in a propagating BOLD signal across them. However, we do not think that 

the HRF’s difference is the dominant factor in the timing differences within QPPs. Within 

each QPP, the times of peak shift along functional gradients with consistent directions that 

match the known cortico-subcortical tract-based connections. Gradual/sharpness of such 

shifts between the same areas, and also the direction of such shifts, changes between 

QPPs. Blind deconvolution approaches have shown that variation in the HRF’s time-to-peak 

is around a second across the cortex (Wu et al., 2013), far shorter than the length of 

QPPs. Nevertheless, HRF variation could be a confound in our results, particularly in the 

propagation observed across some areas or the timing differences between regions. Future 

studies based on other more direct measurements of neural activity, perhaps in rodents or 

other species, are necessary to validate all parts of our results and to address the concerns 

left open here.

Possible task interactions.

Functional networks that co-activate at different phases of the QPPs are closely related to 

networks activated by particular tasks (Smith et al., 2009). For this reason, it would be 

particularly interesting to examine the interaction between different tasks and QPPs. Some 

preliminary work shows that the spatial pattern of the QPP can be altered during task 

performance (Abbas et al., 2019a), but interpretation was limited by the use of existing data 

with short task blocks that makes it difficult to disentangle the effects of on and off blocks 

from the effects of task performance. It may also prove useful to minimize the effects of 

QPPs to isolate the activity that occurs in response to a task or stimulus. QPPs are such 

a prominent feature of rsfMRI data that they could easily obscure smaller changes related 

to localized neural activity. Regression of QPPs may also reduce the variability in response 

observed within and across individuals, an avenue worth future investigation.

Clinical alterations and behavioral correlates.

Functional connectivity is widely used as a biomarker in psychiatric disorders and 

neurological diseases. QPP analysis offers a tool to determine whether the alterations 

observed are localized to particular areas or connections, or more accurately depicted 

as downstream effects of disruption of the whole-brain pattern. For example, a number 

of neurological disorders exhibit disruption of DMN activity and early degeneration of 

brainstem nuclei like the locus coeruleus (Peterson and Li, 2018; Betts et al., 2019). In 

this case, the loss of functional connectivity in the DMN may be the result of a disruption 

of the brainstem and thalamic input that leads QPP1. If so, the strength, frequency, or 

spatial pattern of QPP1 may serve as more accurate biomarkers than measurements of the 

resulting functional connectivity. For example, we recently found that QPPs are weaker in 
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ADHD patients than in healthy controls (Abbas et al., 2019b). Similarly, when looking for 

cognitive or psychological correlates, QPP-based measures may provide more information, 

or alternatively, QPPs may be minimized to emphasize remaining variability that may be 

more closely related to the relevant differences in neural activity. These questions have only 

begun to be explored.

Conclusion

We have shown that functional connectivity predominantly arises from a few recurring 

spatiotemporal patterns of intrinsic activity, which sweep the macroscale functional 

gradients in a coordinated way across the whole brain. These patterns can be obtained 

by simply averaging similar segments of rsfMRI timeseries and are robust to preprocessing 

choices. The neurophysiological mechanisms that underlie these patterns are still unknown. 

However, our results specifically suggest that thalamic and brainstem areas might be the 

key drivers for the intrinsic alternation of activity in the cortical nodes of the task positive 

and default mode networks. These patterns provide promising avenues for exploration in 

terms of clinical alterations and rest-task interactions. Taken with previous reports of QPPs 

in different species and under different conditions (Majeed et al., 2009; Belloy et al., 2018a, 

2018b), our findings suggest that they reflect fundamental aspects of the brain’s functional 

organization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
QPPs 1–3 involve coordinated propagation of activity along functional connectivity 

gradients across the whole brain. Each row corresponds to a timepoint of the QPP and 

shows the level of activation or deactivation of brain areas with warm and cool color ranges, 

respectively. For all 30 timepoints see Video 1.
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Figure 2. 
Summary maps of activity within QPPs, illustrating coordinated propagation across the 

whole brain. (a) QPP1’s timecourses (plotted together) per cluster (LPCC timecourse in 

black for reference). (b) Brain areas, at the left cortical hemisphere and representative 

non-neocortical planes, color-coded based on correspondence with QPP1’s clusters. (c) 

Timepoints of peak activation of QPP1’s timecourses. (d) Existing functional networks and 

parcellations for comparison. QPPs 2 (e) and 3 (f).
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Figure 3. 
The number of vertices/voxels with peak activity at each timepoint of QPPs 1–3 at each 

brain region. As qualitative references, the times of peak activity at the cortical areas of 

the left PCC (DMN node), V2, primary motor (M1) and supramarginal gyrus (SMG; FPN 

node) are plotted in black with unique line types. The distributions are mostly bimodal and 

the comparison of time difference between pairs of regions were done on the second mode, 

identified as the entries above the mid timepoint of the cortical distribution (indicated by the 

colored line for each QPP). Thalamic and brainstem and deep brain areas lead the cerebral 

cortex in QPPs 1 and 2 as activity propagates to the cortical nodes of FPN/DMN in QPP1 

and the cortical nodes of FPN/VAN in QPP2. The cerebellum slightly lags the cerebral 

cortex in all QPPs.
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Figure 4. 
Change in functional connectivity between pairs of areas after regressing QPPs. (a) For 

each matrix, the top right half is the functional connectivity between 360 cortical parcels 

ordered based on seven networks, before regressing any QPP, and the bottom left half 

is the functional connectivity after scan-wise regression of each QPP. Networks are 

visual (V), somatomotor (SM), dorsal attention (DA), ventral attention (VA), limbic (L), 

frontoparietal (FP) and default mode (DM). Regressing each QPP progressively reduces the 

correlation between pairs of areas, within and particularly between networks. Such reduction 

is consistent with the correlation within each QPP, shown in (b). (c) The distribution 

of correlation values for each functional connectivity half-matrix shown in (a), and the 

percent of the correlation values above 0.1 or below −0.1 for each case. Both positive and 

negative correlation values are progressively reduced by regression of QPPs, but the negative 

correlation values are more affected.
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Video 1. 
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Video 2. 

Yousefi and Keilholz Page 28

Neuroimage. Author manuscript; available in PMC 2022 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Video 3. 
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Table 1

Axis of propagation of activity within QPPs

Q
P
P
1

Cerebral cortex Primary cortical gradient, SM→TP→DM
Finer axis: SM→DA & VA→FP/DM & V↓↑FP/DM

Cerebellum Primary cerebellar gradient, DA/VA→FP/DM

Thalamus Novel, posterolateral → medial (or SM→FP/DM)

Hippocampus Primary hippocampal gradient, Posterior → Anterior

Amygdala Novel, Center → Sides

Brainstem FP/DM

Striatum Striatal gradients, Caudal/Orbital → Rostral & Lateral → Medial

Q
P
P
2

Cerebral cortex Tertiary cortical, TP→SM/V & DM→TP
Finer axis: DA→SM/V & DM→FP→VA→DA

Cerebellum Secondary cerebellar gradient, DM→FP/VA/DA

Thalamus Novel, most medial → anterolateral (or DM→FP/VA)

Hippocampus Primary hippocampal gradient, Anterior → Posterior

Amygdala SM/DM

Brainstem FP/VA

Striatum Striatal gradients, Rostral → Caudal & Medial → Lateral

Q
P
P
3

Cerebral cortex Secondary cortical gradient, V↓↑SM, also V/TP→SM/DM
Finer: V/DA/FP↓↑VA/SM/DM, also V/DA/FP→VA→SM→DM

Cerebellum DA/FP↓↑SM/DM, also DA/FP→DM

Thalamus V↓↑ SM/DM

Hippocampus SM/DM

Amygdala SM/DM

Brainstem SM/DM (particularly, pons)

Striatum SM/DM (particularly, posterior putamen)

Cortical networks of SM (somatomotor), TP (task positive), DM (default mode), DA (dorsal attention), VA (ventral attention), FP (frontoparietal), 
V(visual) and L (limbic)

↓↑
(anticorrelation), single entry without → (simple coactivity)

For a non-neocortical area, any assigned network is a cortical network, that we have loosely assigned, based on the coactivity between that area and 
that network within each QPP, by referring to the cluster maps (Fig.2) along with Fig.S12,S18,S21 and Tables S2-S4 for QPPs 1–3, respectively. 
Our primary purpose here is to provide a simple table-format summary of the consistencies throughout the whole-brain within all QPPs.
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Table 2

Approximate cortical nodes that constitute the networks in the finer axes of propagation in Table1

Q
P
P
1

SM→DA limb/face → preM/SPL
foot/genitalia → sma

VA→FP/DM

ACC → vmPFC
aI → ifg
ifs → sfg/mfg/ifg
mTL: posterior → anterior
Ag/PCC: surround → center

DM→LNG TL: medial → superior
left 55b/IFJ/SFL: anterior → posterior

Q
P
P
2

DA→SM/V DA-bordering-SM/V→SM/V

DM→FP→ VA→DA

vmPFC → aACC → dACC
ifg → aI → mI → inferior-preM
sfg/mfg/FPC → ifs
TL: anterior→ infero-posterior →posterior
Ag → smg → PF/SPL
PCC→RSC/POS → postero-medial-VA/DA

Q
P
P
3

V/DA/FP→
VA→SM

TPOJ → inferior-TPJ → inferior-PF → face
aI → mI → inferior-preM → face
sfg → FEF → limb
SPL/sma → limb/foot

preM (premotor area), SPL (superior parietal lobe), sma (supplementary motor area, however, NOT a node of Yeo’s DAN), ACC (anterior 
cingulate cortex), vmPFC (ventromedial prefrontal cortex), aI (anterior insula), ifg (inferior frontal gyrus), ifs (intermediate frontal sulcus), sfg 
(superior frontal gyrus), mfg (middle frontal gyrus), mTL (middle temporal lobe), Ag (angular gyrus), PCC (posterior cingulate cortex), LNG 
(language areas), TL (temporal lobe), 55b (area 55b), IFJ (inferior frontal junction), SFL (superior frontal language area), aACC (anterior ACC), 
dACC (dorsal ACC), mI (mid insula), FPC (frontopolar cortex), smg (supramarginal gyrus), PF (area PF), RSC (retrosplenial cortex), POS 
(parieto-occipital sulcus, TPOJ (temporo-parieto-occipital junction), TPJ (temporo-parietal junction), FEF (frontal eye field).
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Table 3

Basic metrics of QPPs (average± standard deviation)

QPP1 QPP2 QPP3

Strength 0.40±0.021 0.37±0.02 0.35±0.02

Occurrence interval (s) 52.9±6.9 64.4±9.9 77.5±12.8
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Table 4

Transition count and probability of transition between QPPs

From\To QPP1 QPP2 QPP3

QPP1 6754 11005 8054

QPP2 11032 2820 5528

QPP3 7961 5589 1404

QPP1 0.26 0.43 0.31

QPP2 0.57 0.15 0.29

QPP3 0.53 0.37 0.09
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