
A Survey on Industrial Internet of Things: A Cyber-Physical 
Systems Perspective

Hansong Xu*, Wei Yu*, David Griffith†, Nada Golmie†

*Towson University, MD, USA.

†National Institute of Standards and Technology.

Abstract

The vision of Industry 4.0, otherwise known as the fourth industrial revolution, is the integration 

of massively deployed smart computing and network technologies in industrial production 

and manufacturing settings for the purposes of automation, reliability, and control, implicating 

the development of an Industrial Internet of Things (I-IoT). Specifically, I-IoT is devoted to 

adopting the Internet of Things (IoT) to enable the interconnection of anything, anywhere, and 

at anytime in the manufacturing system context to improve the productivity, efficiency, safety 

and intelligence. As an emerging technology, I-IoT has distinct properties and requirements that 

distinguish it from consumer IoT, including the unique types of smart devices incorporated, 

network technologies and quality of service requirements, and strict needs of command and 

control. To more clearly understand the complexities of I-IoT and its distinct needs, and to 

present a unified assessment of the technology from a systems perspective, in this paper we 

comprehensively survey the body of existing research on I-IoT. Particularly, we first present 

the I-IoT architecture, I-IoT applications (i.e., factory automation (FA) and process automation 

(PA)) and their characteristics. We then consider existing research efforts from the three key 

systems aspects of control, networking and computing. Regarding control, we first categorize 

industrial control systems and then present recent and relevant research efforts. Next, considering 

networking, we propose a three-dimensional framework to explore the existing research space, 

and investigate the adoption of some representative networking technologies, including 5G, 

machine-to-machine (M2M) communication, and software defined networking (SDN). Similarly, 

concerning computing, we again propose a second three-dimensional framework that explores 

the problem space of computing in I-IoT, and investigate the cloud, edge, and hybrid cloud and 

edge computing platforms. Finally, we outline particular challenges and future research needs in 

control, networking, and computing systems, as well as for the adoption of machine learning, in an 

I-IoT context.
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I. INTRODUCTION

In smart manufacturing systems [1], along with other typical cyber-physical systems (CPS) 

like the smart grid [2], [3], modern information communication technologies (computation, 

control, communication, etc.) can be leveraged to improve the monitoring and control 

abilities of physical systems (manufacturing equipment and workflow, electrical grid 

transmission and generation, etc.). To realize the vision of the next generation industrial 

revolution (known as Industry 4.0), smart manufacturing is a necessity, as massive numbers 

of smart sensors and actuators (otherwise known as machine devices) will be interconnected 

and integrated into industrial systems using the advanced technologies developed for 

the Internet of Things (IoT) and CPS [4]. Moreover, these technologies are becoming 

increasingly mature, reliable, and widely adopted, with the number of machine devices 

deployed worldwide projected to grow to 75.4 billion by 2025 according to a recent market 

research study [5]. In the context of Industry 4.0, the requirements of response time, network 

latency, and reliability are especially critical, as the entire workflow of the manufacturing 

process will be carried out automatically, without human intervention where possible. Thus, 

the data transmission and decision-making technologies shall be optimized to be as timely 

and accurate as possible.

In the recent past, IoT has become a highly active research area, as it enables the 

interconnection of anything, anytime and anywhere [2], [6], [7]. IoT has been applied 

to interconnect unprecedented quantities of devices for consumer applications (home 

appliances, transportation, mobile devices, etc.). Those consumer applications (e.g., smart 

home, smart city, smart grid, and smart transportation) can provide convenience, efficiency 

and intelligence to consumers to better manage their personal time and resources [8], [9], 

[10], [11], [12], [13], [14]. Extending the technology, Industry 4.0 envisions the adoption of 

IoT for use in manufacturing, and has great potential to improve the productivity, efficiency, 

safety and intelligence of industrial factories and plants [15], [16]. Thus, Industrial-IoT 

(I-IoT) indicates the nature of the application of IoT to be industrial manufacturing, 

facilitating the interconnection of “anything” (sensors, actuators, controllers, production 

lines, equipment, etc.) in an industrial production and automation context.

An I-IoT system, as a typical CPS, is composed of two key components: the cyber systems 

and the physical systems. The cyber systems include control, networking and computing 

infrastructures that enable the operation, interconnection, and intelligence of the industrial 

systems. The physical systems are the manufacturing and automation systems that leverage 

industrial devices to undertake designated production and automation tasks. There have been 

some recent research efforts towards investigating I-IoT (understanding the I-IoT system 

in general, investigating specific issues in I-IoT, leveraging state-of-the-art techniques for 

I-IoT, etc.). For instance, Su et al. [17] surveyed the challenges and research issues on 

data management in I-IoT and conducted a case study using a large-scale petrochemical 

plant. In addition, in investigating a specific I-IoT problem, Sun et al. [18] applied auction-

based mechanisms to address the computing resource allocation problem, while Jeong et 
al. [1] addressed the trust issues in resource allocation. Moreover, some research efforts 

have leveraged advanced communication techniques, such as 5G and software-defined 

networking (SDN) for I-IoT [19], [20].
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In this paper, we provide a comprehensive survey of I-IoT from a CPS perspective, focusing 

primarily on control, networking, and computing. In I-IoT, control systems play the critical 

role of operating massive number of industrial devices (sensors, actuators, equipment, 

etc.). Networking systems enable timely communication of data and control signals for 

diverse and dispersed tasks in industrial systems [21]. Computing systems provide the 

computational platform to enable timely collection, storage, processing, and analysis of data 

in an efficient, highly-reliable, and scalable manner [22], [23]. Notice that the adoption 

of machine learning can be incorporated into all systems in I-IoT. Finally, the physical 

components are the manufacturing and automation systems.

The primary contributions of this paper are three-fold:

• I-IoT System Architecture, Physical Systems, and Requirements. We present 

the I-IoT architecture, which consists of three layers (i.e., application layer, 

communication layer, and physical layer). We introduce some typical I-IoT 

physical systems (e.g., PA and FA) and their characteristics (e.g., number 

of nodes, cycle time, and reliability). We also identify I-IoT performance 

requirements from the communications perspective (e.g., latency and reliability).

• Control, Networking and Computing Systems. We conduct a survey of I-IoT 

from the three critical perspectives of control systems, networking systems, and 

computing systems. Concerning control systems, we investigate existing research 

efforts on industrial control systems, which play critical roles in the control 

and operation of industrial factories and plants. Those systems are categorized 

into centralized, decentralized, and hierarchical control systems. Regarding 

networking systems, we propose a three-dimensional framework to explore 

existing research efforts. We review some representative emerging networking 

technologies, including 5G, machine-to-machine (M2M) communication, and 

SDN for I-IoT. We also review some progress in the standardization of I-IoT. 

Considering computing systems, we propose a three-dimensional framework to 

investigate existing research efforts on computing in I-IoT. We review the state-

of-the-art computing platforms for I-IoT, including cloud computing and hybrid 

cloud and edge-based computing. We also investigate the big data analysis 

supported by I-IoT computing systems.

• Challenges and Future Directions We present the challenges and future 

research needs of control, networking and computing systems in I-IoT, as 

well as in machine learning for I-IoT. Particularly, we present the challenges 

in control system of enabling self-awareness, self-diagnosis and self-healing, 

efficient management, effective resource utilization, and timely maintenance. 

In addition, concerning networking systems, we discuss the problems of 

conducting network deployment, resource scheduling, and security. Moreover, 

regarding computing systems, we outline the challenges of the deployment of 

computing system, seamless integration, and computing resource management. 

In terms of future directions for control, networking, and computing systems, 

we outline several critical research needs such as co-design, intelligent data 

management and analysis, and develop a theoretical foundation, models and 
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testbeds to allow design and analysis of these new types of systems. We 

further review recent progress on machine learning and illustrate an example 

of leveraging machine learning for networking in I-IoT. Finally, we outline 

research directions in machine learning for I-IoT, including machine learning for 

latency-guaranteed and ultra-reliable communications, machine learning-enabled 

cloud and edge computing, intelligent sensing and decision making, online 

learning and relearning, distributed machine learning, and light-weight learning 

platforms.

The remainder of this paper is organized as follows: In Section II, we present the 

architecture of I-IoT, along with its industrial applications and characteristics. In Section 

III, we review control systems in I-IoT from the perspectives of centralized, distributed and 

hierarchical control. In Section IV, we review research efforts on networking systems in 

I-IoT and consider some representative techniques, such as 5G, M2M, and SDN. In Section 

V, we review the research efforts on computing systems in I-IoT, such as cloud computing, 

edge computing, and hybrid cloud and edge computing, among others. In Section VI, 

we present challenges, possible solutions and future directions in the areas of control, 

networking, and computing systems in I-IoT, as well as the use of machine learning in I-IoT. 

In Section VII, we conclude the paper. Notice that all main acronyms used in the paper and 

their descriptions are listed in Table I.

II. ARCHITECTURE OF I-IOT, APPLICATIONS AND CHARACTERISTICS

Industry 4.0 represents the fourth industrial revolution looming on the horizon, in which 

information communication technologies are applied to industrial manufacturing and 

automation so that the productivity and efficiency can be improved. From Industry 4.0, there 

emerges two key paradigms: I-IoT and Industrial Cyber-Physical System (I-CPS). Generally 

speaking, I-IoT enables sensing and interconnection of industrial devices and equipment by 

applying emerging IoT technologies in industrial manufacturing and automation systems. 

Similarly, I-CPS is an extension of traditional CPS that was initially intended for critical 

systems (power generation, transportation, infrastructure, etc.), but has since been applied 

more broadly, defined by the intertwining of cyber and physical systems for command 

and control, security, resiliency and automation. I-CPS can be considered the merger of 

industrial cyber and physical systems that provide productive and efficient manufacturing 

and automation [2], [24], [25], [26], [27]. In the following, we present the architecture of 

I-IoT, and its applications and characteristics in more detail.

A. Architecture

We first consider the differences and relationships between IoT, I-IoT and I-CPS. Generally 

speaking, IoT is the interconnection of massively deployed and dispersed physical devices 

that can be used to monitor and control physical objects in CPS, such as a smart grid or 

smart transportation system, leading to a smart and connected world where vast numbers 

of everyday devices are interconnected [2], [28]. Distinct from IoT, which is directed 

toward consumer-based systems, I-IoT involves the interconnection of intelligent industrial 

devices with control and management platforms, which collectively improve the operational 

efficiency and productivity of industrial systems. Due to the autonomous nature of industrial 
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devices and processes, I-IoT is considered as an important application of IoT. Similarly, 

unlike CPS for critical infrastructures or consumer applications, I-CPS is designed to 

support the manufacturing and industrial production applications.

In I-IoT, the wide variety of industrial devices in an I-CPS, such as machines, assembly 

line monitors, and control devices, are interconnected and form a smart factory or plant. 

Moreover, the I-CPS is a vertical industrial system that consists of both cyber systems 

and physical systems. In this regard, the I-IoT is the integration of communication layers 

of I-CPS, which allow the interconnection of physical industrial objects so that a feasible 

manufacturing process can be enabled.

Additionally, I-IoT can be described as a three layer architecture, as shown in Figure 

1. From the viewpoint of industrial systems, the three tiered architecture consists of the 

application layer, communication layer, and physical layer. The application layer consists of 

the various industrial applications, including smart factories, smart plants, smart supply 

chains, and others. Those smart industrial applications leverage numerous sensors and 

actuators for the purpose of timely monitoring, accurate control, and efficient management. 

The communication layer is the integration of numerous communication networks, such 

as wireless sensor and actuator networks (WSANs), 5G, M2M, SDN, and so on. A 

variety of network techniques will be necessarily to support the interconnection of a 

considerable volume of sensors and actuators in smart industrial applications. Finally, the 

physical layer is composed of these widely deployed physical devices, such as sensors, 

actuators, manufacturing equipment, facility utilities, and other industrial manufacturing and 

automation-related objects.

Figure 2 illustrates I-IoT from a CPS viewpoint. In the physical system (left), the 

various industrial applications, such as PA and FA, follow a production lifecycle (i.e., 

the cycle of prepare, produce, transport, utilize and recycle). During each step in the 

production lifecycle, a significant amount of data will be generated from different devices 

and equipment. Control, networking, and computing systems play important roles in 

the interconnection and integration of components and physical systems, and perform 

monitoring and control, leading to efficient operation of physical systems.

B. I-IoT Applications and Characteristics

The involvement of industrial applications in IoT makes I-IoT an entirely different world, 

in meaning and concept, and calls for a deep understanding of term “industrial”. Thus, we 

first outline some typical industrial applications and illustrate their characteristics. Industrial 

applications cover numerous critical production, manufacturing, and transportation systems, 

including power generation plants, power distribution networks, production facilities and 

factories, and so on.

First, PA is characterized by an industrial process, such as in chemical, oil, and power 

plants, which are autonomous, i.e., they are controlled and managed with little or no 

human intervention. A PA system often integrates sensors, controllers, and actuators for 

information collection, interaction and process actuation. Second, FA leverages robotic 

systems and assembly line machinery to enable automation of the manufacturing process 
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for the improvement of productivity and efficiency. For example, the robotic arms typically 

have similar appearance and actuation to their human counterparts, and are able to perform 

the functions as a human operator, but with greater robustness, productivity, precision and 

efficiency. With the same objectives, assembly lines often decompose complex tasks into 

smaller subtasks and perform step-by-step operations according the designed workflow [29], 

[30], [31].

An example of PA is power system automation (PSA), which aims to conduct automatic 

control, monitoring, and protection of power generation, distribution, and usage systems 

by various instruments and control devices. PSA contains three key components: data 

acquisition, remote monitoring, and control. The data acquisition is used to collect data 

from various sensing and control devices, which can be processed either locally or in a data 

center. Remote monitoring, which is used to monitor the status of the power systems, alerts 

the operation center to abnormal situations and prevents blackouts. Finally, PSA control 

plays the role of operating power systems, controlling substations from the operation center.

There are several key characteristics associated with industrial applications. The first 

characteristic is the cycle time, which means the time required to receive commands from 

the control center and send sensor data to the control center. The cycle time can depend 

on the I-CPS application. For example, the cycle time for PA is on the order of hundreds 

of milliseconds. The second characteristic is the number of nodes, which indicates the size 

of the system (i.e., the number of nodes covered by one controller in a working area). The 

third characteristic, reliability, is characterized as the quality of information transmission, 

and can be measured using the packet error rate (PER). For instance, a PER of 10−9 is 

considered acceptable [31], [32]. In addition, industrial applications are primarily concerned 

with accurate and timely operation and cooperation among numerous sensors and actuators. 

Hence, the performance requirements are significantly different from those for consumer-

oriented IoT applications.

Table II illustrates the requirements of two types of industrial applications based on their 

characteristics. Some examples of performance requirements include latency and reliability 

from the perspective of communication. Latency, as a critical indicator, measures the 

performance of the data delivery based on the delay requirement. The cycle time indicates 

the time required for a process cycle, which varies by the particular industrial scenario. To 

guarantee the timely and accurate operations of I-IoT systems, the network shall have the 

capability to provide communications so that critical information can be delivered within 

the cycle time. Finally, reliability is used to qualify the importance of delivering critical 

information accurately. Highly reliable transmission requirement indicates that information 

(e.g., control messages) shall be transmitted with extremely low error rate.

III. CONTROL SYSTEMS IN I-IOT

The control systems in I-IoT environments play a crucial role in controlling and operating 

the critical infrastructures for factory manufacturing, power generation plants, oil and gas 

distribution systems, and so on. Generally speaking, the control systems can be categorized 

into three types: centralized control, decentralized control, and hierarchical control, based 
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on the overall system structure, as shown in Figures 3, 4 and 5 [33], [34]. Additionally, the 

network provides communication infrastructure for the data exchange between subsystems.

A. Centralized Control

Figure 3 illustrates the structure of a centralized control system, which uses a centralized 

controller to monitor and control a number of subsystems. Each subsystem consists of sets 

of sensors and actuators, denoted as S and A, respectively. The sensors capture the operation 

status and condition and report the information to the centralized controller. The centralized 

controller sends control and command signals to the actuators in each entity in response 

to command and control decisions. The collection of sensing, analysis, and command 

transmission for all entities are carried out in the centralized controller. Supervisory Control 

And Data Acquisition (SCADA) is an example of a centralized control system.

SCADA has been widely used to monitor and control large-scale interconnected systems, 

such as those for water distribution, in oil, gas and electricity industries, etc. [35]. A typical 

SCADA system, as shown in Figure 6, consists of human machine interface (HMI), SCADA 

servers, remote terminal units (RTUs), sensors and actuators, and others [36]. In more detail, 

the HMI enables operators to direct command to the dispersed RTUs. The RTUs are often 

deployed in distributed sites to perform localized processing for monitoring and control. 

SCADA servers conduct information collection, analysis and command dissemination. The 

features of SCADA (i.e., data acquisition and supervisory control) enable the centralized 

monitoring and control on the dispersed assets in distributed locations.

Recall that the emerging IoT integrates various state-of-theart network technologies to 

provide ubiquitous connections for an enormous quantity of devices in a variety of 

application domains. A number of representative network technologies in IoT, such as 5G, 

WiFi, M2M communication, and SDN, among others, can be integrated into the SCADA 

system to provide ubiquitous connections for large numbers of industrial devices. In this 

case, the integration of IoT and SCADA can improve the interoperability of industrial 

applications along with optimized resource allocation [37]. For example, Lu et al. [38] 

presented the integration of IoT with the centralized control system to monitor the critical 

infrastructure of industrial applications, where they illustrated the design of I-IoT from an 

engineering perspective (e.g., power supply, connectivity options, hardware, software and 

data acquisition methodologies). In addition, Alhebshi et al. [39] leveraged IoT to monitor 

and respond to the failures of transmission lines in the smart grid.

Nonetheless, the integration of IoT and traditional SCADA expose industrial control systems 

to additional vulnerabilities. Particular to this issue, Sajid et al. [36] investigated the 

potential exposure of the critical industrial system to security issues in the IoT-cloud 

environment. Possible solutions to address these security vulnerabilities were also studied 

from two aspects. The first is the SCADA system security (e.g., policy management, data 

integrity, and weak communication), and the second is the SCADA system in the IoT-cloud 

environment (data integrity and privacy, data logging, and authentication encryption, etc.). 

In addition, Shahzad et al. [40] leveraged the advanced encryption standard (AES) algorithm 

to encrypt communication and prevent authentication and confidentiality attacks on IoT-

SCADA systems.
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B. Decentralized Control

As shown in Figure 4, the significant difference of decentralized control systems from 

centralized control systems is the distributed individual controllers. Individual controllers are 

often deployed in individual subsystems and perform control to the designated subsystems.

1) Distributed Control: The distributed control system (DCS) is one example of the 

general category of decentralized control systems. DCS is often designed to control the 

industrial process or production in one location, and can include electricity generation 

plants, oil refineries, and factory manufacturing, among others. For production and process 

control, the DCS can oversee multiple subsystems with supervisory level control, and 

controls the processes in subsystems [35]. Specifically, in DCS, controllers are deployed 

to provide specific production and process. Various controllers work together to carry out 

production or processes collaboratively. Such collaboration is enabled by a supervisory 

control loop to connect various localized controllers.

DCS operates a plant or a factory by various functional groups (FGs) that work together to 

accomplish the designated control missions. The different FGs perform segregated tasks and 

functions to improve productivity and efficiency. For example, as shown in a recent work by 

El-Shafei et al. [41], the liquid level process control plays an important role in PA systems. 

The authors implemented a DCS-controlled process station in a simulation environment for 

the study of liquid level process control. In their study, the control performance of DCS was 

compared with different proportional-integral-derivative (PID) controllers.

In addition, the programmable logic controller (PLC) is a system that plays the crucial role 

of providing regulatory control for specific applications. Particularly, PLC interprets signals 

from sensors and generates and transmits control signals to actuators corresponding to the 

targeted set points. As a standalone system, PLC is usually configured especially for specific 

tasks.

2) Integration with Radio Technologies: The DCS is often used in production 

systems for manufacturing control or automation control. At the field level, control systems 

(machine controller, PLC, process controller, etc.) use feedback or feedforward control 

loops to control the process or production at certain set points. In a complex manufacturing 

environment, radio technologies can be helpful to improve the flexibility and agility of the 

DCS. For example, Barenji et al. [42] proposed the design and implementation of DCS 

for manufacturing with the use of radio-frequency identification (RFID). In particular, the 

proposed multi-agent architecture captures the actions and interactions of various agents at 

station and shop sides of the system, including management agent, shop monitoring and 

command agent, station control agent and resource agent, and others. Different monitoring 

and control agents leverage the RFID technology to improve the accuracy and timeliness of 

data acquisition. With the RFID-enabled DCS, the performance of monitoring and control 

can be improved, as well as the flexibility and the agility of industrial systems.
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C. Hierarchical Control

As seen in Figure 5, hierarchical control utilizes a multilayer control structure to deal 

with complex and large industrial systems. The lower level consists of local controllers, 

which directly interact with the subsystems and perform control tasks. The sensed results 

and control results will flow up to higher level for supervisory monitoring or efficient 

coordination for large-scale systems [34].

Different control systems (e.g., SCADA, DCS) serve distinct manufacturing or production 

systems with different control requirements. The integration of different control systems 

can be effective, productive and controllable for dealing with large-scale and complex 

manufacturing. Taking the power generation system as an example, electricity is generated 

from many types of power plants, in which the operation facilities can be controlled by DCS. 

In addition, SCADA can be used to monitor various power plants, and provide a high-level 

coordination and management of the plants. The integration of DCS and SCADA can 

improve the efficiency of electricity generation, transmission and distribution by leveraging 

the benefits of both.

1) Integration of SCADA and DCS: The complexity and scale of industrial systems 

calls for the seamless integration of SCADA and DCS to carry out high-performance 

monitoring and efficient control. To this end, Karnouskos et al. [43] introduced a 

vision and directions for designing the architecture of next-generation SCADA/DCS with 

considerations for information technology trends. This work pointed out that the monitoring, 

management and visualization, scalability, security and other aspects shall be investigated 

in the future complex and collaborative SCADA/DCS ecosystem. In addition, Lü et al. [44] 

proposed a heterogeneous large-scale SCADA/DCS architecture to operate, monitor and 

control large-scale systems (e.g., power plants, gas and air systems).

SCADA systems are also used in food production and can be extended with DCS. 

For instance, Selisteanu et al. [45] proposed a DCS/SCADA architecture to control the 

process of bread production (e.g., wheat grinding and bread production). The hierarchical 

architecture consists of five levels, including field level, data acquisition level, process 

supervision level, coordination level, and production control level.

2) Other Integrations: PLCs are often used as control components in SCADA and DCS 

systems to provide process control. In this case, similar to RTUs, the PLC plays the role 

of interconnection between control center and end-devices (e.g., sensors and actuators). As 

an example of integrating SCADA and PLC, Singh et al. [46] leveraged SCADA and PLC 

to conduct monitoring and control of DC motor speed. The PLC mainly generates control 

signals to adjust motor speed and the SCADA provides remote monitoring. In addition, Endi 

et al. [47] proposed a three-layer PLC/SCADA architecture, which consists of supervisory 

control layer, process control layer, and field instrumentation control layer. The three-layer 

architecture leverages open system technology (e.g., open standards protocol) to enable 

seamless communication between different layers, such that the scalability, compatibility 

and performance of remote control and monitoring can be improved.
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IV. NETWORKING SYSTEMS IN I-IOT

With the support of communication networks, machine devices can collect and exchange 

data amongst themselves to support numerous smart-world systems such as smart 

manufacturing, smart grid, and many others [3], [48], [49]. The communication associated 

with those machine devices is denoted as M2M communication, otherwise referred to as 

machine-type communication, supporting ubiquitous connectivity among machine devices 

without human intervention [50], [51], [52], [53]. Along with the research and development 

of the 3rd Generation Partnership Project (3GPP) on Long-Term Evolution (LTE) and 

Long-Term Evolution Advanced (LTE-A) [54], and the fifth generation wireless network 

(5G), M2M has been identified as a key technology for the future of communication.

Recalling the I-IoT applications and characteristics in Section II-B, I-IoT is expected to 

interconnect a plethora of industrial devices and equipment from numerous previously 

isolated industrial systems. Such interconnections can improve the operability, productivity 

and resource efficiency of industrial applications. From the networking perspective, such 

an interconnection requires the design of high-capacity communication networks, which are 

capable of supporting industrial devices with strict quality of service (QoS) requirements. 

Moreover, the network shall improve its flexibility, scalability and interoperability to support 

connections in numerous isolated industrial systems so that flexible manufacturing can be 

supported [55].

We now investigate some of the representative network technologies mentioned, in the 

context of I-IoT. Specifically, we first introduce a three-dimensional framework, shown 

in Figure 7, from which to investigate the existing research works related to networking 

systems in I-IoT. The framework consists of three orthogonal dimensions (i.e., physical 

systems, information types, and networking requirements). Based on the defined framework, 

we consider the existing research efforts on the state-of-the-art networking technologies (i.e., 

5G, M2M, and SDN) for networking systems in I-IoT. In addition, we review the recent 

progress toward standardization for I-IoT from the perspective of networking.

A. Problem Space of Networking in I-IoT

Figure 7 presents a framework to explore the problem space of networking systems in 

I-IoT. From the dimension of physical systems, we consider two types of system (i.e., PA, 

FA). In the information type dimension, we consider the different categories of information 

transmitted through the network, including control information, monitoring information, 

and others, which includes data sharing between subsystems. In the third dimension, we 

present the network performance requirements, including latency, reliability, and others 

(security, privacy, etc.), for the designated network system in I-IoT. For example, research 

efforts on leveraging 5G to improve the latency performance of real time monitoring of 

the production quality in manufacturing factories can be mapped into cube <Monitoring, 

Factory Automation, Latency> of Figure 7. In the following, we use this three-dimensional 

framework to investigate and map the research efforts on the networking technologies to be 

integrated in I-IoT (i.e., 5G, M2M, and SDN).
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B. Next Generation Wireless Networks for I-IoT

5G, as the next generation wireless network, leverages various techniques (ultra-dense 

network (UDN), massive multiple-input and multiple-output (MIMO) and mmWave, etc.) 

to engender a 1,000-fold improvement in network capacity, a 100-fold increase in user data 

rate, and a 10-fold improvement in end-to-end delay [56], [57], [58]. It is worth noting 

that 5G is designed to satisfy the requirements of a variety of diverse applications that 

may require high network capacity, high throughput, low latency, and many others. Recall 

that typical requirements of I-IoT from the communication network perspective include low 

latency (milliseconds level) and high reliability for short packets (less than 102 Bits) [24]. 

Here, 5G has the potential to assist I-IoT applications, as it is able to provide the desired 

high network capacity and throughput, and low latency. Thus, it is necessary to investigate 

the existing research efforts that adapt and integrate the 5G techniques in I-IoT.

UDN, which leverages the dense deployment of small-cell Base Stations (BSs) to improve 

network capacity, is one of the key enablers of 5G [56]. UDN aims to connect a massive 

number of mobile devices, which can potentially fit the industrial application scenarios (i.e., 

the massively deployed sensors and actuators of I-IoT). Relevant to this aspect, Ding et 
al. [59] investigated the network performance of uplinks in UDN for IoT and pointed out 

several caveats (excessive inter-cell interference, among others).

Massive MIMO systems are equipped with an immense number of transmitter antennas at 

base stations, which could even exceed the number of receiver antennas of the massive 

number of served devices. In addition, mmWave, another important technique in 5G, offers 

much higher bandwidth to improve the communication performance for high throughput 

I-IoT applications (e.g., surveying and inspection). Nonetheless, in I-IoT scenarios, blockage 

is a critical issue that affects data transmission links. Thus, towards resolving this issue, 

Orsino et al. [60] investigated the possibilities of deviceto-device (D2D) communication 

in industrial environments. Specifically, they leveraged D2D on mmWave links to improve 

reliability and reduce latency. This work can be mapped to <Monitoring, FA, Latency> in 

Figure. 7.

Given the huge performance gain supported by massive MIMO (diversity gain, array gain, 

etc.), it can clearly provide connectivity to I-IoT devices. For example, Lee et al. [61] 

illustrated the feasibility of using massive MIMO in I-IoT scenarios and further defined 

several research problems and challenges. Moreover, their analysis and simulation results 

showed the capability of massive MIMO to support a large number of connections from 

I-IoT devices with moderate data rate at low cost. Nonetheless, a number of issues (device 

scheduling, power control, etc.) may be raised when the massive MIMO is used in I-IoT.

In summary, 5G has the potential to satisfy the communication requirements for numerous 

industrial applications. Taking the power grid as an example, Bag et al. [62] adopted 5G to 

improve the performance of protection, control, monitoring, and diagnostics. In their study, 

5G was leveraged to provide high-speed communications between relays of distribution 

lines, which support fault current detection in a cost-efficient manner. This work can be 

mapped to the cube in <Controlling/Monitoring, PA, Latency/Reliability> in Figure. 7.
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C. M2M for I-IoT

Communication in I-IoT is different from the communications for consumers, even in the 

case of consumer IoT. Specifically, I-IoT devices usually collect and transmit data via 

uplinks (UL) [59], a type of communication identified as machine-type communications. 

Indeed, there are some existing research efforts toward the study of M2M communication 

in I-IoT applications [53], [63], [64]. For instance, the co-design of both control system and 

network transmission is one effective approach to leverage M2M for I-IoT. In this direction, 

Lyu et al. [63] proposed the co-design of state estimation and wireless transmission in 5G 

machine-type communication enabled I-IoT systems to improve the accuracy of estimating 

state parameters over resource constrained wireless networks. Their approach consists of 

hierarchical state estimation and two-stage transmission that can adapt to system dynamics. 

By using the three-dimensional framework in Figure 7, this work can be mapped to cube 

<Monitoring, PA, Reliability>.

In addition, Navarro-Ortiz et al. [65] proposed the integration of the standardized low-power 

wide area networks (LoRaWAN) and 4G/5G. This integration leverages the benefits of 

LoRaWAN and the network infrastructure provided by 4G/5G to satisfy the requirements of 

massive machine-type communications (e.g., low power, long range, and low bandwidth). 

Compared to the LTE-WLAN integration, the integration of LoRaWAN and 4G/5G can 

satisfy the requirements of M2M for I-IoT. In addition, the LoRaWAN and 4G/5G 

integration requires minimal changes to the existing mobile networks, needing only the 

modification of the LoRaWAN gateway (i.e., modifying gateways to eNodeBs to the 4G/5G 

EPC and implementing the eNodeB protocol stack). This was tested as a proof-of-concept in 

an experimental testbed with promising results.

D. SDN for I-IoT

Existing network infrastructures are often statically deployed and application-specific, 

unable to support increasing numbers and types of industrial applications with diversified 

requirements. In addition, it is not cost-effective and efficient to deploy dedicated network 

infrastructures for massive industrial applications. This calls for a cost-effective and 

efficient network infrastructure that can enable dynamic configuration and interoperability 

for different industrial applications [66]. SDN, as a networking technique, can play a 

critical role in enabling the scalability and programmability of networks while coping with 

increasingly diverse and complex networking functions [67]. The key concept of SDN is to 

separate the control plane (algorithms, protocols, etc.) and the data plane (packet routing, 

forwarding, etc.). In this way, the implementation and configuration of network controls for 

individual applications can be deployed, modified, and updated.

Several efforts have been made to adopt SDN for I-IoT. For example, Henneke et al. [68] 

reviewed the applicability of SDN in networks for industrial systems and pointed out that 

the interoperability enabled by SDN could improve the network performance to satisfy the 

I-IoT requirements in heterogeneous and complex industrial systems. In particular, they 

identified the network challenges for industrial systems from the network perspectives (e.g., 

heterogeneity, QoS, reliability, and security, among others).
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In addition, toward implementing SDN in I-IoT, Baddeley et al. [69] evaluated the 

performance of light-weight SDN with the layer-2 slicing mechanism defined in the IEEE 

802.15.4 networks for I-IoT scenarios. In this case, SDN control slices are created for the 

controlling traffic, which prevents interference with network traffic. In addition, the recently 

standardized IEEE 802.15.4 – 2015 Time Scheduled Channel Hopping (TSCH) improved 

reliability and latency of communication paths in the lossy industrial environment [70].

Furthermore, leveraging SDN has been demonstrated to improve network performance with 

different delay requirements in heterogeneous I-IoT settings. For example, Li et al. [71] 

proposed an adaptive transmission architecture and algorithms, which adapts to different 

traffic flows. Particularly, an adaptive routing scheme was proposed to compute optimal 

routes for non-urgent and urgent data streams. This work can be mapped to <Control, 

PA/FA, Reliability> in Figure 7.

As a typical application in the utility industry, the smart gird will integrate a variety 

of energy resources, including traditional energy, renewable energy, electrical vehicles, 

and others [3]. The complex energy generation integration requires frequent information 

exchange, which poses a challenge to the traditional communication infrastructure. In 

response, Al-Rubaye et al. [72] utilized the SDN platform to improve the resiliency of 

power grid communications for enabling real-time monitoring and controlling capabilities. 

The proposed SDN platform includes an infrastructure layer, control layer, and application 

layer. The SDN controller plays a critical role in carrying out optimization and control. For 

instance, the SDN controller can reschedule traffic flows when failures occur. This work 

maps to <Control, PA/FA, Reliability> in Figure. 7.

SDN can be further integrated with network virtualization (NV) to provide service to 

I-IoT [73], [74]. For instance, Bizanis et al. [73] surveyed techniques in radio access 

networks (RANs) and core networks (CNs). The technique in RAN first uses network 

function virtualization (NFV) to effectively manage network resources in 5G [75]. Then, 

the concept of SDN is leveraged to create virtual network “slices” over the same physical 

network. The virtual network “slices” support different wireless technologies and standards 

to improve interoperability in heterogeneous networks. Towards the integration of SDN and 

NV for I-IoT, Ma et al. [74] proposed an SDN and NV integrated network architecture 

for the industrial environment. Their integrated architecture consists of software-defined 

infrastructure (SDI), virtualized network, control plane management, and network function 

virtualization in four different layers. The architecture was shown to improve the efficiency 

of network resource utilization, reduce the complexity of network design, and satisfy the 

requirements of various production processes. In addition, as a use case in the embryonic 

stage of I-IoT, Luo et al. [76] used SDN and NFV to improve the energy efficiency of 

industrial wireless sensor networks. In particular, the SDN controller was introduced to 

control and optimize the topology of sensor networks. The NFV was leveraged to enable 

functional replaceability of industrial devices.

E. Standardization Progress

Standardization can, in general, help progress the understanding, development, and 

resiliency of I-IoT. A number of standardization bodies across industry and academia, along 
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with various federations, including the Industrial Internet Consortium (IIC), The Institute 

of Electrical and Electronics Engineers (IEEE), and National Institute of Standards and 

Technology (NIST), have undertaken standardization efforts for I-IoT from a variety of 

perspectives. For example, the IIC released white papers and technical reports that provide 

guidance on understanding architectures, techniques, security and testbeds for I-IoT [77], 

[78], [79]. In addition, NIST released standards regarding industrial wireless systems and 

industrial control systems, among others, which play critical roles in I-IoT [35], [80]. 

For example, the recent standardization progress from NIST provides guidance for the 

deployment of wireless communication in various industrial plants and factories to improve 

production and reduce cost [80]. Also, IIC has specified factory and plant operations, control 

systems and backhaul networks for the wireless communication ecosystem [79].

In addition, IEEE has focused on the standardization progress of the Tactile Internet (i.e., 

IEEE 1918.1) by the Tactile Internet working group [81]. Notice that one application of 

the Tactile Internet is industrial manufacturing, denoted as Industrial-Tactile IoT [82]. IIC 

has also proposed a reference architecture (i.e., industrial Internet reference architecture 

(IIRA)) for general industrial applications in I-IoT [78]. In more detail, the IIRA is an 

open architecture for I-IoT, which aims to improve the interoperability and guide the 

application of technologies and standard development. The IIRA specifies the architecture 

framework, viewpoints from business, usage, function, implementation, and concerns. In 

addition, the IIC has proposed the edge computing architecture, viewpoints, and use cases 

for I-IoT, which aim to meet the high performance requirements of industrial applications 

[77]. Moreover, IIC investigated flexible manufacturing testbeds for automation and control 

systems in I-IoT ecosystems [79].

F. Summary

We develop the taxonomy to outline the broader research roadmap for networking in Figure 

7, where existing research works can be mapped into individual cubes (i.e., research areas). 

The examples include <Control, FA, Latency> (e.g., [60], [71]), <Monitoring, FA, Latency> 

(e.g., [60], [68], [71]), <Control, PA, Latency> (e.g., [66], [71]), <Monitoring, PA, Latency> 

(e.g., [68], [69], [71]), <Monitoring, FA, Reliability> (e.g., [60], [61], [68]), <Monitoring, 

PA, Reliability> (e.g., [68], [69], [72]), and <Monitoring, PA, Others> (“Others” represents 

energy efficiency) (e.g., [63]).

It is worth noting that there are a number of cubes that have not been well explored. The 

example include <Others, FA, Latency> (e.g., “Others” can be reporting data), <Others, PA, 

Latency>, <Control, FA, Reliability>, <Control, PA, Reliability>, <Control, PA, Others>, 

<Monitoring, PA, Others> (e.g., “Others” can represents energy efficiency, security, etc.). To 

fill the gap, we outline several research challenges, which need extensive research efforts 

in Section VI-A2, including network deployment, resource scheduling and security and 

privacy.
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V. COMPUTING SYSTEMS IN I-IOT

In this section, we first review the computing system in I-IoT and then investigate cloud 

computing and hybrid cloud and edge based computing architectures for I-IoT. Further, we 

investigate big data analysis in I-IoT and the necessary computing resources.

A. Overview

From the computing infrastructure perspective, as machine devices have limited capacity 

in terms of computation and storage, the deployment of computing infrastructure that can 

provide big data computing and storage for machine devices and support the computing 

needs for smart-world systems, including smart manufacturing systems, is paramount. 

Notice that a centralized architecture limits the applicability of cloud computing to machine 

devices for two reasons. First, the significant volume of data generated from vast numbers 

of machine devices in disparate geographical locations will be transmitted to the centralized 

cloud, which could overload the network infrastructure. Second, the centralized cloud is 

often located far away from machine devices, which could cause high latency during 

data transmission. For some smart-world systems (e.g., I-IoT), such a latency becomes 

unacceptable for data analysis and control decision making [83], [84].

Distinct from cloud computing, edge computing tends to leverage the computing and 

storage capabilities from edge devices (e.g., computing edge nodes). By doing this, edge 

computing has a great potential to support the computing needs of smart-world systems 

such as I-IoT. As edge devices are commonly deployed to the locations near to machine 

devices, some challenges issues (e.g., network overload, high latency) can be addressed [85], 

[86], [87]. Nonetheless, some challenges remain while leveraging edge computing in smart-

world systems (e.g., I-IoT). Some challenges include system management, synchronization, 

security and privacy, and integration with other network technologies, among others [85], 

[88]. Indeed, a variety of relevant research efforts have been conducted in this direction. For 

example, Li et al. [71] addressed the issue of integrating SDN and edge computing in I-IoT, 

and designed an adaptive transmission architecture. Additionally, Tang et al. [89] designed 

a mobile cloud-based scheduling scheme for I-IoT and investigated the task scheduling 

problem. In their problem formalization, the energy consumption optimization, as well 

as a number of factors such as task dependency and constraints such as response time 

deadline are considered. To solve the problem, genetic algorithms were designed and their 

effectiveness validated.

We use Figure 8 and Figure 9 to illustrate the structures of cloud computing-based 

architectures and hybrid cloud and edge computing-based architectures for I-IoT, 

respectively. As shown in Figure 8, the data generated from components in the system will 

be gathered and transmitted to the cloud for processing, analysis and storage. In Figure 9, 

we can see that both edge devices and cloud computing facilities will be leveraged to handle 

data in a multi-tier fashion.

In addition, we propose a three-dimensional framework to explore the problem space 

of investigating computing systems in I-IoT as shown in Figure 10. The framework 

consists of three dimensions, including computing tasks, physical systems, and computing 
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requirements. Particularly, the computing resources are utilized for several computing tasks 

(i.e., storage, transmission and analysis). The FA and PA are typical examples in physical 

systems. The computing requirements are QoS-related metrics (latency, reliability, etc.) and 

others (security, etc.). With the proposed three-dimensional framework, we can investigate 

existing research efforts by mapping them into the specific cubes shown in the figure.

B. Cloud Computing

Leveraging computing resources from the cloud to aid industrial systems has received 

significant attention, and is the logical extension of cloud-based services in commercial 

industries. Applications include cloud manufacturing, among others [83], [84], [90], [91]. 

For example, Xu [90] presented the specifications of cloud computing and the adoption 

of cloud computing for manufacturing businesses. The cloud computing system provides 

computing services (computing, storage, etc.) from cloud resource pools to particular 

manufacturing tasks. Cloud computing has the advantages of high reliability, scalability, 

and interoperability, which can improve the efficiency of computing resource utilization in 

I-IoT. In addition, Tao et al. [83] presented a five-layer architecture of perception or access 

manufacturing resources for adopting cloud computing in manufacturing.

C. Edge Computing

In contrast, edge computing leverages computing resources from network edge devices. 

Compared to cloud computing, edge computing can provide computing services with much 

better latency performance, as they are usually located close to end-devices [88], [92]. 

Concerning general edge computing, Rehman et al. [93] proposed the concentric computing 

model (CCM). The CCM deploys the multi-granular interoperable computing devices and 

systems in the edge layer of a multilayer architecture. The design of the CCM considers the 

performance of devices and systems, locations of sensors, devices, servers and data centers, 

as well as the performance requirements of big data analysis applications, such as bandwidth 

utilization, latency, resource efficiency, etc. In addition, the challenges of real-time data 

analytics and streaming, data integration and extraction, and security and privacy were 

discussed. This work can be mapped to cube <Analysis, PA/FA, QoS> shown in Figure 10.

Furthermore, Chekired et al. [94] proposed a multi-tier edge computing architecture to 

reduce computation and communication latency. In particular, data was divided into two 

categories (i.e., high priority and low priority) to improve the efficiency of the data 

computation and transmission. Experiments were conducted to evaluate the effectiveness 

of two-tier, three-tier, and flat edge computing architectures. The results demonstrate 

improved performance in their multi-tier edge computing architecture with respect to 

latency, computational capacity, and other metrics with different workloads. This work can 

be mapped to the <Transmission, FA, QoS> space shown in Figure 10.

D. Integration of Cloud and Edge Computing

Regarding integration of cloud and edge computing, several research efforts have made 

strides, demonstrating improvements with respect to latency, reliability, and resource 

efficiency in I-IoT systems [95], [96], [97]. For example, Shi et al. [95] proposed a 

joint edge-cloud computing architecture to improve latency performance in I-IoT. In 
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particular, they investigated a load balancing strategy among various edge nodes and cloud 

servers, with the optimal strategy being derived through a proposed genetic algorithm. The 

evaluation results demonstrated that, with the increase in task-intensity, the joint edge-cloud 

computing architecture could outperform disjointed edge computing and cloud computing 

architectures with respect to delay performance. In addition, they leveraged reallocation and 

retransmission mechanisms to improve the reliability of the production system in cases of 

node failures. This work can be mapped into <Transmission, PA, QoS> in Figure 10.

In addition, Kuar et al. [96] investigated an edge-cloud integration to support big data 

streaming services in I-IoT. The interplay of cloud and edge has the benefits of energy 

efficiency, latency and rich computing resources. Besides, the integration of SDN, as 

middleware, introduces an architecture of three decoupled planes (i.e., data plane, control 

plane, and application plane). Further investigating flow scheduling in the control plane, 

they formalized an energy efficiency-bandwidth tradeoff problem and an energy efficiency-

latency tradeoff problem to be solved via multi-objective optimization. Then, they proposed 

a dynamic flow scheduling and routing scheme to compute the optimal routing solutions, 

which could adapt to the categories of real-time workflows (e.g., batch processing and 

stream processing). In doing so, the energy efficiency of the integrated edge-cloud 

computing system could be improved. This work can be mapped into cube <Transmission, 

PA/FA, QoS> in Figure 10.

E. Big Data Analysis

Big data in I-IoT refers to the huge volume, velocity, veracity, etc. of data collected from 

substantial volume of industrial sensors, actuators and devices. Enabling big data sharing 

is important and the key techniques include the design trading platforms and algorithms 

[98], [99]. From a data analytics point of view, the available computing resources play a 

fundamental role in massive and complex data analysis. Particularly, I-IoT envisions the 

situational awareness, diagnosis, self-healing and prediction of industrial processes, which in 

turn requires powerful data analysis capabilities [100], [101].

The big data generated by I-IoT systems is heterogeneous in size, volume, velocity, 

delay and reliability requirements. Thus, it is critical to leverage both time-efficient edge 

computing and computationally powerful cloud computing to process, store, and retrieve 

data based on its performance requirements (i.e., time-sensitive and non-time-sensitive). To 

this end, Fu et al. [97] proposed a framework that consists of five entities (I-IoT, edge 

server, proxy server, cloud server, and data users). In their architecture, the edge server is 

deployed to extracts and processes data that is time-sensitive data (e.g., control information) 

so that timely control decisions can be enabled. The proxy server encrypts the data, and 

the encrypted data and index structure are outsourced to the cloud. The cloud server is also 

used for data storage and interacting with data users. This work can be mapped to <Storage, 

PA/FA, QoS> in Figure 10.

Other research efforts have leveraged big data analysis to improve the efficiency of I-

IoT. For example, in the monitoring of large-scale industrial systems, we can preprocess 

collected data in edge devices and upload only critical fault reports and important 

information for cloud storage and control decisions. In this direction, Oyekanlu [102] 
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proposed a light-weight database with a small-size dictionary stored from the fully 

functional monitored machines (motor, turbines, etc.) on edge devices to improve the 

system efficiency. The edge devices are used to compute and analyze the differences 

between the machine signals and reference signals, and send only the alert signals and 

requisite recommendations to the operation center. This work can be mapped into cube 

<Transmission, FA, Others> in Figure 10.

F. Summary

We develop the taxonomy to outline the broader research roadmap for computing in Figure 

10, where existing research works can be mapped into individual cubes (i.e., research areas). 

Examples include <Storage, FA, QoS> (e.g., [95]), <Transmission, FA, QoS> (e.g., [94], 

[95], [96]), <Analysis, FA, QoS> (e.g., [83], [90], [93]), <Storage, PA, QoS> (e.g., [97]), 

<Transmission, PA, QoS> (e.g., [95], [96]), <Analysis, PA, QoS> (e.g., [93]), <Storage, 

FA, Others> (e.g., [97]), <Transmission, FA, Others> (e.g., [102]). Notice that the element 

“Others” can represent resource efficiency, security, and others.

There are a number of cubes that have not been well explored. The example include 

<Analysis, FA, Others>, <Storage, PA, Others>, <Transmission, PA, Others>, <Analysis, 

PA, Others>, and others. To fill the gap, we outline several research challenges, which need 

extensive research efforts in Section VI-A3, including deployment, seamless integration and 

computing resource management.

VI. CHALLENGES AND FUTURE DIRECTIONS

From the above investigation of state-of-the-art technologies for control, networking and 

computing systems for I-IoT, we now consider the open research challenges and necessary 

future research directions that are, as of yet, uninvestigated. We first present the challenges 

and future directions of each of the three types of systems (control, networking, and 

computing). We then present challenges to and future directions on adopting machine 

learning techniques to improve control, networking and computing systems in I-IoT.

A. Control, Networking and Computing Systems in I-IoT

1) Control: Recall that industrial control systems can be categorized into centralized, 

distributed, and hierarchical control systems. In I-IoT, a critical mission is to realize self-

awareness, self-diagnosis and self-healing in control systems [44], [100], [101], [103]. With 

the enabling of self-awareness, the control system is cognizant of the health condition of 

manufacturing system and its production quality. With the capacity for self-diagnosis and 

self-healing, failures and faults can be detected and classified, and corresponding healing 

schemes can be implemented. Moreover, the requirements for resilience in industrial control 

systems, which face to multidimensional disturbances, raise additional challenges [104], 

[105].

In I-IoT systems, the computing platforms collect data from industrial devices and perform 

data analysis. These control systems operate the industrial systems, including the sensors, 

actuators and controllers. As can be seen in Figure 11a, control objectives are the enabling 

of awareness, diagnosis, healing and prediction for industrial control systems. In addition, as 
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shown in Figure 11b, the performance objectives are the realization of efficient management, 

effective utilization and timely maintenance.

As barriers to enabling self-awareness, self-diagnosis and self-healing in industrial 

control systems, significant overhead exists for data collection, processing, analysis and 

transmission. For example, continuous monitoring on the condition and health status of 

large-scale industrial systems will generate a significant volume data [106], [107]. The data 

analysis requires high-capacity computing resources (e.g., cloud computing). Moreover, the 

timely analysis and processing of the massive data is also important to the time-sensitive 

industrial systems.

Extracting useful information from big industrial data, such as hidden patterns and 

correlations, can assist control systems in making better decisions. One way to effectively 

process and analyze big data is to leverage predictive learning algorithms, such as 

supervised, unsupervised, semi-supervised and reinforcement learning, which are able to 

find and explore the hidden structure and correlations of the industrial data [108]. For 

example, Zhou et al. [109] designed an intelligence-based control strategy in a DCS-based 

grinding system. In their proposed system, set-point optimization module, soft-sensor 

module, and overload diagnosis and adjustment module are included. The system adjusts 

the set-points in the cases of boundary changes and overload conditions dynamically.

Towards the performance objectives of control systems, efficient management incurs close 

coordination in every step of the manufacturing lifecycle (i.e., prepare, produce, transport, 

utilize and recycle). For example, the information exchange between manufacturing lifecycle 

steps can increase its efficiency by balancing demand and supply. In addition, effective 

utilization means the full use of the production resources, maximizing productivity 

and minimizing time and resources wasted. Also, the timely maintenance ensures the 

health of critical infrastructure such that potential damage or risks can be avoided or 

minimized. Visualization, virtualization and interoperability are key factors to enabling 

efficient management, effective utilization and timely maintenance [43]. This visualization 

provides better presentation and understanding of the infrastructure and assists operators in 

making optimal decisions. Notice that the immense quantity of devices and equipment with 

different configurations will increase the complexity of control in terms of observability and 

controllability.

To satisfy the requirement of resilience on industrial control systems, we shall first 

understand the resilience of the I-IoT system. However, resilience is a multidimensional 

property that requires understanding of reactions in the control system to malfunctions, 

physical component failure, cyberattacks, and so on. The resilience in industrial control 

systems indicates the ability to survive disturbances [110], [111], [112], [113], [114]. 

Moreover, the resilience can be measured by the time of reaction for maintaining 

system functionality following the disturbances. For instance, Arghandeh et al. [110] 

presented a study to define the cyber-physical resilience for the power system. They 

proposed a framework to assess the resilience of the power system, including system 

identification, vulnerability analysis, and resilience operations. With the understanding of 

various disturbances, corresponding mechanisms can be developed to prevent and react 
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to disturbances. Likewise, to improve the resilience of control systems, Yuan et al. [115] 

leveraged game theory mechanisms to design a control method resilient to cyber-attacks 

(e.g., denial-of-service (DoS) attacks).

2) Networking: Adopting emerging and low-cost wireless networks in industrial 

manufacturing and processing systems affords multi-fold benefits. Specifically, it is difficult 

or infeasible to deploy wired systems in some working environments, such as those with 

high temperature, extreme locations, and high mobility conditions. In addition, network 

infrastructures in working environments incur installation and maintenance costs. The 

significant progress made in wireless network technologies for consumers has great potential 

for improving network performance and reducing the inherent deployment and maintenance 

costs, especially in specialized industrial environments.

Nonetheless, designing and deploying wireless communication technologies in the industrial 

environment is distinct from that of the consumer environment. Generally speaking, 

the characteristics of networking in industrial systems are small data volume, short 

communication distance and low mobility. The mobility patterns and traffic patterns shall 

be considered in the design of wireless networks for industrial systems. In the following, 

we illustrate the challenges from the perspectives of network deployment and routing 

optimization as examples.

Network Deployment.: The problem of network deployment is to identify the location 

of network nodes and access points (AP) with consideration for the densification, 

distribution, and mobility, of users (i.e., mostly machines) among others. To improve the 

delay performance and reliability of the wireless network, node placement shall consider 

different characteristics of industrial systems such as the wireless channel, including fading, 

multipath, and performance requirements. In particular, the mobility patterns of users in 

industrial networks are mostly static or near-static. In addition, the mobility of users 

is typically limited and regular (e.g., robotic arms in an assembly line). In addition, as 

mentioned above, traffic is characterized by small packets, small communication distance, 

etc.

To understand the network deployment problem, we show three typical deployment 

scenarios in industrial plants, which consist of wireless access points, sensors, and actuators 

in Figure 12. The first deployment scenario in Figure 12a indicates industrial processes that 

require both sensors and a single actuator. The second deployment scenario, shown in Figure 

12b, indicates large numbers of both sensors and actuators involved in processing complex 

and comprehensive tasks. Furthermore, the third deployment scenario, shown in Figure 12c, 

illustrates information collection only (i.e., deploying a large number of sensors to collect 

data from different aspects of the industrial process, without actuation).

To design effective and efficient deployment schemes, the mobility and network traffic 

patterns of machine devices in I-IoT shall be understood, and all possible mobility scenarios 

should be covered. Then, the node placement problems can be reduced to optimization 

problems with the consideration of the mobility patterns and performance requirements 

[116], [117]. For example, Li et al. [116] studied the localization of both static and mobile 
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nodes with the consideration of interference and coverage in the industrial wireless network. 

The node placement was formalized as a coverage problem and solved through the proposed 

double-layer Tabu search.

Resource Scheduling.: The problem of resource scheduling plays a critical role in network 

performance and information delivery. Traffic scheduling schemes can manage a large 

amount of traffic with the consideration of system performance metrics and requirements, 

including latency, utilization of network resources, etc. In I-IoT, latency is a critical 

requirement, as most data and control information are time-sensitive. As a result, delayed 

delivery or lost communication may lead to reduced productivity, low efficiency, system 

failure and safety issues. Real-time information delivery requires that each traffic flow 

shall be delivered with latency guarantee requirements. Designing appropriate scheduling 

schemes to meet these performance requirements is challenging as I-IoT involves a massive 

number of devices (sensors, actuators, etc.) and those devices have diverse performance 

requirements.

Commonly, resource scheduling algorithms are devoted to solving channel contention or 

transmission conflicts. Channel contention causes transmission delay, because all channels 

are assigned to other transmissions, while transmission conflict indicates that multiple 

transmissions contend over a shared resource. There existing some research efforts toward 

conducted resource optimization via scheduling in I-IoT [104], [118], [119]. For instance, 

to solve the channel contention problem, Narayanan et al. [119] proposed a link selection 

mechanism to reduce the channel contention caused by unfair opportunities for channel 

access. Each gateway performs the link selection mechanism based on the multinomial 

probability to select a fixed link schedule. With the link selection mechanism, the data 

transmission in the network is maximized and channel contention is minimized. To address 

the transmission conflict delay, Wu et al. [104] proposed a conflict aware routing (CAR) 

algorithm for industrial networks. Likewise, Xia et al. [120] proposed the path selection 

algorithm (PSA) to improve the scheduling in industrial networks with enabled narrow band 

Internet of Things (NB-IoT) modules on sensor nodes.

Security and Privacy.: Ensuring security and privacy of the I-IoT system is a challenging 

task. Considering that the I-IoT system integrates information communication technologies 

to enable strong interconnection between industrial devices, the protection of the I-IoT 

system from cyber-attacks is crucial. Moreover, cyber-attacks on the I-IoT system may 

cause not only information delay and uncertainty, but also safety issues for humans, the 

environment, and the machines, as well. In addition, the data collected during industrial 

manufacturing and production is valuable and privacy-sensitive, which makes I-IoT systems 

valuable targets for attackers [2], [14], [105], [121], [122], [123], [124], [125], [126].

To investigate the challenges in I-IoT, Sadeghi et al. [105] reviewed the security and privacy 

challenges from three perspectives: attacks on I-IoT systems, attack surfaces, and security 

goals and requirements. To protect I-IoT systems from attacks, they proposed solutions 

to protect the industrial devices, including implementing security architectures, integrity 

verification and secure IoT device management.
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As security and privacy of the I-IoT is extremely important, we outline the research 

directions to protect the security and privacy of I-IoT systems. First, we shall 

understand security features (e.g., confidentiality, integrity, availability, identification and 

authentication, privacy and trust, among others) in the context of I-IoT [2]. Then, towards 

ensuring security of I-IoT, we shall identify and understand security challenges (e.g., node 

capture attacks, false data injection attacks, DoS attacks, phishing attack, and so on). 

Towards ensuring data privacy in I-IoT, we shall understand the different steps of data 

processing (e.g., data collection, data aggregation, and data analysis) in I-IoT. Finally, with 

an understanding of the security and privacy challenges in I-IoT, corresponding defensive 

countermeasures and privacy-preserving mechanisms shall be developed to ensure effective 

security and privacy.

3) Computing: Advancements in computing technologies enable the handling of 

complex and large-volume industrial data in a timely and efficient manner [85], [88]. Cloud 

computing, which provides significant computing capabilities, has been adopted in a number 

of industrial systems, such as manufacturing, state monitoring [36], [127], [128]. Recall 

that centralized cloud computing will introduce delay to critical data transmissions, as it 

is often located far away and leads to heavy data traffic to reach the central cloud. In 

contrast, edge computing, which leverages computing resources from a number of edge 

servers and gateways, migrates computation tasks to the network edge. Such a distributed 

structure affords multi-fold benefits, including low transmission delay due to the smaller 

distance and low congestion at the remote cloud. Nonetheless, several challenges are raised 

from adopting integrated computing platforms into industrial systems, such as the seamless 

integration of the edge computing with I-IoT, and resource management and optimization in 

the distributed edge nodes, which will be further discussed.

Deployment.: One interesting problem is the issue of optimally deploying distributed edge 

nodes and allocating computing resources to individual machine devices. Given a number of 

edge nodes that are available in the system, each having different computing capabilities, it 

is critical to identify the location of edge nodes so that the overall system performance can 

be maximized. Additionally, given a number of machine devices associated with tasks that 

may have a variety of latency and reliability requirements, it is important to design effective 

schemes that are capable of carrying out the optimal assignment of edge nodes to individual 

machine devices [64]. Such optimal assignment needs to be adaptive to the dynamic 

environment of smart manufacturing systems. The edge nodes can perform computing 

tasks for a manufacturing system, such as monitoring and control of physical components, 

carrying out forecast based on measurements, identifying the root cause of failures and the 

bottleneck of deployed communication network, etc. It is worth noting that, as latency and 

reliability are essential requirements in manufacturing systems, the performance metrics that 

shall be considered include the time taken for the computing infrastructure to accomplish the 

demanded tasks and the accuracy of decisions. Other metrics to be considered include the 

energy consumption on machine devices and edge nodes, as well the performance gain of 

the manufacturing system.
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Seamless Integration.: As low latency is one critical requirement in industrial services, 

the adoption of edge computing is promising. Nonetheless, it is challenging to seamlessly 

integrate edge computing and I-IoT. The edge nodes are usually light-weight and generally 

have low computing capacity, making them not well suited to process the massive data 

generated by the monitoring and control from I-IoT devices. In addition, the dynamic nature 

of edge servers and gateways usually provide unstable computing capabilities, which may 

fail to satisfy the requirements of computing services from I-IoT. To address the seamless 

integration challenges, leveraging the hybrid cloud-edge computing or multi-tier edge 

computing hierarchy, which integrates high capacity cloud computing and close proximity 

edge nodes, is promising for improving the stability and latency of computing platforms.

Nonetheless, there remain several challenges in the edge computing paradigm. Examples 

include programming for edge computing, edge device naming in networks, and others 

[88], [85]. In cloud computing infrastructures, the cloud platform supports various-purpose 

programs, typically using one programming language to allocate resources to programs. 

In contrast, in edge computing, the heterogeneous nature introduces difficulties, as the 

programming interfaces of deployed edge devices may not be uniform. In addition, as the 

mobility and availability of edge nodes are highly dynamic, the traditional device naming 

mechanisms face new challenges.

In Figure 13, we illustrate an example of adopting multi-tier edge and hybrid cloud and 

edge computing architecture. As can be seen in the figure, the computing resources at the 

edge (e.g., mobiles, edge nodes, and others) can help to process the data from industrial 

facilities. Leveraging the computing resources at close-to-end devices, the multi-tier edge 

computing architecture can effectively reduce the latency of data processing. In addition, the 

multi-tier architecture can improve the computing efficiency by offloading partial computing 

tasks from and to the cloud. In this way, high priority and delay sensitive tasks can be 

processed locally, and low priority and delay tolerant tasks can be processed in the cloud. 

The integration of multi-tier edge and I-IoT or hybrid cloud and edge computing architecture 

and I-IoT demands significant in-depth study and practical examination as well.

Computing Resource Management.: Efficient and effective resource allocation and 

management with regard to strict latency requirements in I-IoT systems can be challenging. 

One way to efficiently manage distributed computing resource is to design and implement 

distributed optimization algorithms [129], [130], [131]. For example, Sardellitti et al. [131] 

optimized the joint radio and computing resource allocation with the energy and latency 

constraints. Other ways to manage distributed computing resources include economic-driven 

resource allocation schemes, which employ economic mechanisms to determine the value 

of resources to providers and customers. Economic-driven schemes, such as price-based 

schemes [132] and auction-based edge resource allocation [133], [134], have been adopted 

to offload computing tasks to edge nodes. The objective of economic-driven schemes is to 

obtain overall maximum revenue for the edge computing resource providers. For example, 

in the context of I-IoT, Sun et al. [18] proposed a double auction scheme to determine 

the price for edge computing resources between the edge server and I-IoT mobile devices. 

The scheme considers the system efficiency of mobile edge computing (i.e., number of 

successful trades) as the optimization objective.
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4) Research Directions of Control, Networking and Computing for I-IoT: In the 

following, we present the research needs and future directions of control, networking and 

computing for I-IoT, including co-design, intelligent data management and analysis, and 

theoretical foundation, model, and testbed.

• Co-design of Control, Networking and Computing: I-IoT is devoted to 

seamlessly interconnecting complex industrial systems and improving the 

reliability, efficiency and productivity of industrial systems. Based on the 

previous sections, we have identified control, networking and computing as the 

three key systems in I-IoT. Having considered these three systems in detail, it is 

clear from their interconnected nature that design solely on one aspect without 

considering others is not sufficient to make I-IoT implementation effective. Thus, 

the integrated design of control, networking, and computing is an important and 

promising direction for future research.

• Intelligent Data Management and Analysis: As the applications of I-IoT grow in 

both size and number, the generated data greatly increases in both complexity 

and variety. The performance requirements raise momentous challenges on 

existing control systems, communication networks, and computing platforms 

alike. Both laborious data handling and strict requirements pose difficulties on 

data management and analysis. As a solution, big data-driven analytics has 

the potential to transfer the complex datasets to accurate knowledge. Thus, 

leveraging the intelligent data management and analysis has the potential to 

improve the performance of control, networking and computing in I-IoT.

• Theoretical Foundation, Model and Testbed: Further research efforts shall 

necessarily focus on the design, implementation, testing and evaluation 

of various control, networking, and computing techniques for I-IoT. The 

theoretical foundation and models for the control, networking and computing 

in I-IoT provides further understanding more effective implementations for 

IoT in general. With the established theoretical foundation, researchers, 

engineers, business people, etc. can work together to address potential 

challenges. Moreover, real-world integrated simulation platforms and testbeds 

that are capable of implementing I-IoT systems are necessary to evaluate the 

performance of various techniques before widespread deployment can reliably 

take place.

B. Machine Learning for I-IoT

In the following, we first provide an overview of machine learning for IoT. We then identify 

several recent research efforts on machine learning. Furthermore, we use an example to 

illustrate the use machine learning for improving network performance in IoT. Finally, we 

present research directions on applying machine learning in I-IoT.

1) Overview: Recall the challenges described previously to control, networking and 

computing systems in I-IoT. Command and control on large-scale heterogeneous industrial 

systems is both complex and challenging. Necessarily, the computing platform is expected 

to be quite powerful and efficient in order to process, analyze and store the big industrial 
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data in a timely manner. Furthermore, networking systems shall be high in capacity and 

throughput, as well as provide high reliability and low latency of data transmission.

Machine learning has demonstrated great use in leveraging algorithms and mathematical 

models to gain the insight and intelligence of numerous systems, including image and video 

recognition, natural language and text analysis, robotics, autonomous vehicles, and others 

[135], [136], [137], [138], [139], [140], [141]. The same potential can be employed to aid 

in the design and operation of I-IoT systems, both holistically and individually in control, 

networking and computing systems [136], [141], [142], [143], [144]. Generally speaking, 

machine learning techniques can be categorized as supervised learning (SL), unsupervised 

learning (USL), and reinforcement learning (RL), with the tasks of machine learning are 

generalized to classification, prediction and decision. One significant advantage of machine 

learning is its capability to deal with complex and abstract problems, sometimes in a 

near-human or even super-human fashion.

In addition, the fields of big data analytics, cloud and edge computing, SDN, and other 

relevant technologies provide ripe opportunities for the application of machine learning in 

I-IoT system with the potential to optimize and improve performance and manageability. 

With machine learning, control, networking and computing in I-IoT systems can become 

cognizant and dynamic, implementing agile reconfiguration and optimization processes 

based on measured data. As a result, a better service can be enabled by learning the 

I-IoT system environment and by the continuous adaptation of I-IoT system parameters as 

the observed conditions evolve. Despite these achievements, the use of machine learning 

in I-IoT systems faces significant challenges and shall take into account the exceptional 

requirements for dependability, security, safety, accuracy, and real-time responsiveness that 

control systems, networks and computing platforms require. As I-IoT system are large, 

complex and multidisciplinary systems, how to integrate machine learning into the various 

components remains challenging and unresolved.

2) Some Relevant Research in Machine Learning: A variety of research 

investigations already exist towards utilizing machine learning for networking applications. 

For example, Jiang et al. [145] reviewed and investigated a variety of machine learning 

techniques (e.g., supervised learning, unsupervised learning and reinforcement learning) 

as tools to improve the performance of next generation networks with various compelling 

applications, such as massive MIMO, ultra-dense small cell network, issue, Zhang et al. 

[154] adopted adaptive dropout to prevent overfitting, where the dropout rate of each hidden 

layer is computed by the adaptive D2D, and so on. In addition, Zhu et al. [146] leveraged 

the reinforcement learning algorithms (i.e., Q-learning) to optimize the packet transmission 

scheduling in the cognitive network environment for IoT applications. The transmission 

scheduling algorithm selects the appropriate actions (transmission power, spectrum access, 

scheduling, etc.) for the cognitive nodes in the multi-channel environment to maximize the 

system throughput. Also, Lopez-Martin et al. [147] used neural networks to conduct traffic 

classification for IoT networks. The experimental results of their study demonstrated the 

fantastic detection accuracy by using the combination of different neural networks (recurrent 

neural network (RNN) and convolutional neural networks (CNN)), in which features were 

extracted from packet headers. Furthermore, Wang et al. [148] reviewed a promising means 
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of applying machine learning algorithms to address networking challenges and optimize the 

network design and management.

In addition, the existing research efforts have demonstrated the application of machine 

learning techniques for I-IoT systems [149], [150], [151], [152], [153]. For example, to 

facilitate power generation, monitoring, and control related to energy-based I-IoT systems, 

Mocanu et al. [149] designed different machine learning models to perform tasks, including 

energy disaggregation, flexibility classification and prediction. Likewise, Huang et al. [150] 

developed a deep learning-based scheme to conduct the forecast of electrical loads in the 

smart grid. Wang et al. [151] addressed the image classification issue and designed a 

feature fusion algorithm. In addition, Li et al. [152] proposed efficient and robust deep 

learning models to inspect and detect defects in manufactured products. Furthermore, Li et 
al. [153] designed a deep convolutional computation model, which can be used to perform 

hierarchical feature learning on big data in IoT.

In addition, research efforts have been devoted to improving machine learning performance 

in terms of efficiency and accuracy. For instance, the time and computation-consuming 

nature of the training phase raises efficiency issues for machine learning models, especially 

for big industrial data. To improve the efficiency of machine learning, Zhang et al. [144] 

proposed a tensor-train deep compression model to learn hierarchical features for industrial 

informatics in an efficient manner. The large number of parameters in the model were 

greatly compressed to decompose the tensors in the deep learning model and improve the 

speed. Another issue of adopting machine learning for industrial informatics is the lack 

of training samples. Because of this, deep learning models could degrade classification 

accuracy due to overfitting. To address this issue, Zhang et al. [154] adopted adaptive 

dropout to prevent overfitting, where the dropout rate of each hidden layer is computed by 

the adaptive distribution function.

3) Machine Learning for Networking in I-IoT: With the various advantages of 

machine learning techniques in terms of network performance improvement in I-IoT, a 

number of challenges need to be addressed before widely developing and adopting machine 

learning in I-IoT. For example, obtaining valuable and accurate data is critical for the 

training process of machine learning algorithms. In addition, direct collection of the traffic 

data is costly in high-speed network environments, posing additional demands on the data 

preprocessing, including data normalization, discretization, and others. This issue persists in 

the manufacturing system, in which the low-latency and high reliability of data transmission 

are critical, and collecting data for machine learning use incurs additional overhead to the 

network. Thus, how to identify the amount of data that is necessary to be collected and 

transmitted for machine learning is an important issue to be addressed.

Additionally, proper features for machine learning shall be carefully extracted, which 

requires an understanding of the specific problems of the system. Furthermore, the 

computation-hungry nature of machine learning algorithms poses challenges on the delay-

sensitive requirements of complex networks in I-IoT systems that may require low-latency 

and ultra-high reliability for data transmission. Further, the accuracies of the machine 

learning algorithms, in terms of control, prediction and decision, are also important to 
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the management of communication networks in I-IoT systems. For example, to improve 

the efficiency of data transmission in the network, data size needs to be minimized and 

transmission efficiency needs to be maximized so that network load can be reduced. 

Nonetheless, when machine learning is used, more data can increase the learning accuracy, 

but collecting more data will incur additional overhead to the network. Thus, how to balance 

the need for machine learning (e.g., accuracy) and performance requirements of the network 

(quality of service, energy efficiency, etc.) becomes an important issue to address.

In applying machine learning in communication networks in I-IoT systems, it is critical to 

identify the proper machine learning algorithm (i.e., prediction, classification and decision) 

and its properties to match the needs of the particular network problem. Then, the specific 

network problem can be analyzed and characteristics can be extracted. In this way, machine 

learning algorithms having different tasks (e.g., supervised learning, unsupervised learning, 

and reinforcement learning) and incurring different degrees of overhead can be applied 

appropriately and individually. In the data collection and preprocessing phase, the data 

collected shall be accurate and relevant, and the extracted features shall describe the 

characteristics of the system properly. Furthermore, the proper machine learning model 

needs to be carefully selected based on the characteristics of the investigated network and 

system, as well as the particular problem. Finally, the proper machine learning model needs 

to be validated before wider application, and new data should be leveraged for model 

adaptation.

4) Research Directions of Machine Learning for I-IoT: To better address the 

requirements of I-IoT, various aspects of machine learning shall be improved, such as 

platform, algorithm, efficiency, etc. We thus observe several necessary research directions 

for machine learning as applied to I-IoT.

• Machine Learning for Latency-Guaranteed and Ultra-Reliable Communications: 

Recall that, in industrial systems, a number of processes will have strict latency, 

reliability, and other performance requirements. The techniques deployed in the 

network of an I-IoT system thus shall handle a number of issues, including 

network deployment, resource management, and so on. As previously mentioned, 

machine learning can be utilized to address problems and improve network 

performance. Nonetheless, the effectiveness and efficiency of machine learning 

in I-IoT scenarios are as of yet unknown, especially given the strict latency 

and reliability requirements. Thus, research efforts shall be established to study 

machine learning for latency-guaranteed and ultra-reliable communications.

• Machine Learning-enabled Cloud and Edge Computing in I-IoT: Similarly, 

computing is also a critical factor that affects the latency, reliability, and other 

performance metrics in I-IoT. Recall that I-IoT needs powerful and efficient 

computing platforms to provide storage, transmission and analysis of industrial 

big data. The hybrid cloud and edge computing platform has the capability and 

efficiency to offer a viable computing infrastructure for IoT. Nonetheless, for a 

sufficiently complex learning problem, it may be infeasible to carry out training 

in-device due to limits on the complexity, storage, and processing power. Thus, 

Xu et al. Page 27

IEEE Access. Author manuscript; available in PMC 2022 May 06.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



the use of the edge computing infrastructure to reduce network latency could 

reduce the effectiveness of learning process. The integration of edge computing 

infrastructures and machine learning shall be studied, especially in an industrial 

big data context. Particularly, the implementation of parallel and distributed 

learning for edge architectures need to be considered and optimized for self-

organization, efficiency, runtime, etc. In addition, machine learning algorithms 

with tunable parameters and platforms shall be investigated and optimized such 

that learning decisions can be made quickly.

• Intelligent Sensing and Decision Making: The control problems in I-IoT can 

be simplified to the sensing and decision processes among the massively 

dispersed sensors and actuators. Enabling intelligent sensing can bring the 

capabilities of classification, prediction and decision directly to the control 

systems. The requirements of sensing and decision making are extremely strict 

in a manufacturing environment, as the failure will cause economic loss and 

possible safety issues. Effectively transferring the capabilities of classification, 

prediction and decision from machine learning to the sensing and decision-

making centers is a promising research direction.

• Online Learning and Re-learning: I-IoT enables highly scalable, interoperable 

and interconnected industrial systems, where the control, networking and 

computing systems are in dynamic environments. It is common practice that 

machine learning models require sufficient training to make sure that the output 

of learning processes are accurate and can be used in the decision process. 

Nonetheless, as the IoT system is dynamic and evolving, machine learning 

system shall be capable of adapting to such complex environments. One way 

to enable adaptability is to leverage online learning and re-training techniques to 

continuously update machine learning models, but additional study is required to 

realize this capability.

• Distributed Machine Learning: Distributed machine learning is devoted to 

addressing the problems of the large-scale machine learning process, such 

as long training times, large training datasets, etc. The methodology of 

distributed machine learning is the leveraging of multiple computing resources 

to collaboratively work on one task. Distributed machine learning places 

and processes data training and testing phases into a number of distributed 

nodes simultaneously to improve time efficiency. Moreover, distributed machine 

learning is expected to be a very important technique for machine learning in 

the I-IoT environment. One of the challenges for distributed machine learning 

is how to efficiently manage the distributed computing resources. There is a 

need to develop performance metrics to support resource optimization. Resource 

allocation may need for adaptation in some applications due to their dynamic 

(time-varying) nature.

• Light-weight Learning Platform: In I-IoT, a number of industrial devices are 

interconnected to form a fully interconnected smart industrial factory or plant. 

Most of the industrial devices, such as sensors, actuators and controllers are not 
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designed to run learning algorithms. Nonetheless, the computing capabilities 

enabled by smart industrial devices can be potentially leveraged for light-

weighted learning platforms. Notice that those light-weight learning platforms 

with limited resources (e.g., computing, energy, and others) can be used to run 

light-weight learning tasks. In this way, the learning on industrial devices can 

be enabled to improve the intelligence and performance of I-IoT. One direction 

is to design hardware-in-the-loop (HIL) simulation platform for I-IoT, which 

integrates the computer simulation for I-IoT applications with hardware testbeds 

for sensors and actuators. The key of the HIL simulation platform is to use the 

real-world data produced from sensor and actuator hardware testbeds. Another 

direction is to design the integrated simulation framework for I-IoT, which can 

be used to capture the interaction and reciprocal effects of cyber and physical 

systems in I-IoT.

VII. FINAL REMARKS

In this paper, a comprehensive survey of I-IoT has been presented, including I-IoT 

architecture, applications and characteristics, existing research efforts on control, networking 

and computing systems in I-IoT, as well as challenges and future research needs. More 

specifically, the I-IoT architecture consists of application layer, communication layer and 

physical layer, and I-IoT applications can be categorized to process automation (PA) or 

factory automation (FA). Characteristics of I-IoT applications include the number of nodes, 

cycle time, and reliability, among others. From the I-IoT system perspective, we have 

considered the three critical components of control, networking and computing systems in 

I-IoT. Regarding control systems, we have investigated the centralized, decentralized and 

hierarchical industrial control architectures. In networking systems, we have reviewed some 

representative networking technologies (e.g., 5G, M2M and SDN) and discussed their uses 

in I-IoT. Considering computing systems, we have studied the recent advances in computing 

technologies (e.g., cloud computing, edge computing, and integration of cloud and edge 

computing), and their applicability for I-IoT.

In addition to assessing the current technological trends and their uses for I-IoT, we have 

carefully considered the challenges to networking and computing systems. These include 

the difficulties of network deployment and resource scheduling for networking systems, and 

the problems of seamless integration and computing resource management for computing 

systems. Reflecting the needs raised by these challenges, we have further outlined future 

research needs from the perspectives of control, networking and computing systems in I-IoT. 

Finally, we have made particular note of the emerging machine learning techniques for 

I-IoT, and extracted key future directions that need to be resolved for appropriate machine 

learning in I-IoT. The primary goals of this survey are to identify the key components of 

I-IoT systems, provide comprehensive and systematic review of the topic, and outline key 

research challenges that need to be addressed.
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Fig. 1: 
I-IoT System Architecture
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Fig. 2: 
I-IoT from a CPS Perspective: the gear on the left encapsulates the lifecycle of physical 

systems, while the cloud figure on the right describes the cyber systems (i.e., the interplay 

between control, networking and computing systems)
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Fig. 3: 
Structure of Centralized Control
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Fig. 4: 
Structure of Decentralized Control
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Fig. 5: 
Structure of Hierarchical Control
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Fig. 6: 
Simplified SCADA Architecture
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Fig. 7: 
Taxonomy of Networking in I-IoT
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Fig. 8: 
Structure of Cloud Computing for I-IoT

Xu et al. Page 45

IEEE Access. Author manuscript; available in PMC 2022 May 06.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Fig. 9: 
Structure of Hybrid Cloud and Edge Computing for I-IoT
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Fig. 10: 
Taxonomy of Computing Systems in I-IoT
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Fig. 11: 
Objectives of Control Systems in I-IoT System: (a) Control Objectives, (b) Performance 

Objectives
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Fig. 12: 
Network Deployment Scenarios: (a) multiple sensors are deployed to sense information and 

guide the actions of one actuator, (b) multiple sensors and actuators are deployed in the 

manufacturing area to perform complex sensing and actuating and tasks, (c) only multiple 

sensors are deployed to collect information about the complex manufacturing area
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Fig. 13: 
Hierarchical Computing Architecture
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TABLE I:

Acronym and Description

Acronym Description

AES Advanced Encryption Standard

AP Access Point

BS Base Station

CAR Conflict Aware Routing

CCM Concentric Computing Model

CPS Cyber-Physical System

CN Core Network

CNN Convolutional Neural Network

DCS Distributed Control System

D2D Device-to-Device

DoS Denial-of-Service

FA Factory Automation

FG Functional Group

HIL Hardware-In-the-Loop

HMI Human Machine Interface

I-CPS Industrial Cyber-Physical System

I-IoT Industrial Internet of Things

IIRA Industrial Internet Reference Architecture

IoT Internet of Things

LoRaWAN Low-Power Wide Area Network

LTE Long-Term Evolution

LTE-A Long-Term Evolution Advanced

Massive MIMO Massive Multiple-Input and Multiple-Output

M2M Machine-to-Machine

NB-IoT Narrow Band Internet of Things

NFV Network Function Virtualization

NV Network Virtualization

PA Process Automation

PER Packet Error Rate

PID Proportional-Integral-Derivative

PLC Programmable Logic Controller

PSA Power System Automation

PSA Path Selection Algorithm

QoS Quality of Service

RAN Radio Access Network

RFID Radio-Frequency Identification

RL Reinforcement Learning

RNN Recurrent Neural Network

RTU Remote Terminal Unit
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Acronym Description

SCADA Supervisory Control And Data Acquisition

SDI Software-Defined Infrastructure

SL Supervised Learning

SDN Software Defined Networking

TSCH Time Scheduled Channel Hopping

UDN Ultra-Dense Network

UL Uplink

USL Unsupervised Learning

WSAN Wireless Sensor and Actuator Network
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TABLE II:

Characteristics of Industrial Applications [31]

Application Type Number of Nodes Cycle Time Reliability

PA 101 100ms Medium

FA 103 1ms High
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