Skip to main content
. 2022 Jan 26;128(5):829–837. doi: 10.1016/j.bja.2021.12.039

Table 2.

Accuracy at identifying whether ongoing cases will finish by 15:00. MANN, modular artificial neural network.

Model True positive True negative False positive False negative Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)
Prediction time: 11:00
MANN 156 1711 25 114 57.78 98.56 86.19 93.07
Bayesian 140 1682 54 130 51.85 96.89 72.16 90.83
Naïve 152 1672 64 118 56.30 96.31 70.37 90.93
Prediction time: 12:00
MANN 250 1464 48 121 67.39 96.83 83.89 91.02
Bayesian 216 1427 85 155 58.22 94.38 71.76 87.25
naïve 225 1404 108 146 60.65 92.86 67.57 86.51
Prediction time: 13:00
MANN 447 1126 71 147 75.25 94.07 86.29 87.83
Bayesian 422 1062 135 172 71.04 88.72 75.76 82.86
naïve 413 1037 160 181 69.53 86.63 72.08 80.96
Prediction time: 14:00
MANN 853 698 79 107 88.85 89.83 91.52 89.29
Bayesian 840 543 234 120 87.50 69.88 78.21 79.62
naïve 743 618 159 217 77.40 79.54 82.37 78.35