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Abstract

Purpose: We develop a deep learning (DL) radiomics model and integrate it with circulating 

tumor cell (CTC) counts as a clinically useful prognostic marker for predicting recurrence 

outcomes of early-stage (ES) non-small cell lung cancer (NSCLC) patients treated with 

stereotactic body radiation therapy (SBRT).

Methods and Materials: A cohort of 421 NSCLC patients was used to train a DL model 

for gleaning informative imaging features from computed tomography (CT) data. The learned 

imaging features were optimized on a cohort of 98 ES-NSCLC patients treated with SBRT for 

predicting individual patient recurrence risks by building DL models on CT data and clinical 

measures. These DL models were validated on the third cohort of 60 ES-NSCLC patients treated 

with SBRT to predict recurrent risks and stratify patients into subgroups with distinct outcomes in 

conjunction with CTC counts.

Results: The DL model obtained a concordance-index of 0.880 (95% confidence interval, 

0.879-0.881). Patient subgroups with low and high DL risk scores had significantly different 

recurrence outcomes (P = 3.5e-04). The integration of DL risk scores and CTC measures identified 

4 subgroups of patients with significantly different risks of recurrence (χ2 = 20.11, P = 1.6e-04). 
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Patients with positive CTC measures were associated with increased risks of recurrence that were 

significantly different from patients with negative CTC measures (P = 0.0447).

Conclusions: In this first-ever study integrating DL radiomics models and CTC counts, 

our results suggested that this integration improves patient stratification compared with either 

imagining data or CTC measures alone in predicting recurrence outcomes for patients treated with 

SBRT for ES-NSCLC.

Introduction

Lung cancer remains the leading cause of cancer-related deaths, and the estimated number 

of new cases is 235,760 in the United States in 2021.1 Non-small cell lung cancer (NSCLC) 

accounts for approximately 87% of the diagnosed lung cancer cases and has a poor 5-year 

survival rate of 18%.2-4 With advances in lung cancer screening, lung cancer patients are 

increasingly being identified at earlier stages where treatment outcomes are substantially 

better, significantly improving quality of life.5,6

Stereotactic body radiation therapy (SBRT) has been increasingly used to treat early stage 

NSCLC (ES-NSCLC) in the medically inoperably setting due to its improved efficacy, 

reduced morbidity, and convenience compared with conventionally fractionated radiation 

therapy.7-9 Despite its high initial efficacy, 5% to 15% of patients with ES-NSCLC treated 

with SBRT may fail regionally and 20% to 25% fail distantly with long-term follow-up.10,11 

Systemic therapy to reduce this risk in ES-NSCLC patients after surgery might be harmful 

to patients of stage IA,12 and it would likely have even more harmful in the medically 

inoperable setting. There is an opportunity to intensify treatment if we could better 

select which subset of patients are at high enough risk after SBRT to improve outcomes. 

Optimized methods to inform subsequent treatment throughout each patient’s clinical course 

for such purposes is thus critically needed.13-15

To predict treatment outcomes and select patients at higher risk of recurrence after SBRT, 

a variety of biomarkers have been investigated. Circulating tumor cell (CTC) enumeration 

has demonstrated promising performance as a prognostic pharmacodynamic biomarker in 

studies of breast cancer, prostate cancer, and lung cancer.16-19 More recently, a prospective 

longitudinal study of patients with ES-NSCLC treated with SBRT has revealed that 

higher pretreatment CTC levels and persistence of CTCs posttreatment were significantly 

associated with increased risk of recurrence outside the targeted treatment site.20 However, 

CTCs are detected in the peripheral blood of only about half of ES-NSCLC patients at 

diagnosis, and thus they cannot be used as a sole determinant of patients who are at high risk 

of recurrence after SBRT.

On the other hand, radiomics analysis has achieved promising performance in cancer 

research for characterizing tumor phenotypes, patient stratification, and prognosis based 

on quantitative imaging features.21-24 Several recent studies have also demonstrated that 

radiomic signatures are excellent independent biomarkers for estimating prognostic results 

(overall survival and metastasis) of lung cancer patients.24-29 More recently, deep learning 

(DL) methods have been adopted in radiomics studies and have achieved superior prediction 

performance compared with traditional radiomics-based machine learning methods in a 
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variety of cancer studies,28,30-32 including lung cancer.33-35 However, most of the existing 

DL prognostic models formulate the prognosis as a binary classification problem of survival 

outcomes, and they are not equipped to effectively provide quantitative risk prediction of 

recurrence outcomes that could be further integrated with other biological assays to inform 

treatment decisions.

In this work, we investigated the integration of a DL prediction model of computed 

tomography (CT) imaging data and CTC measures for early prediction of treatment outcome 

in a large cohort of pathologically confirmed ES-NSCLC patients treated with SBRT. We 

hypothesize that an effective integration of the DL models and CTC measures will make 

accurate prognostic predictions of outcomes of ES-NSCLC patients treated with SBRT that 

are superior to prediction based on either imaging data or CTC measures alone.

Methods and Materials

Cohorts of NSCLC patients, imaging data, and clinical and CTC measures

This study was conducted with approval from the institutional review board. This 

study included 3 cohorts of lung cancer patients. The first cohort consisted of 

421 lung cancer patients who were treated at MAASTRO Clinic, The Netherlands. 

For these patients, CT scans, manual delineations, clinical measures, and survival 

information are publicly available at https://wiki.cancerimagingarchive.net/display/Public/

NSCLC-Radiomics.21 Median follow-up of these patients is 1.1 years. More detailed 

information of this data cohort is summarized in Table E1. We used this cohort as training 

data to train an unsupervised deep learning model for extracting informative imaging 

features.

The second cohort consisted of 98 consecutive patients who were treated with SBRT 

for ES-NSCLC (T1a, T1b, and T2a). Twelve of these patients were examined on a GE 

Discovery ST (GE Healthcare, Waukesha, Wisconsin), 70 were examined on a Philips 

Gemini/Ingenuity TF (Phillips Medical Systems, Amsterdam, The Netherlands), and the 

remaining 16 were examined on a Siemens Biograph 64 mCT (Siemens Healthcare, 

Erlangen, Germany). CT images were acquired using the following parameters: peak tube 

voltage of 120 kVp with the Philips scanner, 100 to 140 kVp with the Siemens scanner, and 

120 to 140 kVp with the GE scanner; exposure of 30 to 300 mAs with the Philips scanner, 

27 to 346 mAs with the Siemens scanner, and 4 to 21 mAs with the GE scanner; tube current 

of 42 to 325 mAs with the Philips scanner, 44 to 554 mAs with the Siemens scanner, and 

44 to 119 mAs with the GE scanner; pixel size of 1.17 × 1.17 or 1.37 × 1.37 mm2 with 

the Philips scanner, 0.98 × 0.98 or 1.52 × 1.52 mm2 with the Siemens scanner, and 0.98 × 

0.98 or 1.37 × 1.37 mm2 with the GE scanner; and slice thicknesses of 3 or 4 mm with the 

Philips scanner, 2 or 3 mm with the Siemens scanner, and 3.27 mm with the GE scanner. A 

standard B or sharp C filter with the Philips scanner, a flat filter with the Siemens scanner, 

and a body filter with the GE scanner were used for reconstruction of CT images. All the 

patients were treated uniformly (12.5 Gy × 4 fractions or 10 Gy × 5 fractions). The patients 

in this cohort had a median follow-up of 2 years that provides recurrence information of 

local failure, nodal failure, and distant failure. We used this cohort as training data to train a 
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supervised DL model based on imaging features learned by the unsupervised deep learning 

model and for predicting recurrence risks.

For the third cohort, 5 of the 60 patients were examined on a GE Discovery ST (GE 

Healthcare, Waukesha, Wisconsin), 30 were examined on a Philips Gemini/Ingenuity TF 

(Phillips Medical Systems, Amsterdam, The Netherlands), and the remaining 25 were 

examined on a Siemens Biograph 64 mCT (Siemens Healthcare, Erlangen, Germany). 

CT images of these 60 patients were acquired using the same parameters as that of the 

98-patient cohort. The CTC measures were obtained by a CTC assay validated in previous 

studies.20,36-38 The assay consists of an adenoviral-based probe that expresses green 

fluorescent protein (GFP) driven by a human telomerase reverse transcriptase promoter 

element in live cells with increased telomerase activity, which are then detected and 

enumerated by fluorescence microscopy. Increased telomerase activity is characteristic of 

most tumor cells (helping with forestall senescence); conversely, it is not elevated in nearly 

all normal cells.20 SBRT was delivered to all the subjects with a median dose of 50 

Gy (range, 50-60 Gy), most commonly in 4 or 5 (88%) fractions (range, 4-20); median 

biologically effective dose (BED10, α/β = 10) was 100 Gy (range, 78-112.5 Gy). Seven 

patients (12%) received a less aggressive fractionation (>5 fractions) for larger, centrally/

ultracentrally located tumors.

Table E2 provides details of the characteristics of patients in the second and third cohorts. 

Local failure was defined as tumor growth after initial shrinkage or progression at the local 

site on 2 consecutive scans confirmed by positron emission tomography images or biopsy. 

Nodal failure was defined as recurrence at the hilar, ipsilateral, or contralateral mediastinal, 

or supraclavicular lymph nodes. Distant metastasis was defined as tumor recurrence in the 

contralateral lung or outside the hemithorax. To differentiate metachronous primary tumors 

from recurrent disease, criteria from Martini and Melamed was applied.39 In all cases, 

pathologic confirmation of recurrent disease was obtained when possible. Additionally, date 

of death was determined by death certificates or institutional medical records. A flowchart of 

study data retrieval and exclusion of the 3 data cohorts is shown as Figure E1.

Deep learning models for predicting recurrence risks of patients in individual levels

As illustrated in Figure 1, DL models were built to predict recurrence risks based on a 

cohort of 421 NSCLC patients and a cohort of 98 ES-NSCLC patients, and the DL models 

were validated on the third cohort of 60 ES-NSCLC patients. In particular, an auto-encoder 

(AE) DL model was trained in an unsupervised learning setting on the first cohort to extract 

informative imaging features from 3-dimensional (3D) CT scans of lung tumors.40 The AE 

model’s feature extraction component was then input to a supervised 3-layer fully connected 

(FC) module to predict recurrence risks in a survival analysis framework on the second 

cohort.28 Finally, the DL recurrence prediction model was evaluated on the third cohort.

Convolutional AE deep learning model

As shown in Figure 1(A), we first trained a convolutional AE model whose input and 

output were masked CT image patches of lung tumors defined by gross tumor target 

volume that were delineated in the CT scans by experienced, board-certified radiologists.21 
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The convolutional AE model contained 3 layers of convolutional neural networks CNNsas 

encoder layers (Conv1 to Conv3) to learn features from 3DCT patches of lung tumors 

followed by 3 convolutional decoder layers (Conv4 to Conv 6) to reconstruct the input 

3DCT patches. A Sigmoid activation function was used in the convolutional AE model 

that was optimized to obtain representative features by minimizing reconstruction errors 

between its output and input CT patches. Table E3 and Figure E2 show the detailed network 

architecture of the convolutional AE model, the training procedures, and the training loss.

Deep learning model of recurrence risks

The proposed DL models were built on the second cohort of 98 ES-NSCLC patients in a 

survival analysis framework to predict recurrence risks. The DL model was built upon CNNs 

for survival analysis28; Table E4 and Figure E3 show the network structure. Particularly, this 

model shared the same encoder layers with the AE model. After these encoder layers of 

CNNs (Conv1 to Conv3), we used an average pooling layer to obtain the vectorized imaging 

features and then 3 FC layers to predict recurrence risk by optimizing a Cox loss function. 

We used the other stream of 3 FC layers to learn information features from clinical measures 

by optimizing a Cox loss function. The clinical measures included age, sex, smoking status, 

and body mass index. In both the streams, we used Rectified Linear Unit (ReLU) activation 

function in the first 2 FC layers and a Sigmoid activation function in the last FC layer. 

Finally, we input the risk prediction outputs of these 2 streams to a 2-factor (the image-based 

recurrence risks and the clinical-based recurrence risks obtained from our DL models) Cox 

regression model to predict recurrence risks.

In summary, we built these models to predict recurrence risk scores by optimizing the Cox-

loss functions based on the second cohort. Specifically, we adopted and fixed parameters 

of the convolutional AE model’s encoder layers in the DL prediction models of recurrence 

risks. Tables E4 and E5 and Figure E3 show details of the models.

Validation of the deep learning models for predicting recurrence outcomes

We evaluated all the recurrence prediction models on the third cohort of 60 ES-NSCLC 

patients. Particularly, we applied the DL prediction models of recurrence risks to individuals 

of the third cohort for predicting risk scores. We then adopted concordance-index (c-index) 

of right-censored data to evaluate the prediction performance. We also compared the DL 

based radiomics model with a random survival forest model built on radiomic features 

computed from the gross tumor volume of each CT scan using pyradiomics.29,41

Survival functions of all 60 patients of the third cohort were estimated by Breslow’s 

estimator to dynamically describe the survival probability on individual level.42 As shown 

in Table E6, we also performed a cox regression analysis based on the combinations of the 

image-based DL risk scores, clinical measures, and CTC measures to further evaluate the 

recurrence prediction performance of our DL risks and other measures on the validation 

cohort. Table E6 also depicts the prediction performance of each of the included measure.
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Patient stratification in terms of recurrence risks

The median of risk scores on the 60 patients was applied to stratify the risk scores estimated 

by the DL models to identify 2 subgroups of patients with high and low recurrence risks. We 

had previously established that high levels and persistence of CTCs after treatment defined 

patients at high risk of recurrence.20 For this analysis, a composite threshold of 3.9 at 3 

months after SBRT was therefore chosen to identify persistent CTCs (“positive”). Based 

on the positive and nonpositive CTC information, patients with respectively high and low 

recurrence risks were further stratified into 4 subgroups with different recurrence outcomes. 

“False negative CTC” patients were defined as those for whom no CTCs were initially 

detected yet ultimately developed regional or distant recurrences.

Statistical analysis

Descriptive statistics were used to evaluate demographic characteristics, disease details, and 

longitudinal trends of CTC counts. Chi-square for categorical variables and 2-sample t test 

for continuous variables were performed to assess differences in clinicopathologic details 

between the demographic recordings of patients in the 2 included cohorts and stratified 

patient subgroups. The proportional hazards assumption of our Cox regression model was 

tested based on Schoenfeld residuals using proportional_hazard_test of Lifelines v0.26.3. 

The performance confidence interval (CI) of all prediction models was estimated with 100 

runs of bootstrap sampling. A nonparametric approach was adopted to compare C-index 

values of prediction models based on mean of their prediction outputs of 100 runs of 

bootstrap sampling.43 Recurrence risks of different subgroups were assessed using log-rank 

test.

Results

The DL prediction model (combination of image-based and clinical-based prediction) 

obtained a C-index value of 0.880 (95% CI, 0.879-0.881) for predicting recurrence, better 

than DL prediction models built upon either clinical measures (P = .020) or imaging data 

alone (P = .078). In particular, the DL prediction model (Table E4) built upon the imaging 

data alone obtained a C-index of 0.849 (95% CI, 0.847-0.851) and the DL model (Table 

E5) built upon the clinical measures obtained a c-index of 0.705 (95% CI, 0.703-0.708). We 

also estimated the DL prediction model’s prediction performance on the third cohort’s men 

and women separately. The DL prediction model obtained c-index values of 0.851 (95% CI, 

0.847-0.855) and 0.915 (95% CI, 0.913-0.917) for men and women, respectively.

The proportional hazards assumption testing results indicated that both the image-based 

recurrence risk scores and the clinical-based recurrence risk scores obtained by our DL 

models passed the nonproportional test, with P values of .66 and .33, respectively.

The conventional radiomics model obtained a c-index of 0.769 (95% CI, 0.759-0.779), 

significantly worse than the DL radiomics model (P = .048).

We also applied the attention visualization inspired by the class activation map44 to visualize 

the attention of our image-based DL model via calculating the contributions of locations in 

tumor areas to the recurrence risk results. The visualization results are shown as Figure E4. 
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In this figure, our DL model could succeed in assigning higher recurrence risks to patients 

with larger and irregular-shaped tumors than the patients with smaller lesion appearance.

When using the combination of our image-based DL risk scores, clinical features, and 

CTC measures as input to build a cox regression model, the obtained C-index values on 

the 60-patient cohort was 0.870. Table E6 summarizes recurrence prediction results of 

imaged-based DL risks, CTC, and clinical measures. We also compared the pooled hazard 

rate45 with each group-specific hazard rate of all the included image-based DL risks, clinical 

measures, and CTC (Table E7). Specifically, our image-based DL risks and CTC measures 

could stratify patients into significantly different groups of recurrence outcomes (P < .05), 

whereas the most efficient measure (body mass index) of other included measures could just 

obtain stratification result that is marginally associated with the recurrence (P = .062).

As shown in Figure 2(b), the high-risk and low-risk groups had significantly different 

recurrence outcomes (P = 3.5e-04, log-rank test). Significant differences were also observed 

in recurrence outcomes (P = .045, log-rank test) between the patients with positive and 

negative CTC measures, as shown in Figure 2(a).

As shown in Figure 3, the integration of DL based risks and CTC positive/negative statues 

identified 4 subgroups with more significant differences than these 2 factors alone in their 

recurrence outcomes (P = 1.6e-04, log-rank test). As indicated by pairwise group difference 

measures summarized in Table 1 and Figure 3, the patients with high-risk estimated by 

the DL model and positive CTC measures had significantly increased recurrence risks in 

recurrence outcomes compared with those with low-risk and negative CTC measures.

As summarized in Table 1, for the patients with positive CTC measures, the DL based 

risk score was a significant risk predictor for recurrence (P = .025; log-rank test). For the 

patients with negative CTC measure, the DL based risk scores could also further stratify the 

patients into subgroups with distinct recurrence outcomes (P = .006; log-rank test). However, 

the CTC positivity could not further stratify the high-risk patients or low-risk patients with 

statistical significance.

In the 60-patient cohort (9 patients with positive CTCs, 51 patients with negative CTCs), 

6 patients had recurrences but with negative posttreatment CTCs (false negative CTCs). 

The DL prediction models predicted their recurrence. Specifically, as illustrated by their 

survival functions in Figure 4(b), our DL model could assign survival functions worse than 

the median recurrence risk patient of the low-risk group to all the 6 false negative CTCs 

patients. Figure 4a summarizes survival functions of all 60 patients belonging to different 

risk subgroups and shows that our DL-based risk prediction is efficient to stratify patients 

into subgroups of different posttreatment survival outcomes.

Discussion

This paper presents the first study of integration of DL radiomics models and CTC measures 

for predicting recurrence risks of ES-NSCLC patients treated with SBRT. The objective 

of the present study is twofold: to evaluate if integration of radiomics and CTC counts 

improves stratification of ES-NSCLC patients in terms of their response to SBRT and to 
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test if a deep learning model in a transfer learning setting can improve the performance 

of radiomics for prediction of outcomes of ES-NSCLC patients treated with SBRT. Our 

results have demonstrated that an effective integration of DL based radiomics models and 

CTC information could stratify ES-NSCLC with distinct recurrence risks, better than the 

image-based model, clinical measures-based model, and CTC measures alone. Particularly, 

the DL radiomics models provided complementary information to the CTC measures for 

predicting recurrence risks, especially for the patients with false negative CTC indictors. 

The prediction models may facilitate selection of patients who will benefit from intensified 

treatments after SBRT to improve outcomes, such as immunotherapy, chemotherapy, or 

additional radiation therapy.

Compared with the clinical features-based model, our image-based models built on 

unsupervised deep image features achieved superior performance on the recurrence 

prediction task when evaluated on an independent validation set of ES-NSCLC patients 

(the third cohort). The DL-based radiomics model performed significantly better than the 

conventional radiomics model that was built radiomic image features, facilitating accurate 

stratification of patients with high and low recurrence risks. This further demonstrated that 

the DL-based radiomics models could provide clinically meaningful prediction for outcomes 

of ES-NSCLC patients treated SBRT.

Combining the recurrence prediction results based on DL models with the CTC measures, 

we could further categorize the included ES-NSCLC patients into 4 subgroups with 

significant differences in recurrence outcomes. The refined recurrence outcome prediction 

combining both image-based DL models and the biologically relevant lung cancer indicator 

of CTCs were particularly predictive for ES-NSCLC patients treated with SBRT.

The DL-based radiomics models also achieved promising prediction performance for 

patients with recurrence but negative CTC measures. As illustrated in Figure 4, all these 

patients could be assigned with worse survival functions than the median of the low-risk 

group of the third cohort. These results further demonstrated that our DL-based radiomics 

models achieved high accuracy for predicting recurrence.

We adopted mixed unsupervised and supervised learning on separate cohorts to build 

prediction models for preventing overfitting. Because the public data sets do not provide 

follow-up information of treatment response to SBRT, it is difficult to combine them 

with our local cohorts. Therefore, the unsupervised learning was adopted to learn imaging 

features from the public data sets, and the learned unsupervised learning model was adopted 

to extract features and built a prediction model under a supervised learning setting. Because 

our local cohorts with follow-up information of treatment response were relatively small, a 

supervised deep learning prediction model on the second cohort had degraded performance 

when tested on the third cohort, with a c-index of 0.775 (95% CI, 0.751-0.798), worse than 

the performance obtained by the DL model built in the transfer learning setting.

A caveat of the present study is that the DL features were learned from images collected 

by multiple CT scanners. Though prediction models built on the DL features achieved 

significantly better performance than a prediction model built on conventional radiomics 
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features, differences in the images from multiple CT scans might affect the stability of the 

DL features. It merits further investigation to evaluate how the difference in images from 

multiple CT scans/sites affect the deep learning features and deep learning models.

Because the training subjects (the second cohort) did not have CTC information, we did 

not directly combine the CTC information with the imaging and clinical data to build a 

prediction model. Instead, the CTC information was used to stratify the third cohort into 2 

subgroups with negative or positive CTC. We also split the third cohort into 2 subgroups 

with high or low risk based on individual patients’ risk scores predicted by the combined 

DL prediction model built on the second cohort. These 2 different groupings were finally 

combined to stratify the third cohort into 4 subgroups (high-risk + positive CTC; high-risk + 

negative CTC; low risk + positive CTC; and low risk + negative CTC). As shown in Tables 

E6 and E7, statistical analyses based on Cox models on the third cohort had shown that the 

combination of DL radiomics risk score, clinical measures, and CTC measures obtained the 

best prediction performance, and both the DL radiomics risk score and CTC measure were 

predictors with statistical significance (P < .05). However, it merits further investigation 

based on large data sets to evaluate to what extent an integration of the radiomics and CTC 

measures can improve the prediction.

One limitation of the present study is that we did not build prediction models separately 

for men and women due to the small number of noncensored patients (ie, with recurrences) 

available for training the models (5 men and 10 women). The prediction performance of our 

DL prediction model was different for men and women, and the sex effect merits further 

investigation as well.

Conclusions

Our study suggested that integration of image- and clinical measure-based DL models with 

CTC measures could help distinguish patients with a high probability of cure from those at 

high risk of recurrence after SBRT. The integration of these novel methods merits additional 

study and verification and may ultimately prove to be useful tools for identifying patients 

with early-stage NSCLC treated with SBRT who may benefit maximally from intensified 

treatment, including post-SBRT immunotherapy.
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Fig. 1. 
Flowchart of the proposed recurrence prediction method. Abbreviations: AE = auto encoder; 

Conv = Convolution; CTC = circulating tumor cell; FC = fully connected.
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Fig. 2. 
Kaplan–Meier plots of patient subgroups with positive or negative circulating tumor cell 

measures and patient subgroups with high or low recurrence risks predicted by our deep-

learning radiomics models. Abbreviations: CTC = circulation tumor cell; DL = deep 

learning.
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Fig. 3. 
Kaplan–Meier plots of patient subgroups identified jointly based on circulating tumor cell 

measures and our deep learning-based recurrence risks.
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Fig. 4. 
Top: Survival functions of the 60-patient data set estimated by our deep learning model, 

risk subgroups in this figure are the same as that in Figure 3. Bottom: Survival functions 

of 6 patients with negative circulating tumor cell measures and recurrence outcomes (false 

negative circulating tumor cells); the blue dash line represents the median survival function 

of patients in the low-risk group identified by our deep learning model.
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Table 1

Statistical differences between patient subgroups in recurrence

Patient subgroups P value χ2

High-risk + positive CTC vs high-risk + negative CTC .043 4.101

High-risk + positive CTC vs low-risk + positive CTC .025 5.002

High-risk + positive CTC vs low-risk + negative CTC 8.9e-06 19.729

High-risk + negative CTC vs low-risk + positive CTC .224 1.476

High-risk + negative CTC vs low-risk + negative CTC .006 7.633

Low risk + positive CTC vs low-risk + negative CTC .734 0.115

Abbreviation: CTC = circulating tumor cell.
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