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Dynamic Energy Budget models relate whole organism processes such as growth, reproduction and mortality to suborgan-
ismal metabolic processes. Much of their potential derives from extensions of the formalism to describe the exchange of
metabolic products between organisms or organs within a single organism, for example the mutualism between corals and
their symbionts. Without model simplification, such models are at risk of becoming parameter-rich and hence impractical. One
natural simplification is to assume that some metabolic processes act on ‘fast’ timescales relative to others. A common strategy
for formulating such models is to assume that ‘fast’ processes equilibrate immediately, while ‘slow’ processes are described
by ordinary differential equations. This strategy can bring a subtlety with it. What if there are multiple, interdependent
fast processes that have multiple equilibria, so that additional information is needed to unambiguously specify the model
dynamics? This situation can easily arise in contexts where an organism or community can persist in a ‘healthy’ or an
‘unhealthy’ state with abrupt transitions between states possible. To approach this issue, we offer the following: (a) a method
to unambiguously complete implicitly defined models by adding hypothetical ‘fast’ state variables; (b) an approach for
minimizing the number of additional state variables in such models, which can simplify the numerical analysis and give insights
into the model dynamics; and (c) some implications of the new approach that are of practical importance for model dynamics,
e.g. on the bistability of flux dynamics and the effect of different initialization choices on model outcomes. To demonstrate
those principles, we use a simplified model for root-shoot dynamics of plants and a related model for the interactions between
corals and endosymbiotic algae that describes coral bleaching and recovery.
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Introduction

Metabolic models are used to describe physiological processes
in living organisms. They range in mathematical and compu-
tational complexity from high-dimensional, parameter-rich,
systems biology models used in biomedical applications to
low-dimensional models with many fewer parameters exem-
plified by models based on Dynamic Energy Budget (DEB)
theory (Kooijman, 2010). Some of Kooijman’s pioneering
work in this field was motivated by challenges in environ-
mental management, notably in ecotoxicology (Kooijman
& Metz, 1984), with his first book subtitled Theory and
Applications in Ecotoxicology (Kooijman, 1993). This focus
remains important, e.g. (Murphy ez al., 2018), and subsequent
research has greatly widened the scope of applications to
many areas of conservation physiology, notably changes in a
species’ ecological niche in response to environmental change
(Kearney & Porter, 2020). Lavaud et al. (2021) offer an
overview of such applications.

DEB models have been used in innovative research for
nearly two decades to describe networks for the exchange
of metabolic products between interacting organisms (Kooi
et al., 2004, Kooijman et al., 2003), but this ecologically
important area is still underdeveloped. The conceptual foun-
dation within DEB theory for such models is the work by
Kooijman (2001), which sketches links involving excretion
fluxes from animal host and algal symbiont in corals and
interactions between root and shoot in a plant. Subsequent
models for the coral symbiosis and the interaction of roots
and shoots in plants have been developed in Muller ez al.
(2009), Cunning et al. (2017), Ledder et al. (2020) and
Schouten ef al. (2020). These models can be applied to
describe responses to environmental stress, e.g. coral bleach-
ing (Cunning et al., 2017, Eynaud et al., 2011).

Mathematically, several of the cited models take the form
of differential equations that involve a small number of
state variables. For instance, the models in (Cunning et al.,
2017) and Ledder ef al. (2020) describe two ‘players’ who
exchange metabolic products that are surplus to their own
needs. This interaction is described with a set of algebraic
equations that characterize the flows of elemental matter
within an interaction network; see schematic Fig. 1. The
algebraic equations arise from the assumption that reactions
and translocations within the network occur on a much
faster timescale than changes in the state variables for the
biomass of the interacting organisms. Therefore, the reactions
and translocations can be assumed to equilibrate virtually
immediately. This timescale separation allows for simpler
model formulation with fewer parameters and can greatly
improve numerical speed for simulations (a concern when
using computer-intensive methods for parameter estimation).

Even conceptually simple networks typically involve many
interconnected fluxes. As a consequence, such networks can
have multiple equilibrium states. In those cases, unambiguous
tracking of only slow variables is not possible without at
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Figure 1: Schematic representation of a symbiotic interaction.

minimum additional information about the state of the fast
dynamic network. An example for such a situation is the ear-
lier mentioned model for the growth of the root and the shoot
of a plant by Ledder ez al. (2020). This model does not only
need information on the biomass of the two organelles, but it
also needs to track the current rates at which root and shoot
share nitrogen and carbon, respectively. The initialization of
these rates can determine whether the system starts with either
the root growing or the shoot growing. A similar example is
the model for the interactions between a coral host and its
endosymbiotic algae by Cunning ez al. (2017). In this model,
the initial fluxes can not only influence the initial growth
phase but also determine whether the system reaches a healthy
state with a high symbiont density or an unhealthy state where
the coral loses its symbiont and starves eventually (coral
bleaching). The work by Cunning ez al. (2017) demonstrates
how the issue of multiple fast equilibria in DEB models has
been approached previously with a discrete-time scheme. In
this scheme, the ambiguity of the model definition is resolved
by adding state variables for the fast variables and using
the state of the system at the preceding time step in the
update step.

In the present paper, we propose a new approach for the
issue of tracking the fast network. The new scheme adds an
explicit continuous-time representation of the fast dynamics
by introducing additional state variables. Those additional
state variables buffer some connections in the network and
in this way complete the definition of the fast dynamics.
Among the advantages of this new method is that it relies
on continuous time and thus allows simulating models with
standard solvers for ordinary differential equations.

While this new approach can be used generally as a numer-
ical approximation of unknown fast dynamics, we show how
under certain circumstances it can be interpreted mechanis-
tically. We further connect this new approach to previous
work by showing that the continuous-time approach is a
generalization of the discrete-time scheme used before.

Our approach for completing implicitly defined models is
based on additional state variables (buffers) that interrupt
cycles in the metabolic network. Naturally, it is possible to
track all auxiliary variables, but often it is possible to only
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track some of them and still fully define the model. This
reduces the dimensionality of the system, which can simplify
model analysis. We will show that graph theory can be used
to decide which variables to track and to find the minimal
number of additional state variables that are needed to fully
describe such systems.

The paper is structured as follows: Section 2 describes
the key steps in our approach to timescale separation. In
Sections 3 and 4 we use the new methods in analyses of the
simple root-shoot model from Ledder et al. (2020) and the
more complex model for the dynamics of corals with their
endosymbiotic algae partners from Cunning ef al. (2017).
In Section 5 we discuss our findings and offer an outlook
on wider areas of application, including modeling complex
metabolic networks that are relevant to pressing environmen-
tal challenges.

Timescale separation in metabolic
models

The Introduction highlighted dynamic bioenergetic models
in which the state X of interacting organisms (or of organs
within a single organism) is described by a set of differential
equations coupled to an auxiliary network of variables, Z. A
general form for the differential equation for X is

-

dX

— #(X.Z 1
— =f(X,2). (1)

The auxiliary variables Z most commonly represent fluxes.
To minimize abstraction, we refer to them as fluxes in the
remainder of this section. Although the fluxes Z may depend
on the state variables, they are typically assumed to change on
a sufficiently fast timescale that they can be replaced at any
time by their equilibrium values (given the current state X).
We shall on occasions refer to these value as ‘fast equilibrium’.
A model is unambiguously defined in this way when the
auxiliary variables can be expressed as simple functions of
the state variables,

Z=g(X). (2)

An example for such a system is shown on the left side of
Fig. 2. In this example, knowledge of the state variables per-
mits direct evaluation of Z1, which in turn allows evaluation
of Z, and Z3.

Such sequential evaluation is not necessarily possible if the
fluxes in the network depend on each other in a cyclic fashion
(right side of Fig. 2). In this case, the fast equilibrium states are
defined implicitly as solutions of an equation (almost always
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Figure 2: Networks for fluxes Z.Left:an acyclic graph, the model is
defined uniquely. Right: a cyclic graph, the model is potentially not
uniquely defined.

non-linear) of the form

- -

Z =g(X,Z). (3)

With an implicitly defined network, it is possible that
multiple values of Z satisfy the equilibrium condition. In this
case, additional assumptions on fast dynamics are needed
to fully specify the model. This is not a mere mathematical
nicety: the two case studies in subsequent sections will show
that the initial state of a network will frequently have lasting
impact on the long-term (slow) dynamics of the full system. In
short, to unambiguously define our models, we need to specify
fast dynamics.

To complete models with implicitly defined auxiliary net-
works, we set up hypothetical fast dynamics that mimic the
(generally unknown) actual fast dynamics. Those hypotheti-
cal fast dynamics should satisfy two conditions. First, at their
equilibrium they should satisfy the model specification Z =
g(X,Z) as stated in equation (3). Second, each flux Z; should
approach its ‘target’ g;(X, Z). Arguably, the simplest solution
for these dynamics is to let each flux decay exponentially
towards its target. We therefore propose to replace the implicit
equation for Z with the dynamical system

dzZ;

— (o (X T T 4
dr )Ll(gz(X,Z) Zz); ( )

where the set of parameters {A;} determines how quickly the
fluxes approach the fast equilibrium. When the values for
the 1; are high, the fluxes typically track their targets tightly.
The differential equations for the auxiliary state variables Z
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and the original state variables X now fully define the model
dynamics, given initial values for both X and Z.

The anticipated properties of our scheme for model
completion are supported by a mathematical result—
Tikhonov’s theorem (Klonowski, 1983, Tikhonov, 1952).
Expressed informally, the theorem states that in systems with
fast and slow variables the fast dynamics typically track an
isolated fast equilibrium after some initial transient (i.e. the
auxiliary variables are sticking close to their previous state).
Appendix A gives a precise statement of the theorem together
with three conditions for it to hold. Appendix B outlines
in detail the reasoning that connects the theorem to our
differential equation scheme and also shows that the current
approach is asymptotically a generalized form of the discrete
time method used in a previous work (Cunning et al., 2017).

Our choice of equations for fast dynamics was motivated
by mathematical requirements and took no account of the
physiological/biochemical nature of the networks. There is
no reason to believe that they represent the ‘real’ underlying
fast dynamics that are generally unknown. In some cases,
however, the differential equations we introduced can plau-
sibly represent original fast dynamics. The root-shoot model
is such a case. We work out the details for this example in
the section for this model. Generally, our numerical scheme
emerges when the nodes of the auxiliary network are assumed
to act as ‘buffers’ that delay inputs within the network. Those
buffers then represent the state of the network. Assume the
following fast network. The state of each part i of a network
is described by a buffer E; that feeds into the network at a rate
AiE;. The input of the buffers is given by g;(X, AE) (where A
is a diagonal matrix with the A; on its diagonal). This gives us
the differential equation for the buffers:

-

dE o - B}
= _ AE. (5)
5 = 8K, AE) — AE

Letting Z = AE we find

dZ dAE o -
= = AgX,2) - 2). (6)
¥r 7 &X,2)-2)

This is equivalent to the implementation described earlier,
equation (4).

The natural implementation of our approach is to track
all auxiliary variables by additional state variables. This
increases the dimensionality of the system by the number of
auxiliary variables. However, often the auxiliary network can
be already fully described with less state variables. This can
be useful for analytical and numerical model analysis, particu-
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larly because auxiliary variables need to be initialized and this
initialization then in turn can determine the long-term (slow)
dynamics of the system. To reduce the dimensionality of the
auxiliary fast dynamics, we find combinations of auxiliary
variables through which the rest of the auxiliary network can
be calculated.

Biologically, this state space reduction corresponds to
implementing a time scaling argument within the fast
dynamics—some processes are on a fast timescale and some
on a very fast timescale. The fast processes are tracked with
differential equations, and the very fast processes are assumed
to equilibrate instantaneously and are calculated directly.

When there is no biological intuition on the relative speed
at which the different fast processes act, graph theory can be
used to find low-dimensional representations of the network.
For this purpose, we represent the interactions of the model
fluxes with a directed graph as shown in Fig. 2. The nodes
of the graph represent the fluxes, and the arrows indicate the
connections between the fluxes. An arrow from flux Z; to flux
Z; indicates that Z; appears in the function for calculating
Zj. When this graph is acyclic, the model specification readily
defines the fluxes uniquely and no additional state variables
are needed to simulate the system (left side of Fig. 2). On the
other hand, when this graph is cyclic, the model equations
may be satisfied for different combinations of the fluxes (right
side of Fig. 2). Tracking a flux by an additional state variable
removes this flux from the network of algebraic equations
because this flux does not equilibrate instantaneously any-
more. This interrupts all cycles in which the flux is involved.
Thus, in order to fully define the system, we need to find com-
binations of fluxes that, when expressed by state variables,
interrupt all cycles in the graph. In the example on the right
side of Fig. 2, tracking any of the fluxes with a state variable is
enough to interrupt all cycles and uniquely define the system.
The remaining fluxes can be calculated one by one from the
value of this flux (and the slow dynamics, which have not
been specified in the figure). The process is formally set out in
Appendix C.

The Mathematica code in the supplementary material
demonstrates how to identify whether a combination of fast
state variables leads to an acyclic graph and how to find the
minimal number of buffers that renders the fast dynamic
network acyclic and defines the model uniquely.

In the following sections, we will illustrate those concepts
with examples.

The root—-shoot model

This is a simplified version of the model presented in Ledder
et al. (2020). The model is sketched in Fig. 3a. It describes
how the root and the shoot of a plant interact. The root
provides nitrogen and the shoot provides reduced carbon.
Both components need nitrogen and carbon to grow. The root
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(a) Sketch of the root-shoot model. The root assimilates nitrogen and
the shoot assimilates carbohydrates. Nitrogen and carbohydrates are
needed for the growth of the root and of the shoot.
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(b) Details of the model. Normal arrowheads indicate a positive effect, blocked connector
endings indicate a negative effect. Solid lines represent connections through which fluxes
feed back to themselves (without passing through the state variables R and S). Dashed
lines represent connections that are not involved in cycles through which fluxes feed back

to themselves.

Figure 3: The root-shoot model.

shares surplus nitrogen not used with the shoot, and the shoot
shares surplus carbon with the root.

A detailed diagram of the model is shown in Fig. 3b. The state
variables, fluxes and parameters are summarized in Table 1.

The equations for the root-shoot model are as follows. The
assimilation of nitrogen by the root and the assimilation of
carbohydrates (short:carbon) by the shoot are

Un = anR
(7)
Uc = acs,

where the parameters an and o¢ describe the rates at which
root and shoot produce nitrogen and carbon, respectively.
The version of the model we describe here assumes that
growth of each organ is limited by the more limiting resource,
i.e. growth is governed by a minimal synthesizing unit (SU)

(Ledder et al., 2020). Growth of root and shoot is given by

= min(pc, 1z ' UN)

dR
dt
ds . 1
— =min(U¢c, n¢ s

I (Uc,ng pN)

where the parameters ngl and ngl describe the N:C ratio in
root and shoot biomass and pn and pc are the rates at which
nitrogen and carbon are shared, respectively. In the original
model formulation, the nutrient sharing rates are defined by

the difference of assimilation and use, pn = g,y and pc =
8pc»> Where

dR
= Un — —_
8pn N — 7R dr
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Table 1: Model parts of the root-shoot model

State variables

1.0 1.0
0.8 0.8F
0.6 06F
0.4 04F
0.2 0.2F
t RIS RIS

02 04 06 08 1.0 1.2 02 04 06 08 1.0 12

Figure 4: Combinations of the surplus fluxes pn/R and p¢/S that satisfy the model equations in dependence of the root-shoot ratio R/S.
Parameters:an = 1,¢¢ = 1, nr = 1 and ng = 0.2. The different colors indicate which branches belong together in the left panel and the right
panel.

Multiple solutions of flux combinations in our example) and shares more nitrogen, and shoot growth

is reinforced. In the simplest form, this loop can be seen by
The model as defined above does not always define all fluxes

uniquely. Given values for R and S, the model equations can
be satisfied for different combinations of the surplus sharing
fluxes pn and pc (the auxiliary network). Figure 4 shows
solutions for the surplus sharing fluxes as functions of the dR
root-shoot ratio R/S. An analogous plot is shown in Fig. 3 oN =UN — R
of Ledder et al. (2020).

of root and shoot,

. o . = Un — ng mi U
The reason multiple flux combinations can satisfy the N = nrmin(pc, g UN)

original model equations is that the model fluxes for surplus ds
sharing and growth form a closed loop that feeds back to pc=Uc— —
itself, as shown in Fig. 3b. The loop can be described as dt
follows. When the root grows, it shares less nitrogen, thus
the shoot grows less (or not at all as in our example) and
shares more carbon, reinforcing continuous growth of the
root. In the other way around, when the shoot grows, it
shares less carbon, thus the root grows less (or not at all as This loop is schematized in Fig. 5 (top row).

(10

=

= Uc — min(Uc, ng ' pn).
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Figure 5: The surplus sharing fluxes pn and p¢ form a closed cycle
in the root—shoot model. Blocked connector endings indicate a
negative effect. Boxes indicate direct algebraic equations; green
circles indicate fast state variables that buffer inputs and outputs.
Both fluxes have a (negative) effect on the other flux. The more
nitrogen the root shares, the more the shoot can grow, which in turn
shares less carbon because its surplus is smaller. In the same way, a
bigger surplus of carbon results in a smaller surplus of nitrogen. Top
row: all interactions are direct, the model is not uniquely defined. All
other rows introduce state variables that define the model uniquely.
Middle row: state variables for pn and p¢. Bottom row: state
variables for pn only (left) and for p¢ only (right).

As shown in Fig. 4, the network of auxiliary variables (the
rates at which nitrogen and carbon are shared) can have up
to three solutions for a given root-to-shoot ratio. Additional
model assumptions are needed to simulate the system. Here
we show how to unambiguously define the system using the
approach outlined in Section 2. The method bases on adding

Research article

state variables for the surplus sharing rates to the model
equations so that the cycles within the auxiliary network are
interrupted.

To derive the method mechanistically for the present exam-
ple, we add buffers that gather the fluxes of nitrogen and
carbon shared by the root and the shoot.

Nitrogen that is shared by the root is first captured in a
buffer E,,,. The input rate to the buffer is the rate at which the
root produces surplus nitrogen, g,,,. Additionally, we assume
that the buffer empties at a rate A,y E,, into the growth SU
for the shoot. This means the buffer changes according to

dE,,

a4 =&on — *onEon- (11)

When the buffer is at equilibrium, dE,/dt = 0, and
therefore Aoy Eoy = gon- Thus, in accordance with the model
definition, we can identify pn = A, Epy -

This rate py at which nitrogen is shared can be expressed
directly by the differential equation

dpn _ drpnEpn

D T Ao (€pn = PN)- (12)

The rate nitrogen is shared pN obviously follows its equi-
librium g, (assuming the other state variables are constant).
The speed at which the tracks its equilibrium is given by the
parameter A,y .

In the same way, we can introduce a differential equation
for the rate at which carbon is shared, pc,

dp
7;: = Apc(&pc — PC)-

The model is now fully defined as a system of four differ-
ential equations that track the states of the biomass of root
and shoot R and S, and the rate at which nitrogen and carbon
is shared, pn and pc. This choice of additional state variables
is shown in the bottom row of Fig. 5.

A phase plane for the fast buffer dynamics is shown in
Fig. 6. The simulations assume that the biomass of root and
shoot are kept constant (assuming buffer dynamics are much
faster than biomass dynamics). The plot shows the bistability
of the (fast) system: when starting with a high rate of nitrogen
shared pn, the system converges to an equilibrium with high
oN; when starting with a high rate of carbon shared pc, the
system converges to an equilibrium with high p¢c. These two
equilibria correspond to states where, respectively, only the
root or only the shoot is growing.
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Figure 6: Fast dynamics of the root-shoot model, implemented with
additional state variables for the shared surplus of nitrogen and
carbon, pn/R and pc/S. Biomass of root and shoot is kept constant.
In the full system (with changing biomasses), this phase plane would
change as the slow state variables evolve. The phase plane shown
here reveals bistability of the fast dynamics. The system has three
equilibria. The two outer (stable) equilibria correspond to states
where pn/R is high and where p¢/S is high (the other surplus
sharing rate being zero). The equilibria characterize states where only
the root growing and only the shoot growing. The two basins of
attraction are separated by an unstable equilibrium and a separatrix.
Brighter colors for the vectors indicate stronger attraction.
Parameters:an = 1,ac=1,nr = 1,75 = 0.2,n5 = 0.2, A, = 10
and A, = 10. Root and shoot biomass are fixed: R = 1and § = 2.

Simulations of the long-term (slow) dynamics with two
buffers are shown in Fig. 7. The initial values for root and
shoot biomass correspond to the (fixed) values for those
state variables in the phase plane for the fast dynamics in
Fig. 6. As the slow dynamics progress, the phase plane of
the fast dynamics would change. The long-term simulations
are started with two different choices for the initial values
for the fast variables. The simulations demonstrate that the
initialization of the fast variables can not only influence a
short initial transient of the fast variables, but also influence
long-term behavior by determining whether the system starts
either with only the root growing or with only the shoot
growing.

The bottom row of Fig. 5 shows how the root—shoot model
can be uniquely defined with a single buffer for the nitrogen
shared by the root or the carbon shared by the shoot. The
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loops in the model are interrupted by either adding a differ-
ential equation for py or for pc.

We can create an adjacency matrix that shows which
fluxes are directly connected (each row showing how the flux
indicated on the left depends on the other fluxes). The matrix
notation can be used to apply graph theory algorithms to
identify whether a graph for the model fluxes is cyclic (and
thus does not define the model uniquely) and which choices
for adding buffers to the model result in an acyclic graph (and
thus defines the model uniquely).

Without additional state variables, the graph for the fast
dynamics is cyclic (top row of Fig. 5). Its adjacency matrix is

‘ PN PcC
pn | 0 1
pPC 1 0

Adding state variables for the nitrogen and/or carbon shared
makes the graph acyclic. Adding state variables for both
surplus sharing fluxes (middle row of Fig. 5) results in the
trivial adjacency matrix

\ PN __PC
PN 0 0
pc | 0 0

Adding a state variable for the nitrogen sharing flux (bottom
row, left of Fig. 5) turns the adjacency matrix into

‘ PN PcC
py| 0 1
pPC 0 0

Adding a state variable for the carbon sharing flux (bottom
row, right of Fig. 5), turns the adjacency matrix into

‘ PN PC
pn| 0O 0
pc| 1 0

As seen in Fig. 5, any of the last three matrices describe
an acyclic network that defines the model dynamics uniquely.
Adding state variables for either of the surplus sharing fluxes
is sufficient to define the model because it allows to calculate
the other surplus sharing flux. Thus, any of the choices for
which surplus to buffer completes the model description and
allows to simulate the system.
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Figure 7: Simulations of root—shoot model, implemented with fast diffe

rential equations for the shared surplus of nitrogen and carbon, pn and

pc.- From left to right and top to bottom: root biomass (log scale), shoot biomass (log scale), ratio of root biomass to shoot biomass, rate of
nitrogen shared by root (relative to root biomass) and rate of carbon shared by shoot (relative to shoot biomass). Blue curves: simulations are
started with a high rate of nitrogen shared and a low rate of carbon shared (bottom right of Fig. 6); the system starts with only the shoot
growing. Orange curves: simulations are started with a high carbon buffer and a low nitrogen buffer (top left of Fig. 6); the system starts with

only the shoot growing. Parameters as in Fig. 6. Initial values for root and
R(0) =1and S(0) = 2.

The coral symbiont—-host model

The model by Cunning et al. (2017) describes the dynamics
of corals and their symbiotic algae. Similarly to the root—
shoot model, the coral host shares nitrogen and the symbiont
shares fixed carbon with their partners. A sketch of the
model is shown in Fig. 8. The model details are stated in
Appendix D.

Many of the auxiliary variables (fluxes) in this model depend
on other fluxes in the model. As in the root—shoot model, this
makes it possible that multiple values for the fluxes satisfy the
model equations for given S and H values.

Figure 10 shows solutions for the fluxes as functions of
the symbiont-host ratio S/H, together with the corresponding
growth rates of the symbiont and the host. The different
solutions correspond to a ‘functional’ symbiosis (blue), a
‘dysfunctional’ symbiosis (orange) and an unstable equilib-
rium between those two states (green). In the functional
symbiosis, photosynthesis, carbon shared by the symbiont
and CO; available to the symbiont are high, while nitrogen
shared by the host and photodamage of the symbiont are low.
When the S/H ratio is at its corresponding equilibrium (when
dS/dt/S — dH/dt/H = 0), this state has a positive growth
rate of symbiont and hosts (dS/dt/S and dH/di/H). The
dysfunctional symbiosis describes the opposite case, including
negative growth rates at the corresponding equilibrium S/H
ratio.

shoot correspond to the (fixed) values for these state variables in Fig. 6:

The model can be completed by adding state variables for
all 12 fluxes involved in loops (the variables in the network
shown in Fig. 9). Supplementary Fig. 1 shows the minimal
combinations of buffers needed to complete the system. As
all code, the implementation for finding those combinations
is available online. The plots in the supplementary material
show that the system needs at least two buffers. All two-
buffer combinations include jcp as one of the additional
state variables, and either jyg, jsg, pc or pn as the second
additional state variable.

For the coral model, the fast state variables do not have
an obvious mechanistic interpretation because of the com-
plex interactions between the auxiliary variables. One could
change the model formulation slightly to accommodate for
buffers with clear mechanistic interpretations, as worked out
for the root-shoot model. This could be done by choosing
fluxes to buffer that represent transfer of substances (such
as with our current choices the photosynthesis rate jcp, but
not the symbiont growth rate js;). However, working out the
details is out of scope for this paper. For the present analysis,
we introduced the fast state variables just as a numerical
method to track solutions of the auxiliary network.

Our focus on carefully distinguishing and analyzing fast and
slow dynamics is particularly important with this model,
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as the initial values of the chosen buffers can affect the
model dynamics and the final state to which the system
converges. The left side of Fig. 11 represents an initializa-
tion tool that shows how the initial values of the fast state
variables can influence the dynamics of those state variables.
The figure demonstrates the bistability of the fast dynam-
ics, whereby the photosynthesis rate jcp and the symbiont
growth rate jsg have been chosen as additional state vari-
ables. The fast dynamics can converge to either a state with

high or low photosynthesis rate. The right side of Fig. 11
shows how this bistability of the fast dynamics in turn can
influence the slow dynamics of the system (the change of
biomass of symbiont and host). Depending on the initial
photosynthesis rate, the system converges either to a func-
tional symbiosis with a high S/H ratio and positive growth
rates or a dysfunctional symbiosis with a low S/H ratio
and negative growth rates. Figure 12 shows time trajecto-
ries of the same system, again demonstrating the bistability
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of the fast dynamics and the consequences on the slow
system.

Discussion

DEB theory has been underutilized by ecological and evolu-
tionary theorists modeling species interactions. It offers mod-
els of intermediate complexity that take account of thermo-
dynamic and evolutionary constraints on the flows of energy
and elemental matter at both ecological and evolutionary
timescales (Jusup et al., 2017). One possible reason for this
neglect is that much ‘mainstream’ theory focuses on changes
in qualitative properties of simplified dynamical systems. Full
DEB models of species interactions are typically too equation-
and parameter-rich to permit insightful qualitative analysis.
To bridge this gap, many studies reduce the number of state

variables, e.g. Chapter 9 of Kooijman (2010). A few studies
archive further simplification by appealing to timescale sepa-
ration, e.g. Poggiale et al. (2020). In similar spirit, we have
here analyzed the dynamics arising from timescale separa-
tion in symbiotic interactions that involve shared metabolic
products.

DEB models with timescale separation are of particular
interest for modeling species interactions because they main-
tain the detailed physiological dynamics of single-organism
DEB models while keeping model complexity low by assum-
ing that physiological processes proceed faster than ecolog-
ical dynamics. In published DEB-inspired models, timescale
separation has been implemented by setting up differential
equations for state variables that are solved simultaneously
with algebraic equations. These algebraic equations can, in
principle, be derived from underlying fast biochemical pro-
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Conservation Physiology - Volume 102022

Final S/H ratio
| 0.012
| 0.200

0.25

0.20

0.15

Jsc(0)

0.10

0.05

0.00
00 02 04 06 08 1.0 12 14

Jer(0)

(b) Final symbiont-host ratio S/H of the full
model at time ¢ = 500. The final state de-
pends on the initial values for the fast state
variables, jop(0) and jsg(0). Depending on
those initial values, the system converges to
either a state with a high or a low S/H
ratio. Typical trajectories going either di-
rection are also shown in the simulations in
Fig. 12.

Figure 11: The bistability of the fast dynamics in the coral model can lead to different outcomes of the slow dynamics. Parameter values as in
Fig. 10. Initial symbiont-host ratio is S(0)/H(0) = 0.15. Numerical parameters for the additional state variables are ;., = 10 and ;. = 10.

cesses that equilibrate virtually instantaneously, but the details
for those fast processes are often not explicitly provided in the
model description. If these algebraic equations have a unique
solution, simulating and analyzing such models is straightfor-
ward because the algebraic equations, together with the differ-
ential equations, unambiguously define the model dynamics.
However, when the algebraic equations have multiple (or no)
solutions, this is not true and the model dynamics are not
defined uniquely anymore. In the present work, we showed
how such ambiguity can be resolved by hypothesizing explicit
fast dynamics that approach the solutions of the algebraic
equations in the model specification. We emphasized that
this type of ambiguity in the model definition is not only
a technical mathematical issue since the initialization of the
fast variables can impact long-term dynamics of the model
system.

When setting up bioenergetic models that involve networks
of fast processes, one often realizes quickly that such models
can easily become complex and difficult to analyze. To address
this issue, we offer a recipe for reducing the complexity of the
underlying fast networks. The recipe is based on choosing a
few auxiliary variables to be tracked directly through differen-
tial equations and evaluating the remaining quantities explic-
itly from these state variables. Biologically, this corresponds
to assuming that the fast dynamic processes themselves act on
different timescales: fast dynamics that are described through
state variables and very fast dynamics that are assumed to
equilibrate immediately and can be calculated using the rest
of the system. Reducing the dimensionality of the system in
this way can simplify numerical and analytical analysis. This
simplification is especially useful for more complex models,
such as our example for the symbiosis between corals and



Conservation Physiology - Volume 10 2022

Research article

Initializiation
— jcp(0) = jcp,  Jsc(0)=0
Jep(0) =0 Jsc(0) = jsg,
S H S/H
1000 1000 0.20
10 10 0.15
0.100 0.100 0.10
0.001 0.001 t0-05
50 100 150 50 100 150 50 100 150t
Jep Jsa
0.25
>0 020
15 0.15
1.0 0.10
0.5 0.05
t L
50 100 150 50 100 15()t

Figure 12: Simulation of the coral model, implemented with fast state variables for photosynthesis jcp and symbiont growth js¢. From left to
right and top to bottom: symbiont biomass (log scale), host biomass (log scale), ratio of symbiont to host, photosynthesis and symbiont growth
rate. Blue curves: starting with high photosynthesis, jcp(0) = jcp,,, and low symbiont growth, js; (0) = 0, leads to a functional symbiosis with a
high S/H ratio and positive growth rates. Orange curves: starting with low photosynthesis, jcp(0) = 0, and high symbiont growth,

jsG(0) = jsG,,, leads to a dysfunctional symbiosis with a low S/H ratio and negative growth rates. Parameter values as in Fig. 11. Initial symbiont

to host ratio is S(0)/H(0) = 0.15.

endosymbiotic algae (Cunning et al., 2017), or even more for
the extension of this model with multiple symbionts (Brown
et al. 2022).

We demonstrate these approaches for two published mod-
els: one for the growth dynamics of the root and the shoot of
a plant (Ledder et al., 2020) and one for the growth dynamics
of corals and their endosymbiotic algae (Cunning et al.,2017).
We show how these models can be simulated and how their
analysis can be simplified by reducing their dimensionality.
Both examples illustrate how the choice of initial conditions
can affect a system’s state through cyclic feedbacks. In the
example for the root and the shoot of a plant, an initially
high carbon transfer triggers the system to start with the root
growing, while an initially high nitrogen transfer triggers the
system to start with the shoot growing. Similarly, in the coral
example, the rate at which the symbiont shares carbon with
its host turns out to be a particularly influential node in the
fast network. Starting the system with a low photosynthesis
rate can lead to a negative feedback loop, involving reduced
activity of the host’s carbon concentration mechanism that
provides CO; to the symbiont. The decreased CO; transfer
in turn additionally reduces the rate at which the symbiont
shares carbon with the host. Eventually, this cycle leads to a
breakdown of the symbiosis. In this example, the bistability
of the fast dynamics can affect the final state of the slow
dynamics, i.e. the initialization of the fast network deter-
mines whether the system settles at a functional symbiosis
characterized by a high symbiont to host ratio and positive
growth rates, or whether it settles at a dysfunctional symbiosis
characterized by a low symbiont to host ratio (bleached
corals) and negative growth rates.

The bleaching of coral reefs is just one example of how
understanding the breakdown of a symbiosis is critical for
conservation. DEB models of ecological interactions, analyzed
with our methods for simulating and simplifying the fast
dynamics, could be useful in similar contexts. Such other
examples where our approach could be used to study sym-
biosis include situations where abiotic changes driven by
human activity (such as rising temperatures) can decouple the
growth rates of hosts and their symbionts. This can impact
animal growth (Greenspan et al., 2020), the digestive system
of humans (Carding e al., 2015), the cycling of organic
matter by the microbiome of marine macroalgae (Minich
et al., 2018) and the drought resistance of plants that harbor
ectomycorrhizal fungi (Sapes ef al., 2021).

The scenarios described above can be all interpreted as
bioenergetic systems. However, these are not the only type
of systems where complex fast dynamics can have alternative
equilibrium states. For example, alternative states of fast state
variables have been reported in models that couple evolution-
ary and ecological dynamics (Brown & Akcay, 2019, Geritz
et al., 2002, Lehtinen & Geritz, 2019), in strictly ecological
models (Rinaldi & Muratori, 1992) and in neurobiologi-
cal models (Kurikawa & Kaneko, 2021, Wernecke et al.,
2018). In these examples, fast dynamics were either simulated
directly, or the models were analyzed without simulating
the full coupled system of fast and slow dynamics. These
examples reflect that models from different areas could war-
rant approaches similar to those described in the present
work, which allow reduction of the dimension of the state
space and approximation of fast dynamics efficiently for
simulations.
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We end as we started—by emphasizing the unrealized
potential for new DEB theory involving the exchange and
interaction of metabolic products. Challenging areas include
the ecology and evolution of the microbiome and its interac-
tion with animal hosts, the evolution of mixotrophy, the emer-
gence of microscale microbial consortia in aquatic systems—
and of course there are many more. These and other fast pro-
cesses may often drive population and community responses
to changing environments, the core issue for conservation
biology. Systematizing methodology for timescale separation
in the absence of empirical data at all timescales will be
essential in such work; we see this paper as a contribution
to this effort.

Supplementary material

Supplementary Fig. 1:
separation/blob/main/supplementary-figures/Supplementary-Fig-1-

https://github.com/ferdi- p/time-scale-

coral-model-buffer-combinations.pdf?raw=true

All code for the models has been implemented in
Wolfram Mathematica 12.2 (Wolfram Research, 2021). The
code is freely available at https:/github.com/ferdi-p/time-scale-
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A Tikhonov’'s theorem

Tikhonov’s theorem (Klonowski, 1983, Tikhonov, 1952)
states that under certain conditions the fast-slow system

X

5, = f(ia Z’ t)
at (A1)
dz o =
E = )//’J(X, Za 1)
converges for y — oo to the form
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as long as the point (X, #) does not leave a certain region D of
the state space.

The conditions are as follows:

1. Z = d)(X, t) is an isolated solution of h(f(, Z, H=0
whose points are locally (asymptotically) stable equi-
librium points of the adjoined system

dz - -

as _ A3
— h(X,Z,1) (A.3)

():(, t being considered here as parameters, the point
(X, #) belonging to a bounded open region D).

2. The initial conditions (X0, 70,49 are such that the
solution Z(t) of the adjoined system

az _ h(X°,Z,1%
dr

70y =2

satisfies limy oo Z(7) = ¢(5<O, £9).

3. X, f are n-vectors, Z, h m-vectors and f, b satisfy
suitable regularity assumptions.

B Details to differential equations for
fast and slow dynamics

To apply this theorem to our type of system, we assume
that the algebraic equation for Z can be defined through the
equilibrium states of a differential equation on a fast timescale
(even when those equations are not explicitly stated in the
model description). The form of the differential equation is
generally

dz _ vh(X,Z).

B.1
. (B.1)

Here y is a parameter that determines the speed of the
system. Tikhonov’s theorem loosely tells us that the slow
variables converge for y — oo to the form

-

dX

_ B.2
dt (B2

f(X, (X)),

where Z = ¢(f{) is an isolated solution of h(f(, Z) = 0 whose
points are locally (asymptotically) stable equilibrium points
of the system (B.1). The equilibria correspond to the solutions
of Z = g(X, Z). In principle, the only formal information we
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have on /4 is that it must satisfy the equilibria conditions, i.e.

Z=g(X,Z) & h(X,Z) =0. (B.3)

In the absence of more information, we have to add
assumptions to specify the model dynamics. It seems generally
reasonable to assume that each component Z; of the network
is attracted to its ‘target’ g;(X,Z), i.e. the sign of the time
derivative b; is the same as the sign of the difference between
target and state,

sign(hi(X, 2)) = sign(g;(X, Z) — Zj). (B.4)

Qualitatively, this behavior can be captured by lineariza-
tion, i.e.
hi(X,2) = ci(gi(X, Z) -

Zi)s (B.5)

where ¢; > 0 are constants that determine the (relative) speed
with which each part of the network approaches its target.
Choosing A; = y¢;, this brings us to equation (4)
dz; - =

7; =2(gi(X,Z) — Z)). (B.6)

Note that the different A; are generally not specified by
the model (and they can in principle also depend on the
state of the system, i.e. which equilibrium is in the vicinity of
the auxiliary network). When applying the method to a new
model, it can be useful to try different large values for the A;
and check convergence.

It can be useful to vectorize the model. Let

A0 0
0 X 0
A= (B.7)
0 0
so that
dz _ Ag(X,Z) — 7). (B.8)

dt

In absence of any other information, a simple choice can
be to choose all A; equal and reasonably big.

The scheme we propose is asymptotically a generalization
of the discrete time scheme implemented in earlier work
(Cunning ef al., 2017), when all 4; = A and the time step
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At = 1/ is small. This can be seen by expressing equation
(4) as

Z(t+ A - Z(t) _ gX(1),Z(t) — Z(D)

= (B.9)
At At
and solving for Z(t + At) so that
Z(t + At = g(X(@), Z(1)). (B.10)

C Dimensionality reduction

Divide the complete set of auxiliary variables into two sets,
Z4 and Zp,
Z=7Z,UZpg (C.1)

(where U refers to ‘combining the two vectors and rearranging
them in the original order’) and

8(Z) = ga(X,Zy U Zp) Ugp(X, Zy) (C2)
then it is enough to set up dynamics for ZA and derive Zp
from it, which completes the network. That is, Z 4 is described
by a differential equation

dz ..
A = Aaa(X.Z4 U Zp)

C3
7 (C.3)

- ZA);

where A4 is a diagonal matrix that contains the numerical
parameters A; for how fast the different components of Za
approach thelr targets. The remainder of the network, Zg, can
then be calculated directly:

Zp =gp(X,Zy). (C.4)

When the fast dynamics are at their equilibrium, any
choice for which auxiliary variables to track as state variables
satisfies the model specification. While in our experience the
choices make little difference, they can principally differ in
their dynamics. When setting up a new model, it can be
useful to try different combinations of fast state variables and
compare simulations.

D Coral model formulation

This section describes the details of the coral model by
Cunning et al. (2017). The model tracks the biomass of
symbiont S and host H. Additionally, it tracks various fluxes
within and between the organisms, as shown in Table D1. The
model parameters are shown in Table D2. Sticking with the
notations of the original papers, the coral model formulation
differs slightly from the root-shoot model formulation in
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State variables

that for the coral model the fluxes are measured per biomass
either of the host or the symbiont, depending on where
the flux is originating from) while in the root-shoot model
the fluxes describe the total values (i.e. already accounting
for the biomass of the organ where the flux is originating
from). Both models could be formulated in either way, but
for consistency with the original papers we stick with the
formulations used there. We also fixed two obvious typos in
the original formulation of the coral model, changing slightly
the equations for jyg and py-

—

For convenience, we define notations for the functional
responses used. For the uptake of a single substrate x the
Michaelis—Menten-type SU is defined by

f(max, k;x) = max (D.1)

x
k+x

To combine two substrates, x and y, the model uses a
‘parallel complementary’ SU (Kooijman, 2010)

F(max;x,y) = - (D.2

—

The change of biomass of symbiont and host are given by
terms for growth and for biomass loss (including turnover)

s _ .
dt =JSG ~IST

I~
38

dH _ .
dr =JHG —JHT
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Table D2: Coral model parameters (for typical values, see Cunning et al., 2017)

The fluxes and other auxiliary variables are defined implic- PN =JN + “NX/X + "NH — "NH/HG
itly at their fast equilibrium states by

) . A _

Jec =JX t rPCH lHGyCl
ix =fGx,,» Kx; X)
IN = f(N,.» Kns N)

ico, = kco,lec

A =1.26+1.39648%

. . S . . . _
jHG =F (IHGm;yc (%ﬁ +IX) s (IN+FrNxTX+TNH) nN}{) jL = ALa*
, S
jHT = i?n rcH =ocHUaT + (1 = YOHGY ¢
. 0 o
"NH = ONH”NH/HT rcs = ocsGgr + (A —yo)isGyc )
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. . o H »
jcp = F\icpmsYcrirs (ico, +rcH) 5 T7cs) eros

JeL =JL —icpya
-1
: -1, 1
INPQ = (kNPQ +7€L>
max(jel, — /NPQ>0)
kros

cros =1+
_ 0
NS = ONS”NS/sT
. . , H 1
isG = F\isGmsycicps PN NS | 7N
_ A
pC =]JcP —ISGY¢c

jsT = jor(1 + b(cros — D).
(D.4)

For details, see Cunning et al. (2017).
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