Table 2.
Impact of Drugs of Abuse on Microbiome, Metabolite, and Immune Markers. This table outlines the current literature on the effects of alcohol, opioids, stimulants, psychedelics, THC, and CBD on the microbiome
Species | Sample Site | Drug | ROA | Δ Microbiome | Δ Metabolites | Δ Immune response | Citation |
---|---|---|---|---|---|---|---|
Rat |
Intestine Liver |
Alcohol | Oral | Testing of LGG supplement | - |
LGG supplement reduced liver health and IP to near control levels ↑ Oxidative stress ↑ Carbonyl ↑ Nitrotyrosine |
(Forsyth et al. 2009) |
Mouse |
Small Intestine Large Intestine |
Alcohol | Oral |
↓ Lactobacillus ↓ Lactococcus ↓ Leuconostoc ↓ Pediococcus ↑ Bacteroidetes ↑ Verrucomicrobia ↑ Akkermansia |
- |
↓ Reg3b ↓ Reg3g ↓ Defensin 5 ⍺ |
(Yan et al. 2011) |
Mouse | Feces | Alcohol | Oral |
↓ Firmicutes ↓ Bacteriodetes ↑ Proteobacteria ↑ Actinobacteria (*4) |
↑ Endotoxins |
Endotoxemia reduced by Lactobacillus rhamnosus (LGG) probiotic ↑ TNF-alpha |
(Bull-Otterson et al. 2013) |
Mouse | Feces | Alcohol | Oral |
↓ Lactobacillus ↑ Akkermansia Muciniphilia |
- | - | (Hartmann et al. 2013) |
Mouse | Feces | Alcohol | Intragastric | ↓ Lactobacillus | ↓ LCFA | ↓ Genes involved in the biosynthesis of saturated fatty | (Chen et al. 2014) |
Mouse | Feces | Alcohol | CIE |
↑ Alistipes ↓ Clostridium IV ↓ Clostridium XIVb ↓ Coprococcus ↓ Dorea ↓ Alpha Diversity (CIE) ↑ Akkermansia (CIE) |
Decrease in SCFA producers | Similar reductions in Dorea and Coprococcus in chronic social stress models have been correlated to increases in proinflammatory cytokines IL-6 and MCP-1 (Bailey et al. 2011) | (Peterson et al. 2017) |
Mouse |
Feces Colon |
Alcohol | Oral |
↓ Bacteroidetes ↓ Firmicutes ↑ Proteobacteria |
- | ↑ IL-1β | (Kang et al. 2017) |
Rat |
Jejunum Colon |
Alcohol | Oral |
↑ Bacteroidetes ↓ Firmicutes ↑ Proteobacteria |
↑ Blood Endotoxin | ↑ Amino Acid metabolism (arginine and proline) | (Fan et al. 2018) |
Mouse |
Feces Liver Colon |
Alcohol | Oral |
↑ Bacteroidetes ↑ Verrucomicrobia ↑ Firmicutes ↓ Ruminococcaceae ↑ Odoribacter |
No significant change in SCFA |
↑ Serotonin ↑ Taurine ↑ Bile acid level |
(Wang et al. 2018b) |
Rat | Feces | Alcohol | Oral |
↓ Diversity ↓ Lactobacillus ↓ Peptostreptococcaceae ↓ Turicibacter ↑ Parabacteroides ↑ Barnesiellaceae ↑ Bacteroides |
- | - | (Kosnicki et al. 2019) |
Mouse | Feces | Alcohol | Intragastric |
↓ Bacteroidetes ↑ Firmicutes ↓Muribaculum intestinales |
- | - | (Lee et al. 2020) |
Human | Jejunum | Alcohol | Oral | (Bode et al. 1984) | |||
Human | Feces | Alcohol | Oral |
↓ Bifidobacteria ↓ Enterococci ↓ Lactobacilli |
- | - | (Kirpich et al. 2008) |
Human | Feces | Alcohol*(1) | See below |
↓ Bacteroidetes ↑ Proteobacteria ↑ Fusobacteria |
- | - | (Chen et al. 2011) |
Human | Colon | Alcohol | Oral |
↓ Bacteroidetes ↑ Proteobacteria |
↑ Endotoxin |
↑ Cytokines ↑ Oxidase |
(Mutlu et al. 2012) |
Human | Urine | Alcohol | Oral | - | ↑ Blood LPS |
↑ TNF⍺ ↑ IL-6 |
(Leclercq et al. 2012) |
Human | Feces, Urine | Alcohol | Oral |
↓ Lactobacillus ↓ Bifidobacterium (reversed during withdrawal) ↓ Ruminococcae (*5) ↑ Lachnospiraceae (*5) ↓ F. Prausnitzii (*5) |
MCFA lower in control and withdrawal, Phenol higher in AUD (*2) |
Drawing connection of leaky gut (IP) to dysbiosis | (Leclercq et al. 2014) |
Human | Feces | Alcohol | Oral |
↑ Bacteroidetes ↓ Firmicutes |
- | - | (Volpe et al. 2014) |
Human | Feces | Alcohol | Oral | - |
↑ Tetradecane ↓ Fatty alcohols ↓ Propionate ↓ Isobutyrate ↓ Caryophyllene ↓ Camphene ↓ Dimethyl-disulfide ↓ Dimethyl-trisulfide |
- | (Couch et al. 2015) |
Human | Feces | Alcohol | Oral |
↑ Proteobacteria ↓ Faecalibacterium ↑ Sutterella ↑ Holdemania ↑ Clostridium |
↓ Butyric acid | - | (Bjorkhaug et al. 2019) |
Mouse | Feces | Cocaine | IP |
↓ Mucispirillum ↓ Ruminococcaceae ↓ Lachnospiracea ↓ Pseudoflavonifractor ↓ Butrycicoccus |
- |
↑ NF-κB ↑ IL-1β ↑ IL-18 ↑ CCL-2 ↑ CCL-7 ↑ CXCL-10 ↑CCL-11 |
(Chivero, et al. 2019) |
Rat | Feces | Cocaine | Volatized |
↓ Alpha Diversity ↓ Beta Diversity |
↓ Aromatic amino acid decarboxylase gene | - | (Scorza et al. 2019) |
Human | Feces | Cocaine | Active Users |
↑ Bacteroidetes ↓ Firmicutes |
No Change in Blood LPS | ↑ Interferon-γ | (Volpe et al. 2014) |
Rat | Feces | Methamphetamine | IP |
↑ Diversity ↓ Acidaminococcaceae ↓ Phascolarctobacterium ↑ Ruminococcaceae |
↓ Propionate | - | (Ning et al. 2017) |
Human | Rectal swab | Methamphetamine | Active users |
↑ Finegoldia ↑ Parvimonas ↑ Peptoniphilus ↑ Porphyromonas ↓ Butyricicoccus ↓ Faecalibacterium |
- | - | (Cook et al. 2019) |
Human | Feces |
Heroin Methamphetamine Ephedrine |
Active Users |
↑ Thauera, ↑ Paracoccus ↑ Prevotella |
Not examined | - | (Xu et al. 2017) |
Human | Feces | Opioids | Active Users | ↑ Alpha Diversity | - | - | (Vincent et al. 2016) |
Human | Feces | Opioids | Active Users |
↓Bacteriodacea ↓Clostridiales XI ↓Ruminococcaceae |
↑ Amino Acid metabolism ↑ Degradation of BCAA |
↑Endotoxemia ↑ IL-6 |
(Acharya et al. 2017) |
Human | Feces | Opioids | Active Users |
↑ Bifidobacterium ↑ Prevotella |
- | - | (Barengolts et al. 2018) |
Mouse |
Blood Lavage |
Morphine | Passive Exposure model of sepsis |
↑Staphylococcus ↑Enterococcus |
↑IL-17 vial TLR2 ↑Intestinal inflammation |
(Meng et al. 2015) | |
Mouse | Feces | Morphine | Passive Exposure |
↓ Bacteroidetes ↑ Firmicutes |
↓ Primary Bile Acids ↓ Secondary Bile Acids |
↑IL-17 ↓IL-10 |
(Banerjee et al. 2016) |
Mouse | Feces | Morphine | Passive Exposure | ↑ Enterococcus Faecalis |
↓ Bile Acids (DCA) ↑ Saturated Fats ↑ Phospytidylethanolamine (PE) |
- | (Wang et al. 2018a) |
Mouse | Feces | Morphine | IP (intermittant and sustained) |
↑ Ruminococcus (int) ↓ Lactobacillus (int) ↑ Clostridium (sust.) ↑ Rikenellaceae (sust.) |
- | - | (Lee et al. 2018a) |
Mouse | Feces | Oxycodone | IVSA | (Hakimian et al. 2019) | |||
Non Human Primate | Feces | Morphine | Passive |
↑ Methanobacteriaceae ↓ Streptococcaceae ↓ Pasturellaceae |
↓ Primary Bile Acids ↑ Secondary Bile Acids |
- | (Sindberg et al. 2019) |
Rats | Caecum | Nicotine | Oral | ↓ Bifidobacterium |
↓ Acetic acid ↓ Propionic acid ↓ Butyric acid ↓ Valeric acid |
- | (Tomoda et al. 2011) |
Mice | Large intestine | Nicotine | Oral |
↑ Clostridium clostridiforme ↓ Lactoccoci ↓ Ruminococcus ↓ Enterobacteriaceace (Relative abundances) |
- |
↓ Intestinal inflammatory response ↓ Activation of nuclear factor-κβ |
(Wang et al. 2012) |
Mice | Colon, ileum | Nicotine | Oral | ↑ Lachnospiraeae (colon) | - |
↑ Cxcl2 (ileum) ↓ IFN-γ (ileum) ↑ IL-6 (colon) ↓ TGF-β (colon) |
(Allais et al. 2016) |
Human | Feces | Nicotine | Oral |
↑ Prevotella ↑ Bacteroides |
- | - | (Benjamin et al. 2012) |
Human | Feces | Nicotine | Oral |
↓ Firmicutes ↑ Bacteroidetes ↑ Proteobacteria ↓ Actinobacteria |
- | - | (Biedermann et al. 2013) |
Human | Upper intestinal tract | Nicotine | Oral |
↑ Alpha diversity ↑ Beta diversity ↑ D. invisus ↑ M. micronuciforms |
- | - | (Vogtmann et al. 2015) |
Human | Mouth | Nicotine | Oral |
↓ Proteobacteria ↓ Capnocytophaga ↓ Peptostreptococcus ↓ Leptotrichia ↑ Atopobium ↑ Streptococcus |
- | - | (Wu et al. 2016) |
Human | Feces | Nicotine |
Oral Gut |
↓ Shannon diversity (Fecal) ↑ Prevotella ↓ Bacteroides |
- | - | (Stewart et al. 2018) |
Human | Feces | Nicotine | Oral |
↑ Bacteroidetes ↓ Firmicutes ↓ Proteobacteria |
- | - | (Lee et al. 2018b) |
Human | Upper intestine | Nicotine | Oral |
↑ Firmicutes ↑ Rothia ↓ Prevotella ↓ Neisseria ↓ Diversity (relative abundance) |
- | - | (Shanahan et al. 2018) |
Human | Ileum | None (testing Chron’s disease (CD)) | NA | ↓ F.Prausnitzii associated with higher CD |
↓ IL-12 ↓ IFNɣ ↑ IL-10 Colitis Dysbiosis mediated with F. Prausnitzii supplement |
(Sokol et al. 2008) | |
Mouse | Feces | Cannabis | Oral |
↑ Akkermansia ↑ Firmicutes:Bacterioides |
THC blocked weight gain from high fat diet | (Cluny et al. 2015) | |
Human | - | Cannabis | - | - | - | Highly palatable food increased endogenous cannabinoids was associated with hedonic eating | (Monteleonei et al. 2012) |
Rat | - | Cannabis | - | - | - | Fasting ↑ anandamide | (Gomez et al. 2002) |