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Abstract

Background: Real-time prediction of surgical duration can inform perioperative decisions and reduce surgical costs.

We developed a machine learning approach that continuously incorporates preoperative and intraoperative information

for forecasting surgical duration.

Methods: Preoperative (e.g. procedure name) and intraoperative (e.g. medications and vital signs) variables were

retrieved from anaesthetic records of surgeries performed between March 1, 2019 and October 31, 2019. A modular

artificial neural network was developed and compared with a Bayesian approach and the scheduled surgical duration.

Continuous ranked probability score (CRPS) was used as a measure of time error to assess model accuracy. For evaluating

clinical performance, accuracy for each approach was assessed in identifying cases that ran beyond 15:00 (commonly

scheduled end of shift), thus identifying opportunities to avoid overtime labour costs.

Results: The analysis included 70 826 cases performed at eight hospitals. The modular artificial neural network had the

lowest time error (CRPS: mean¼13.8; standard deviation¼35.4 min), which was significantly better (mean difference¼6.4

min [95% confidence interval: 6.3e6.5]; P<0.001) than the Bayesian approach. The modular artificial neural network also

had the highest accuracy in identifying operating theatres that would overrun 15:00 (accuracy at 1 h prior¼89%)

compared with the Bayesian approach (80%) and a naı̈ve approach using the scheduled duration (78%).

Conclusions: A real-time neural network model using preoperative and intraoperative data had significantly better

performance than a Bayesian approach or scheduled duration, offering opportunities to avoid overtime labour costs and

reduce the cost of surgery by providing superior real-time information for perioperative decision support.

Keywords: artificial neural network; economics; healthcare costs; machine learning; operating theatre efficiency; pro-

cedure duration; statistical model; surgery
Editor’s key points

� Methods to predict procedure duration could inform

perioperative decisions, increase operating effi-

ciency, and reduce staffing costs.

� The authors developed a machine learning approach

that continuously incorporates preoperative and intra-

operative information to forecast surgical duration.
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� Using data from 70 826 cases from eight hospitals, a

modular artificial neural network outperformed a

Bayesian approach and the scheduled duration in

predicting surgical end time.

� A real-time neural networkmodel using preoperative

and intraoperative data for real-time perioperative

decision support may help to avoid overtime labour

costs and reduce costs of surgery.
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Staffing and utilising operating theatres (OTs) incur consider-

able costs, and stakeholders are invested in maximising

efficient use of perioperative resources.1e3 Preoperative plan-

ning is frequently complicated by uncertainty in surgical case

duration.4,5 Similarly, operational decisions on the day of

surgery are often guided by subjective perceptions regarding

the remaining duration of an ongoing surgery. For example, an

OTmanager may estimate the remaining time on a case in the

early afternoon tomake decisions regarding the assignment of

on-call staff,6,7 scheduling an add-on case,8 or opening an

additional OT.9 Typical approaches, such as calling into the OT

and reviewing the intraoperative record, are confounded by

bias10,11 and distract from clinical responsibilities. Inaccurate

prediction of surgical case duration contributes to increased

costs of surgery,1,4 longer working hours leading to staff

dissatisfaction and attrition,12 fatigue and medical errors,13,14

and increased patient wait times.4 These challenges under-

score a need for improved methods of predicting surgical

duration in real time.

Machine learning (ML) is a promising strategy for address-

ing this problem. ML techniques and other advanced statisti-

cal techniques have been used successfully to predict surgical

case duration in various settings.15e19 However, previous

studies have exclusively relied on preoperative variables and

have not incorporated intraoperative data, such as the timing

of critical events or medications. As such, previous models are

of limited value for day-of-surgery operational decision-

making, when decisions are typically required after a pro-

cedure has already started. Furthermore, most ML studies

were based on single academic hospitals, without validation in

alternate datasets, such as community hospitals with low

operative volume.

We present a novel approach for real-time prediction of

surgical case duration by continuously incorporating preop-

erative and intraoperative characteristics, including vital

signs, medications, and intraoperative events. We had the

following three research objectives: (i) develop and validate a

real-time surgical case duration algorithm using global

measures of accuracy, (ii) evaluate the feasibility of the model

for informing operational decisions, and (iii) evaluate the

transferability of the model in an external dataset.
Methods

Study setting and data sources

Data for this study included anaesthesia records from eight

hospitals within the BJC HealthCare System (St Louis, MO,

USA). This data set incorporates a heterogeneous surgical

population, including urban and rural hospitals, academic and

community centres, and various surgical specialties.

The institutional review board (IRB) of Washington Uni-

versity (St Louis, MO, USA) approved this study with a waiver

of patient consent (IRB #201910015). The model development

adhered to the Transparent Reporting of a Multivariable

Prediction Model for Individual Prognosis or Diagnosis

guidelines.20
Variable definitions and feature extraction

Anaesthesia records stored in the Epic (Verona, WI, USA)

electronic health record of eight hospitals between March 1,
2019 and October 31, 2019 were extracted. The target

outcome variable was total anaesthesia time, defined as the

difference between anaesthesia start and stop times. Sur-

geries were scheduled with a specified case start and end

time. The difference between these times (hereafter ‘sched-

uled duration’) was extracted as a continuous variable. All

extracted anaesthesia records were included in this study,

except those with missing scheduled duration. Other missing

variables were imputed as described in the following

sections.

Several categorical predictor variables were extracted:

surgeon name, anaesthesiologist name, procedure location,

procedure urgency, and whether a case was the last elective

case for its respective surgeon (hereafter ‘last case’). Pro-

cedure location referred to the specific anaesthetising loca-

tion (e.g. ‘hospital A main OT’). The scheduled procedure(s)

(hereafter ‘procedure name’) was/were extracted as free

text.

Each intraoperative feature in this study was extracted

with both the time of occurrence and the time of documen-

tation. Expired sevoflurane/desflurane/nitrous oxide concen-

trations, inspired oxygen concentration, bispectral index, and

HR were extracted as continuous variables. All intraoperative

events (e.g. ‘induction’ and ‘tourniquet up’) were extracted

as categorical variables. Medication name and actions (e.g.

‘given’ and ‘rate change’) were extracted as categorical

variables.
Variable transformation and imputation

Scheduled duration and actual duration were normalised to

have a standard deviation (SD) of 1. Continuous intraoperative

data were normalised to have an SD of 1. Missing continuous

intraoperative data were encoded as e1 to allow models to

distinguish between missing values and those with measured

values of 0. Missing categorical variables were assigned as

‘unknown’. Missing procedure names were imputed with an

empty string.
Model development

Cases from March 1, 2019 to September 30, 2019 were used to

train all models (hereafter ‘training data set’); cases from

October 1, 2019 to October 31, 2019 were used to evaluate

model efficacy (hereafter ‘test data set’). Cases from one

community hospital were sequestered and used as a holdout

data set (hereafter ‘holdout training’ and ‘holdout test data

sets’) to evaluate model transferability.

To simulate intraoperative predictions, an elapsed time

was chosen between anaesthesia start and stop times. All data

that were documented after the elapsed time were masked

from the models during training and testing.

A modular artificial neural network (MANN) architecture

was developed to account for preoperative and intra-

operative variables (Fig. 1). A vector embedding layer was

used for all categorical variables. Time series features were

treated with long short-term memory units and then

concatenated with static features before being treated with a

dense multilayer perceptron. The model outputs were

parameters of a log-normal distribution, with negative log

likelihood of the actual duration as loss function. Models



Categorical
preoperative

variables

Procedure
name

Vector
embedding

Dense layers

LSTM

Vector
embedding

Vector
embedding

2

0.8 –1 1.2

–1–1 2.1

3

0.8

Normalise

Concatenate

����

Normalise
impute

Medications Events Measurements
Name NameAction Time Time

Scheduled
duration

Elapsed
time

LSTM LSTM LSTM

Fig 1. Architecture of modular artificial neural network. LSTM, long-short term memory.
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were trained by repeated random sampling of training case

and elapsed time.

As a baseline, we implemented a previously described

statistical method that used Bayes theorem to make updated

intraoperative predictions conditional on elapsed time19,21

(hereafter ‘Bayesian approach’). This approach produces

probability distributions of surgical duration from a weighted

combination of historical data and scheduled duration. In the

originally described method, further information was

retrieved from OT providers regarding their expectations of

remaining time for an ongoing surgery, to update predictions.

This aspect of ‘direct’ information from OTs could not be

replicated because of the retrospective nature of this study.

However, as a surrogate measure, the Bayesian approach was

modified to update its expected remaining time after the
following two intraoperative events: (i) reversal of neuro-

muscular block and (ii) procedure completion (see additional

details in Supplementary Appendix A).
Model accuracy

The global accuracy of each technique was quantified using

continuous ranked probabilistic score (CRPS), a generalised

form of absolute error for probabilistic forecasts of determin-

istic outcomes.22 We have previously used CRPS to measure

performance in prediction of surgical case duration.16

Continuous ranked probabilistic score has two qualities that

make it an intuitive measure of ‘time error’. First, it is

measured in units of minutes and has a minimum (i.e.

optimal) score of 0. Second, it can bemeasured for any forecast
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with a known cumulative probability distribution, including

deterministic predictions, for which it simplifies to absolute

error. This allows direct comparison of the probabilistic ap-

proaches developed in this study with the scheduled duration.

Continuous ranked probabilistic score was calculated at each

fifth percentage (e.g. 5%, 10%, and 15%) of total anaesthesia

time for each case in the test data set and is reported with a

mean and SD (see additional details in Supplementary

Appendix B). A paired t-test was used to compare the perfor-

mance of MANN and the Bayesian approach.
Identification of impending staff overtime

We also evaluated the performance of MANN in a clinical

scenario to ascertain its viability for predicting impending

staff overtime. Perioperative departments commonly employ

contractual workers, such as certified registered nurse

anaesthetists (CRNAs) who incur additional productivity costs

when working beyond a predetermined time (CRNA shifts

commonly end at 15:00 or 17:00). Frequently, attempts are

made to identify rooms likely to overrun a scheduled shift end

time, so alternative staff can be identified to relieve them, thus

improving CRNA satisfaction and avoiding overtime costs.

In this scenario, we compared three approaches to discern

whether an ongoing case would continue beyond 15:00 (i.e. the

contractual end time), using data available at 11:00, 12:00,

13:00, and 14:00 (i.e. the various decision times). ForMANNand

the Bayesian approach, which output a probability distribu-

tion, the time represented by the 50% cumulative distribution

function was used to predict whether the case would exceed

the contractual end time. We devised a naı̈ve approach to

approximate staff management in the considered OTs,

without advanced decision support. In this approach, sched-

uled stop time (actual start timeþscheduled duration) was

used to make predictions, until neuromuscular block or the
Table 1 Patient and surgery characteristics.

Main training dat

Number of cases 59 926
Mean scheduled duration (min) 125.64
Mean actual duration (min) 119.53
Unique procedure names 30 624
Number of procedures performed only once 27 410
Unique surgeons 803
Unique anaesthetising locations 37
Elective cases (%) 54 914 (92)
Last cases (%) 38 079 (64)
Service
Gastroenterology 16 075
Orthopaedic surgery 9886
Ophthalmology 4649
General surgery 4355
Otolaryngology 4082
Urology 3289
Obstetrics/gynaecology 3107
Cardiothoracic surgery 2651
Neurosurgery 2123
Plastic surgery 2068
Vascular surgery 1340
Trauma surgery 1104
Transplant surgery 558
Other 4639
‘procedure finish’ event occurred. After these events, the case

was predicted to end before the contractual end time, irre-

spective of the scheduled duration.

The sensitivity and specificity of each approach are re-

ported along with their 95% confidence intervals (CIs). This

analysis was repeated with a contractual end time of 17:00 for

sensitivity analysis. A post hoc analysis was also performed to

assess potential cost savings.
Model transferability to an external data set

A holdout data set was created and comprised cases from the

main OT of a community hospital, which was chosen

because of its relatively low case volume and physical dis-

tance (~25 miles) from the primary academic centre. The

holdout training dataset was used to (i) retrain select layers

of MANN (hereafter ‘transfer-MANN’) and (ii) train a new

MANN with the same model architecture (hereafter ‘isolated-

MANN’). We refer to the MANN trained in the previous

section as the ‘base-MANN’. Details of the transfer learning

process can be found in Supplementary Appendix A. The

Bayesian approach used in this section utilised data from

both the main training data set and holdout training data set.

Continuous ranked probability score was calculated for the

three ML models and the Bayesian approach. This evaluation

was repeated at two different community hospitals for

sensitivity analysis.
Results

General characteristics

A total of 79 752 anaesthesia recordswere retrieved. Scheduled

duration was missing in 8926 cases, and these were excluded.

Of these excluded cases, 2683 (30%) were labour epidurals. The
a set Main test data set Holdout train Holdout test

9092 1554 254
128.06 90.79 89.49
121.65 82.21 80.31
5655 1072 214
5058 978 201
536 72 48
32 1 1
7991 (88) 1306 (84) 218 (86)
5801 (64) 843 (54) 134 (53)

2424 1 0
1514 648 106
715 0 0
678 351 56
579 0 0
496 115 17
476 344 53
383 0 0
360 0 0
306 21 1
204 1 0
180 0 0
95 0 0
682 73 21
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remaining 6243 (70%) were anaesthetics performed for non-

surgical procedures (e.g. electroconvulsive therapy). The pri-

mary training dataset consisted of 59 926 cases, whilst the

holdout training data set consisted of 1554 cases. The primary

test data set consisted of 9092 cases, whilst the holdout test

data set consisted of 254 cases. The test dataset contained 4751

procedures that were not performed in the training data set.

A summary of patient and surgical characteristics can be

found in Table 1 (see Supplementary Appendix D for common

procedure names).
Model accuracy

Sample model outputs are shown in Figure 2. MANN had the

lowest mean (SD) CRPS across all time points at 13.8 (35.4) min.

The Bayesian approach and the scheduled duration had a

mean CRPS of 20.3 (40.3) min and 37.0 (77.3) min, respectively.

MANN outperformed the Bayesian approach on average by 6.4

min (95% CI [6.3e6.5]; P<0.001) (Fig. 3). The mean CRPS at the

beginning of surgery was 23.6 (72.3) min for the MANN vs 24.6

(64.5) min for the Bayesian approach (mean difference [MD]¼
1.23 min; 95% CI: 0.7e1.8; P<0.001). At the midpoint of surgery,

mean CRPS was 13.6 (25.0) min for MANN and 20.5 (29.4) min
Case 
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Fig 2. Sample model outputs. Procedure name: ‘INSERTION BILATERA
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artificial neural network.
for the Bayesian approach (MD¼6.9 min; 95% CI: 6.5e7.3;

P<0.001). After 90% of the surgery had elapsed, the CRPS was

4.63 (11.4) min for MANN and 15.8 (22.8) min for the Bayesian

approach (MD¼11.2 min; 95% CI: 10.8e11.5; P<0.001). The

majority of the predictions of MANN had CRPS <10min (Fig. 4).
Identification of impending staff overtime

MANN was the best-performing approach for all decision

times (Table 2). At a decision time of 11:00 (4 h from contrac-

tual end time), MANN had a marginal advantage (93% accu-

racy) over the Bayesian approach (91%) and naı̈ve approach

(91%). This advantage increased as the decision time neared

the contractual end time (15:00). At a decision time of 14:00,

MANN had a considerable advantage in terms of accuracy

(89%) over the Bayesian (80%) and naı̈ve (78%) approaches. At

this decision time, MANN had a sensitivity of 88.8% (95% CI:

86.7e90.8%) and a specificity of 89.8% (95% CI: 87.5e91.8%), the

Bayesian approach had a sensitivity of 87.5% (95% CI:

85.2e89.5%) and a specificity of 69.9% (95% CI: 66.5e73.1%), and

the naı̈ve approach had a sensitivity of 77.4% (95% CI:

74.6e80.0%) and a specificity of 79.5% (95% CI: 76.5e82.3%).
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Repeating the analysis for a contractual end time of 17:00

yielded similar results (see Supplementary Appendix C).
Cost analysis

A post hoc analysis was performed to estimate potential cost

savings. In the test data set, 1709 cases were running at 14:00

and 960 cases ran past 15:00. MANN correctly identified 110

more cases that would run past the contractual end time (true

positives) than the naı̈ve approach; these cases, on average,

ran 154 (SD 298) min past 15:00. For accurate predictions to

result in cost savings, a clinician assigned to a case must be at

risk to accrue overtime costs by the contractual end time, and

an alternate clinician with a later contractual end time or with

a lower cost must be available. These conditions will only be

true in a fraction of the cases, and circumstances of these

cases will vary across institutions.

If 10% of additional true positives lead to an intraoperative

provider handoff that avoids overtime pay, then overtime pay

will be avoided in 11 cases. If an additional assumption is

made that the original clinician will finish the case if not

relieved, then 28.2 h of overtime pay will have been avoided.

Repeating this analysis for the Bayesian method yields 24.9 h

of overtime avoided. Additionally, the Bayesian approach

produced 155 additional false positives in the test data set

compared with MANN, which may motivate many unnec-

essary handoffs.
Model transferability to external data set

The transfer-MANN had the lowest time error in the first

quartile (CRPS 10.4 min) and last quartile of surgery (CRPS 2.8

min). The isolated-MANN had poor performance in the first

quartile (CRPS 13.5 min) and excellent performance in the last
quartile (3.2 min). Compared with MANN, the Bayesian

approach had modest performance in the first quartile of

surgery (CRPS 12.8 min) and poor performance in the last

quartile (CRPS 13.1 min). Overall, the transfer-MANN had a

CRPS 1.8 min lower than the isolated-MANN (95% CI: 1.6e2.0;

P<0.001). The performance benefit was statistically significant

for all four quartiles of surgery. Repeating this analysis with

two alternate community hospitals yielded similar results

(Supplementary Appendix C).
Discussion

We developed a ML-based MANN model that incorporated

preoperative and intraoperative data to provide real-time

predictions regarding remaining surgical duration. MANN

performed significantly better than the Bayesian model on all

considered evaluation metrics. This advantage was modest at

the beginning of surgery, consistent throughout surgery, and

increased dramatically during the last quartile of surgery time.

This is likely because of the preponderance of data in the

intraoperative anaesthesia record that signal the impending

conclusion of a procedure, such as administration of reversal

medications, emergence events (e.g. extubation), and changes

in vital signs. Conversely, in many surgeries, there is a dearth

of information in the anaesthesia record that encodes prog-

ress during surgery, which may explain why the advantage of

MANN over the Bayesian approach remains roughly constant

between 25% and 75% of the total surgery duration.

The performance of MANN was also better than that of the

Bayesian approach in a simulated clinical scenario directly

related to operational decision-making. Because of the het-

erogeneity of the data set, there were a high number of cases

with no historical data. This may explain the marginal
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Table 2 Accuracy at identifying whether ongoing cases will finish by 15:00. MANN, modular artificial neural network.

Model True
positive

True
negative

False
positive

False
negative

Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)

Prediction time: 11:00
MANN 156 1711 25 114 57.78 98.56 86.19 93.07
Bayesian 140 1682 54 130 51.85 96.89 72.16 90.83
Naı̈ve 152 1672 64 118 56.30 96.31 70.37 90.93
Prediction time: 12:00
MANN 250 1464 48 121 67.39 96.83 83.89 91.02
Bayesian 216 1427 85 155 58.22 94.38 71.76 87.25
naı̈ve 225 1404 108 146 60.65 92.86 67.57 86.51
Prediction time: 13:00
MANN 447 1126 71 147 75.25 94.07 86.29 87.83
Bayesian 422 1062 135 172 71.04 88.72 75.76 82.86
naı̈ve 413 1037 160 181 69.53 86.63 72.08 80.96
Prediction time: 14:00
MANN 853 698 79 107 88.85 89.83 91.52 89.29
Bayesian 840 543 234 120 87.50 69.88 78.21 79.62
naı̈ve 743 618 159 217 77.40 79.54 82.37 78.35

Real-time prediction of surgical case duration - 835
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improvement of the Bayesian method over the naı̈ve method,

as both methods relied on scheduled duration in the absence

of historical data. Furthermore, traditional statistical tech-

niques are frequently limited by their inability to incorporate

complex and often incomplete data, such as intraoperative

time series variables. MANN, by leveraging the strengths of

ML, could simultaneously account for all intraoperative

events, medications, and vital signs, resulting in superior

accuracy.

Improved accuracy also has cost implications. A post hoc

analysis showed that MANN would avoid more overtime pay

than the Bayesian method, whilst correspondingly requiring

fewer unnecessary intraoperative handoffs, a patient safety

risk.23 This analysis does not include potential savings from

other common decision times, such as 17:00, and many other

potential use cases, such as efficient allocation of add-on cases

to OTs or efficient assignment of on-call staff.

We also demonstrated the generalisability and trans-

ferability of the MANN methodology. The isolated-MANN had

excellent performance at the end of surgery, but it had poor

performance at the beginning. This is likely because of insuf-

ficient data to learn uncommon and rare procedure types but

sufficient examples of common events that signal the end of

surgery. Further tuning the base-MANN on the holdout

training dataset produced the best results at all time points

during surgery, suggesting that hospitals with operative vol-

ume too low to train an accurate MANN can still benefit from

ML-driven surgical duration prediction by fine tuning a model

trained predominantly at large nearby healthcare systems.

This study had several limitations. This was a retrospective

study, and continued innovation and exploration will be

required to transition to a prospective model that can be

implemented in a real-world environment. There are other

non-ML statistical approaches for predicting surgical duration

with potentially better performance. Our post hoc analysis

greatly simplified the process of operationalising this tech-

nology and made assumptions that may not apply to other

medical centres. It also does not address the potential down-

sides of additional patient handoffs.

These limitations highlight the need for subsequent work.

Many technical challenges must be addressed to implement the

proposed ML model, including establishing a real-time data

pipeline and designing a rational platform on which clinicians

canviewthe results of themodel andconsider suggestedactions.

In addition, our results suggest the lack of meaningful informa-

tion in the anaesthesia record between 25% and 75% of the total

duration of surgery. Strategies to bridge this gap include devel-

oping more sophisticated ML techniques and acquiring new

sources of information, such as cameras inside of OTs.

In conclusion, these findings suggest a role for ML models

to inform operational decisions on the day of surgery. The

model developed in this work was superior to a traditional

statistical alternative, and its advantage dramatically

increased as surgery progressed. This achievement builds

upon previous efforts to predict surgical duration and repre-

sents important progress towards the goal of leveraging ML to

reduce the high costs of surgery.
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