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ABSTRACT

Over the last few years, the number of microRNAs in the human genome has become a controversially debated issue.
Several publications reported thousands of putative novel microRNAs not included in the curated microRNA gene data-
base MirGeneDB and the repository miRBase. Recently, by using sequencing of∼300 human tissues and cell lines, the hu-
man RNA atlas, an expanded inventory of human RNA annotations, was published, reporting thousands of putative
microRNAs. We, the developers of established microRNA prediction tools and hosts of MirGeneDB, raise concerns about
the frequently applied prediction and functional validation strategies, briefly discussing the drawbacks of false positive de-
tections. By means of quantifying well-established biogenesis-derived features, we show that the reported novel
microRNAs essentially represent false-positives and argue that the human microRNA complement, at about 550
microRNA genes, is already near complete. Output of available tools must be curated as false predictions will misguide
scientists looking for biomarkers or therapeutic targets.
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Since the discovery of the first human microRNAs in 2000
(Pasquinelli et al. 2000) and 2001 (Lagos-Quintana et al.
2001; Lau et al. 2001; Lee and Ambros 2001), respectively,
microRNAs have taken a center stage in human biology,
medical research and, in particular, as biomarkers (Wang
et al. 2016). Because the microRNA field substantially ex-
panded in the last years, reaching a record∼16,000 annual
publications in 2021 (Kilikevicius et al. 2022), thousands
of novel microRNA candidates have continuously been
deposited in the microRNA candidate repository miRBase,
expanding near proportionally to the number of publica-
tions for more than a decade (Fig. 1A; Supplemental File
1). Driven mainly by the advent of next-generation se-
quencing (NGS) and the development of bioinformatics
prediction tools with flexible stringency thresholds (Fried-
länder et al. 2008; Hackenberg et al. 2009), this expansion
in human microRNAs created an imbalance of microRNA
complements between closely related species (e.g.,

human and macaque) that appeared improbable to many
researchers given the high conservation and sharedbiolog-
ical functions of microRNAs in animals (Fromm et al. 2020).
While it is difficult to define annotation criteria for many

RNA classes such as lincRNAs or piRNAs, structure and se-
quence features of microRNAs are distinct and have been
used to develop a system for their annotation already in
2003 (Ambros et al. 2003). However, because these clear
and mechanistically well understood features are not all
easily implementable in computational prediction (e.g.,
evolutionary conservation), there is a risk that the number
of false positive annotations increases as the community
analyzes more data.
With the introduction of stricter criteria for the inclusion

of new microRNAs in 2014, miRBase stopped the
microRNA expansion for human at a large ∼1900 putative
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microRNAs (Fig. 1A, white arrow), but kept more than a
thousand low-confidence annotations among them (total
295 high and 1586 low confidence) (Kozomara and
Griffiths-Jones 2014). Therefore, in 2015, some of us man-
ually curated and reannotated the human microRNA com-
plement by establishing and applying refined criteria for
annotation of microRNAs with NGS data (Fromm et al.
2015). Confirming previous experimental work in mouse
microRNAs (Chiang et al. 2010), we discovered that two-
thirds of human entries were false-positive entries and ob-
tained ∼500 bona fide microRNA genes now hosted in the
manually curated microRNA gene database MirGeneDB
(Frommet al. 2015, 2022). When checking previous releas-
es of miRBase, 99% of all bona fide human microRNA
genes were already contained in miRBase a decade ago
(Fig. 1A), and, with few exceptions, all human microRNAs
conserved at least to fish were indeed already found
15 yr ago (Supplemental File 1, “fish human microRNAs
in miRBase”; Bartel 2018). Most importantly, despite a
range of publications claiming substantial numbers of nov-
el microRNAs in human (Fig. 1A; Jha et al. 2015; Londin
et al. 2015; Alles et al. 2019), miRBase and MirGeneDB
have only added a few microRNAs to their human comple-
ments in the last ∼8 yr, respectively. This held true with the

recent release of the telomere-to-telomere assembly of
the human genome, where no newmicroRNAs were found
in the previously unassembled regions (Patil et al. 2021).

The idea of creating and updating compendia for gene-
products, including noncoding genes such as microRNAs,
based on the most recent technological advances is a
great service for the scientific community when shared
as an online community resource such as the RNAatlas
project (Lorenzi et al. 2021). In their “resource paper”
Lorenzi et al. used RNA sequencing of small and poly(A)
RNA, as well as total RNA, from ∼300 human tissues and
cell lines, including cancer cells, to describe at a “more
comprehensive atlas of the human transcriptome” includ-
ing many coding and noncoding RNAs, such as
microRNAs. For the prediction of novel microRNAs they
used our software miRDeep2 (Friedländer et al. 2012).
However, this was done in default settings and without ap-
plying the recommended score cut-offs. miRDeep2 output
includes numerous statistics, and the score cut-off should
be chosen so that the signal-to-noise ratio is above 10:1.
Not applying this threshold and not curating the output
yielded a staggering number of 3567 novel microRNA pre-
dictions (Lorenzi et al. 2021). These were further filtered
not by applying well-established annotation criteria (see
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FIGURE 1. (A) microRNA predictions in miRBase (white), MirGeneDB (blue), and in selected papers (yellow) over time in comparison to the num-
ber of annual papers (yellow line) (see Supplemental File 1). A clear near correlation of the number of published papers and annotatedmicroRNAs
is detected until 2014 (white arrow, R2 = 0.876), when miRBase introduced high-confidence criteria. The human microRNA complement annotat-
ed in miRBase was since then stable at∼1900microRNA candidates (light blue area). Note that the curated humanmicroRNA complement (∼500
bona fide microRNAs from MirGeneDB [gray area]) is recovered at 95.2% (480 genes) already by 2010 in miRBase (blue arrow). Several studies
predicted substantial numbers of putative novel microRNAs that differ significantly from the putative microRNAs in miRBase and the bona fide
microRNAs ofMirGeneDB, respectively (yellowdots, see Supplemental File 1; not shown,miRCarta [Backes et al. 2018] with∼12,000 predictions).
Yellow arrow depicts the corresponding numbers for “validated” microRNAs in the RNA atlas from Lorenzi. (B) Comparison of human bona fide
microRNAgenes as annotated inMirGeneDB (blue) and the novel “validated”microRNA candidates from the RNA atlas (yellow) bymapping of all
RNA atlas reads to all precursors (see Supplemental File 2 for summary, Supplemental File 3 for detailed results). Three important annotation
criteria based on microRNA biogenesis features were tested: “5′ homogeneity” (x-axis, bona fide microRNAs typically show values beyond
90%), “in cluster ratio” (y-axis, bona fide microRNAs typically show values beyond 90%), and the detection of two precursor arm products
that show characteristic RNases derived 2 nt offsets (empty circles: one armdetected, filled circles: two arms detected). Note the fewempty circles
for MirGeneDB entries that represent either deeply conserved (Hsa-Mir-1307, eutherian), generally lowly expressed (Hsa-Mir-5579), or extremely
tissue-specific entries (Hsa-Mir-217, pancreas specific and also deeply conserved) that are detected with both arms in the MirGeneDB data. Pink
RNA atlas predictions represent fragments of a previously annotated Y-RNA fragment (R4). (C ) The two best RNA atlas candidates as measured by
the 3′ feature comparison show strong secondary loop structures (RNAATLASMIR06278), or unusually short loop sizes (RNAATLASMIR06498) in
comparison to a representative example from MirGeneDB (Hsa-Mir-126-P2-v1) (red dots mark mature microRNA nucleotides and blue dots star
microRNA nucleotides; unusual loop regions are highlighted in yellow).
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above, Fromm et al. 2015), but by using “ncRNA target in-
ference algorithms” to identify negative correlations with
mRNA to pre-mRNA ratios, obtaining 111 putatively novel
microRNAs with inferred targets. While profiling of naïve
transcription as compared to overall mRNA abundances
has previously been used to distinguish transcriptional
and post-transcriptional effects (Tarbier et al. 2020), and
anti-correlation of microRNA and overall target expression
has been shown to be detectable that is, in single cells
(Nielsen and Pedersen 2021), these approaches have their
own short-comings and cannot reliably confirm individual
microRNA-target interactions. The presence of a few indi-
vidual pairs showing negative coexpression between
microRNA candidate levels and either mRNA levels or
proxies for post-transcriptional regulation is to be expect-
ed by chance and should not be considered validations for
direct microRNA action on its targets and even less as a
proof for microRNA-functionality in general. Other ap-
proaches such as physiological alterations of microRNA
levels, or genetic editing of microRNA target-sites are
more likely to capture direct effects (see Huberdeau and
Simard 2019; Kilikevicius et al. 2022); however, it is impor-
tant to note that in either case a functional effect neither
validates, nor does its absence disprove microRNA
identity.
Because even these 111 filtered novel human

microRNAs, as proposed by Lorenzi et al. seemed surpris-
ing to us, we systematically tested them for three well-
established bona fide microRNA annotation criteria: (A)
The “in cluster ratio” which we defined as the proportion
of small RNA sequencing reads mapping to the mature
microRNA relative to all other readsmapping to aprecursor
candidate+10 nt flanking nucleotides (0%–100%), (B) “5′

homogeneity” which is defined as the fraction of mature
reads starting at the same 5′ position (0%–100%), and (C)
whether reads from both arms of the precursor are detect-
ed that show characteristic 2 nt overhang (for review, see
Ambros et al. 2003; Fromm et al. 2015; Bartel 2018 on fea-
tures). To have a comparable and quantitative baseline for
these analyses, we took advantage of themanually curated
human microRNA complement in MirGeneDB (510 genes
excluding variant and noncanonical annotations) and pro-
filed these bona fide microRNAs in all 298 RNA atlas sam-
ples, as well.
The results are summarized in Figure 1B (Supplemental

Files 2, 3). Briefly, there is an obvious difference between
bona fide annotations (MirGeneDB, blue dots) and the
RNA atlas predictions. Only two RNA atlas candidates fulfil
all three criteria for microRNA annotation (RNAATLASMI
R06498 and RNAATLASMIR06278), but all other candi-
dates show either only the expression of one arm, or below
average values for 5′ homogeneity and in cluster ratio.
However, the two candidates show extremely low expres-
sion values (below 5 reads/sample, not shown)—far below
what is widely accepted as a biological relevant level

(Witwer and Halushka 2016)—and aberrant secondary
structures (Fig. 1C): with 51 nt in length, RNAATLASMI
R06498 is shorter than any known canonical human
microRNA (smallest known are 52 nt in length Mir-374-
P1/P2) and with a hitherto not reported short loop of 7 nt.
RNAATLASMIR06278 shows exceptional secondary struc-
tures in the loop, deviating from the majority of canonical
hairpins and warranting further validations (such as the
behavior in Drosha- or Dicer-knockdown data [Kim et al.
2016]). In terms of novelty of these rather unlikely
microRNA candidates, Lorenzi identified RNAATLASMI
R06278 as being annotated in miRCarta, the repository of
possible small noncoding microRNA candidates (Backes
et al. 2018) (ID hsa-2734-4932.1), but missed that also
RNAATLASMIR06498 is found there (ID hsa-5546.1), and
thus neither shouldbe seen asnovelmicroRNAcandidates.
At first glance it might seem advantageous to include

more annotations when looking for biomarkers or thera-
peutic targets, regardless whether or not they are riddled
with false-positives. However, poorly curated microRNA
reference and unclear criteria for microRNA annotation
can cause substantial downstream issues. For instance,
when using a nonbona fidemicroRNA in amodel organism
as template for the search for partially homologous se-
quences with supposed biological functions in human
(Blanco-Domínguez et al. 2021); when conducting se-
quencemotif searchesona subset of supposedmicroRNAs
that include other RNA fragments (Garcia-Martin et al.
2022); or when interpreting the functions of a snoRNA in
the light of microRNAbiology (Chinnappa et al. 2022). Fur-
ther, because small RNAbulk sequencingprovidesonly rel-
ative abundance and therefore requires data normalization
of expression values, interpretations will be affected by
false positives, especially when they are highly expressed
(Hamaguchi et al. 2021). Among the RNA atlas candidates
are fragments of HY4, a known Y-RNA (Fig. 1B, pink), which
showa fivefold highermean expression than any other can-
didate. Y-RNAs do not enter the microRNA pathway and
therefore can be considered clear false positives (Nicolas
et al. 2012). Application of expensive and time-consuming
techniques downstream will be in vain when assuming
these fragments behave like microRNAs and, thus, the
use of a microRNA reference essentially free of false posi-
tives is highly recommended for profiling and mechanistic
experiments.
In summary, we show that Lorenzi et al., like many other

studies before, report large numbers of putatively novel
microRNAs which do not represent bona fide human
microRNAs, and hence do not advance the field. Predic-
tion tools were developed many years ago when only
few data were available and sensitivity for microRNA can-
didates, but not specificity to bona fide genes was their fo-
cus. Because the total number of false-positives increases
with the amount of input data, three conclusions can be
drawn: First, the output of prediction tools such as
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miRDeep2 and sRNAbench must not directly be interpret-
ed as novel microRNAs, but instead require stringent inter-
pretation in terms of score cut-off and also manual curation
with considerations of conservation, microRNA biogenesis
and structural features. Second, for the future, prediction
tools need to be adapted to large multitissue input data
sets to reduce the number of false positives, thus lowering
the downstream manual curation effort; and third, not the
repeated resequencing of similar organs, tissues and cell-
types, including cancer samples with aberrant expression
profiles, but the sequencing of rarely analyzed biological
samples or developmental time points might be the
source of few additional, hitherto undiscovered micro-
RNAs in human.

We therefore strongly advocate for the careful use of
microRNA prediction software for de novo discovery of
microRNAs in any organism and reinforce our claim that
the human microRNA complement, with ∼550 microRNA
genes, is quasi complete.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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