Skip to main content
. 2021 Oct 25;17(1-2):33–61. doi: 10.1007/s11481-021-10022-7

Table 2.

Impact of Drugs of Abuse on Microbiome, Metabolite, and Immune Markers. This table outlines the current literature on the effects of alcohol, opioids, stimulants, psychedelics, THC, and CBD on the microbiome

Species Sample Site Drug ROA Δ Microbiome Δ Metabolites Δ Immune response Citation
Rat

Intestine

Liver

Alcohol Oral Testing of LGG supplement -

LGG supplement reduced liver health and IP to near control levels

↑ Oxidative stress

↑ Carbonyl

↑ Nitrotyrosine

(Forsyth et al. 2009)
Mouse

Small Intestine

Large Intestine

Alcohol Oral

↓ Lactobacillus

↓ Lactococcus

↓ Leuconostoc

↓ Pediococcus

↑ Bacteroidetes

↑ Verrucomicrobia

↑ Akkermansia

-

↓ Reg3b

↓ Reg3g

↓ Defensin 5 ⍺

(Yan et al. 2011)
Mouse Feces Alcohol Oral

↓ Firmicutes

↓ Bacteriodetes

↑ Proteobacteria

↑ Actinobacteria (*4)

↑ Endotoxins

Endotoxemia reduced by Lactobacillus rhamnosus (LGG) probiotic

↑ TNF-alpha

(Bull-Otterson et al. 2013)
Mouse Feces Alcohol Oral

Lactobacillus

Akkermansia Muciniphilia

- - (Hartmann et al. 2013)
Mouse Feces Alcohol Intragastric Lactobacillus ↓ LCFA ↓ Genes involved in the biosynthesis of saturated fatty (Chen et al. 2014)
Mouse Feces Alcohol CIE

↑ Alistipes

↓ Clostridium IV

↓ Clostridium XIVb

↓ Coprococcus

↓ Dorea

↓ Alpha Diversity (CIE)

↑ Akkermansia (CIE)

Decrease in SCFA producers Similar reductions in Dorea and Coprococcus in chronic social stress models have been correlated to increases in proinflammatory cytokines IL-6 and MCP-1 (Bailey et al. 2011) (Peterson et al. 2017)
Mouse

Feces

Colon

Alcohol Oral

↓ Bacteroidetes

↓ Firmicutes

↑ Proteobacteria

- ↑ IL-1β (Kang et al. 2017)
Rat

Jejunum

Colon

Alcohol Oral

↑ Bacteroidetes

↓ Firmicutes

↑ Proteobacteria

↑ Blood Endotoxin ↑ Amino Acid metabolism (arginine and proline) (Fan et al. 2018)
Mouse

Feces

Liver

Colon

Alcohol Oral

↑ Bacteroidetes

↑ Verrucomicrobia

↑ Firmicutes

↓ Ruminococcaceae

↑ Odoribacter

No significant change in SCFA

↑ Serotonin

↑ Taurine

↑ Bile acid level

(Wang et al. 2018b)
Rat Feces Alcohol Oral

↓ Diversity

↓ Lactobacillus

↓ Peptostreptococcaceae

↓ Turicibacter

↑ Parabacteroides

↑ Barnesiellaceae

↑ Bacteroides

- - (Kosnicki et al. 2019)
Mouse Feces Alcohol Intragastric

↓ Bacteroidetes

↑ Firmicutes

↓Muribaculum intestinales

- - (Lee et al. 2020)
Human Jejunum Alcohol Oral (Bode et al. 1984)
Human Feces Alcohol Oral

↓ Bifidobacteria

↓ Enterococci

↓ Lactobacilli

- - (Kirpich et al. 2008)
Human Feces Alcohol*(1) See below

↓ Bacteroidetes

↑ Proteobacteria

↑ Fusobacteria

- - (Chen et al. 2011)
Human Colon Alcohol Oral

↓ Bacteroidetes

↑ Proteobacteria

↑ Endotoxin

↑ Cytokines

↑ Oxidase

(Mutlu et al. 2012)
Human Urine Alcohol Oral - ↑ Blood LPS

↑ TNF⍺

↑ IL-6

(Leclercq et al. 2012)
Human Feces, Urine Alcohol Oral

↓ Lactobacillus

↓ Bifidobacterium

(reversed during withdrawal)

↓ Ruminococcae (*5)

↑ Lachnospiraceae (*5)

↓ F. Prausnitzii (*5)

MCFA lower in control and withdrawal,

Phenol higher in AUD (*2)

Drawing connection of leaky gut (IP) to dysbiosis (Leclercq et al. 2014)
Human Feces Alcohol Oral

Bacteroidetes

↓ Firmicutes

- - (Volpe et al. 2014)
Human Feces Alcohol Oral -

↑ Tetradecane

↓ Fatty alcohols

↓ Propionate

↓ Isobutyrate

↓ Caryophyllene

↓ Camphene

↓ Dimethyl-disulfide

↓ Dimethyl-trisulfide

- (Couch et al. 2015)
Human Feces Alcohol Oral

↑ Proteobacteria

↓ Faecalibacterium

↑ Sutterella

↑ Holdemania

↑ Clostridium

↓ Butyric acid - (Bjorkhaug et al. 2019)
Mouse Feces Cocaine IP

↓ Mucispirillum

↓ Ruminococcaceae

↓ Lachnospiracea

↓ Pseudoflavonifractor

↓ Butrycicoccus

-

↑ NF-κB

↑ IL-1β

↑ IL-18

↑ CCL-2

↑ CCL-7

↑ CXCL-10

↑CCL-11

(Chivero, et al. 2019)
Rat Feces Cocaine Volatized

↓ Alpha Diversity

↓ Beta Diversity

↓ Aromatic amino acid decarboxylase gene - (Scorza et al. 2019)
Human Feces Cocaine Active Users

Bacteroidetes

↓ Firmicutes

No Change in Blood LPS ↑ Interferon-γ (Volpe et al. 2014)
Rat Feces Methamphetamine IP

↑ Diversity

↓ Acidaminococcaceae

↓ Phascolarctobacterium

↑ Ruminococcaceae

↓ Propionate - (Ning et al. 2017)
Human Rectal swab Methamphetamine Active users

↑ Finegoldia

↑ Parvimonas

↑ Peptoniphilus

↑ Porphyromonas

↓ Butyricicoccus

↓ Faecalibacterium

- - (Cook et al. 2019)
Human Feces

Heroin

Methamphetamine

Ephedrine

Active Users

↑ Thauera,

↑ Paracoccus

↑ Prevotella

Not examined - (Xu et al. 2017)
Human Feces Opioids Active Users ↑ Alpha Diversity - - (Vincent et al. 2016)
Human Feces Opioids Active Users

↓Bacteriodacea

↓Clostridiales XI

↓Ruminococcaceae

↑ Amino Acid metabolism

↑ Degradation of BCAA

↑Endotoxemia

↑ IL-6

(Acharya et al. 2017)
Human Feces Opioids Active Users

↑ Bifidobacterium

↑ Prevotella

- - (Barengolts et al. 2018)
Mouse

Blood

Lavage

Morphine Passive Exposure model of sepsis

Staphylococcus

Enterococcus

↑IL-17 vial TLR2

↑Intestinal inflammation

(Meng et al. 2015)
Mouse Feces Morphine Passive Exposure

Bacteroidetes

↑ Firmicutes

↓ Primary Bile Acids

↓ Secondary Bile Acids

↑IL-17

↓IL-10

(Banerjee et al. 2016)
Mouse Feces Morphine Passive Exposure Enterococcus Faecalis

↓ Bile Acids (DCA)

↑ Saturated Fats

↑ Phospytidylethanolamine (PE)

- (Wang et al. 2018a)
Mouse Feces Morphine IP (intermittant and sustained)

↑ Ruminococcus (int)

↓ Lactobacillus (int)

↑ Clostridium (sust.)

↑ Rikenellaceae (sust.)

- - (Lee et al. 2018a)
Mouse Feces Oxycodone IVSA (Hakimian et al. 2019)
Non Human Primate Feces Morphine Passive

↑ Methanobacteriaceae

↓ Streptococcaceae

↓ Pasturellaceae

↓ Primary Bile Acids

↑ Secondary Bile Acids

- (Sindberg et al. 2019)
Rats Caecum Nicotine Oral Bifidobacterium

↓ Acetic acid

↓ Propionic acid

↓ Butyric acid

↓ Valeric acid

- (Tomoda et al. 2011)
Mice Large intestine Nicotine Oral

Clostridium clostridiforme

Lactoccoci

Ruminococcus

Enterobacteriaceace

(Relative abundances)

-

↓ Intestinal inflammatory response

↓ Activation of nuclear factor-κβ

(Wang et al. 2012)
Mice Colon, ileum Nicotine Oral Lachnospiraeae (colon) -

↑ Cxcl2 (ileum)

↓ IFN-γ (ileum)

↑ IL-6 (colon)

↓ TGF-β (colon)

(Allais et al. 2016)
Human Feces Nicotine Oral

Prevotella

Bacteroides

- - (Benjamin et al. 2012)
Human Feces Nicotine Oral

Firmicutes

Bacteroidetes

Proteobacteria

Actinobacteria

- - (Biedermann et al. 2013)
Human Upper intestinal tract Nicotine Oral

↑ Alpha diversity

↑ Beta diversity

D. invisus

M. micronuciforms

- - (Vogtmann et al. 2015)
Human Mouth Nicotine Oral

↓ Proteobacteria

↓ Capnocytophaga

↓ Peptostreptococcus

↓ Leptotrichia

↑ Atopobium

↑ Streptococcus

- - (Wu et al. 2016)
Human Feces Nicotine

Oral

Gut

↓ Shannon diversity (Fecal)

Prevotella

Bacteroides

- - (Stewart et al. 2018)
Human Feces Nicotine Oral

↑ Bacteroidetes

↓ Firmicutes

↓ Proteobacteria

- - (Lee et al. 2018b)
Human Upper intestine Nicotine Oral

Firmicutes

Rothia

Prevotella

Neisseria

↓ Diversity

(relative abundance)

- - (Shanahan et al. 2018)
Human Ileum None (testing Chron’s disease (CD)) NA F.Prausnitzii associated with higher CD

↓ IL-12

↓ IFNɣ

↑ IL-10

Colitis

Dysbiosis mediated with F. Prausnitzii supplement

(Sokol et al. 2008)
Mouse Feces Cannabis Oral

Akkermansia

Firmicutes:Bacterioides

THC blocked weight gain from high fat diet (Cluny et al. 2015)
Human - Cannabis - - - Highly palatable food increased endogenous cannabinoids was associated with hedonic eating (Monteleonei et al. 2012)
Rat - Cannabis - - - Fasting ↑ anandamide (Gomez et al. 2002)