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Abstract

Decoding the epigenomic landscapes in diverse tissues and cell types is fundamental to 

understanding molecular mechanisms underlying many essential cellular processes and human 

diseases. Recent advances in artificial intelligence provide new methods and strategies for 

imputing unknown epigenomes based on existing data, yet how to reveal the predictive 

relationships among epigenetic marks remains largely unexplored. Here we present a machine 

learning approach for epigenomic imputation and interpretation. Through dissection of the spatial 

contributions from six histone marks, we reveal the prevalent and asymmetric cross-prediction 

relationships among these marks. Meanwhile, our approach achieved high predictive performance 

on held-out prospective epigenomes and outperformed the state-of-the-art. To facilitate future 

research, we further applied this approach to impute a total of 527 and 2,455 unavailable genome-

wide histone modification signal tracks for the ENCODE3 and Roadmap datasets, respectively.
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Introduction

Biomolecules cooperatively orchestrate a variety of cellular processes through decoding 

genetic information from the human genome, epigenetically modifying DNAs and 

chromosomes, and chemophysically interacting with each other to catalyze metabolic 

reactions 1–4. These cellular processes underlie the molecular mechanisms of tissue-

specific gene expression and complex human diseases 5–8. To understand the genome-

wide signals associated with diverse tissues and cell types, the Encyclopedia of DNA 

Elements (ENCODE) 9,10 and Roadmap 11 Epigenomics Consortiums have systematically 

characterized the in vivo biochemical signatures including histone modification, chromatin 

accessibility, and DNA methylation. These data collections have provided us invaluable 
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insights into the functions and regulations of epigenetic marks under different tissue and 

cellular conditions.

However, our available information is far from complete and even for these two 

comprehensive datasets, only a subset of all possible mark-cell type combinations were 

measured experimentally owing to resource and sample availability. An alternative is 

building in silico models to impute unknown epigenomic profiles based on existing ones. 

Epigenomic imputation methods, e.g. ChromImpute 12, PREDICTD 13, and Avocado 14, 

have been created to address this problem, aiming at accurate and precise imputation 

of missing data. In addition to pursuing higher predictive performance on epigenomic 

imputation, a major challenge is how to understand an algorithm and reveal the underlying 

biological insights from a new computational perspective. Approaches have been developed 

to define chromatin states associated with cell-type specific biological activities 15–17. 

Yet the modulatory relationships and interplays among a multitude of epigenetic marks 

in computational models remain largely unexplored, especially given the ever-growing 

epigenomics datasets.

In this work, we present an interpretable machine learning approach, Ocelot (Optimized 

Complementation of Epigenomes by neuraL netwOrk and Tree-based modeling), for 

predicting the epigenomes across cell types. Ocelot leverages both the cutting-edge tree-

based and deep learning models to exploit available data. It integrates information from 

mark-specific signals across cell types, cell type-specific signals across epigenetic marks, 

and DNA sequence to impute epigenomic signals. Meanwhile, the neighboring information 

around the center of interest is considered to improve the prediction accuracy. This approach 

ranked first in the recent ENCODE Imputation Challenge, in which computational methods 

were developed and comprehensively evaluated on a large testing dataset of 51 held-out 

prospective epigenomes. Moreover, we investigated the cross-histone modulation patterns in 

Ocelot based on game theory analysis, and revealed the asymmetric predictive relationships 

among six representative histone marks. Finally, to facilitate potential research that requires 

complete epigenomes, we further applied our approach to impute 527 (51.31%) missing 

entries in the ENCODE3 dataset of 13 histone marks in 79 cell types and 2,455 (71.60%) 

missing entries in the Roadmap Epigenomics dataset of 27 histone marks in 127 cell types, 

corresponding to a total of 361 billion predicted values.

Results

Overview of experimental design

Key challenges in epigenome imputation include how to exploit existing data to improve 

imputation accuracy and reveal the predictive relationships among epigenetic marks. We 

address this problem by developing tree-based lightGBM 18 and deep learning models that 

integrate signal tracks of multiple epigenetic marks across tissues and cell types (Fig. 1a). 

For each mark-cell type combination, e.g. CiMj (cell type Ci and mark Mj in Fig. 1b), we 

leverage available information from other cell types of the same mark (row Ci), and other 

marks in the same cell type (column Mj). To understand the regulatory relationships across 

marks in Ocelot, we calculate the spatial contribution of each mark to predicting every other 

mark, where the upstream and downstream neighboring genomic regions are considered as 
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well (Fig. 1c). Then the “predicting” and “being predicted” strengths of each pair of marks 

are summarized to reveal the cross-prediction patterns among marks (Fig. 1d). Finally, to 

evaluate the predictive performance, our in silico imputations are compared with held-out in 
vivo measurements (Fig. 1e). Multiple scoring metrics are used to comprehensively evaluate 

the quality of imputation, including global correlations and mean squared errors (MSEs), 

and local MSEs and overlapping for the top 1% − 5% regions (Fig. 1f).

In the tree-based lightGBM model, we consider information from both epigenomic tracks 

and DNA sequences (Fig. 2a). Specifically, for each 25bp target bin under consideration, we 

extract information from the neighboring 275bp = 11 bins × 25bp regions. We condense the 

information and define the “MMMN” features, which are the (1) Maximum, (2) Minimum, 

(3) Mean of each 25bp bin, and (4) the Number of unique values within each 25bp bin in 

the epigenomic tracks. To reduce the potential effect of sequencing biases in a specific cell 

type, we further define the “ΔMMMN” features, which are calculated from the Δsignal track 

(the difference between this track and the average signal across cell types). When Ntrack is 

the total number of cell type-specific and mark-specific feature tracks, the total number of 

epigenetic features will be 11 bins × 8 MMMN-ΔMMMN features × Ntrack. In addition to 

epigenomic tracks, we also considered the DNA sequence by one-hot encoding three 25bp 

bins, resulting in another 300 features = 3 bins × 25bp × 4 nucleotides. Finally, these two 

types of features are used to train a lightGBM model, which predicts the one target value for 

the target bin.

Regarding the neural network, a commonly used design in functional genomics and 

epigenomics is the end-to-end model, which accepts a genomic region of multiple positions 

as the input and predicts one target value. This design works well when the number 

of input channels is small (e.g. models using DNA sequence only) or the depth of the 

network structure is relatively shallow. However, when the neural network becomes deep 

and complex (e.g. millions of parameters) with large numbers of input channels, the end-to-

end model will become extremely time-consuming, especially for tasks of genome-wide 

predictions. A time-efficient alternative with high accuracy is the many-to-many model 

widely used in image segmentation, which simultaneously outputs multiple predictions 19. 

For this epigenomic imputation task, another challenge is the resolution shift from the input 

1bp resolution to the output 25bp resolution. We therefore design a special many-to-many 

deep neural network model, which automatically makes predictions for multiple bins at 25bp 

resolution. This model considers long-range upstream and downstream information, with the 

input length of 3200bp = 128 bins × 25bp (Fig. 2b). We directly use the signal tracks as 

inputs without any feature extraction. Similar to the tree-based model, we also use Δsignal 

tracks as extra channels. Moreover, the DNA sequence is one-hot encoded into another four 

channels, corresponding to four types of nucleotides. The total number of channels will be 

2 × Ntrack + 4, where Ntrack is the number of cell type-specific and mark-specific feature 

tracks. Based on these inputs, we build a deep convolutional neural network model that 

has two encoders and one decoder. We first define two types of building blocks: (1) the 

encoder block of Pooling-Convolution-Convolution (PCC) layers, and (2) the decoder block 

of Upscaling-Convolution-Convolution (UCC) layers. The encoder gradually decreases the 

length of the input and increases the number of channels, whereas the decoder works in 

an opposite way. Four and two PCC blocks are used in the encoder 1 and encoder 2, 
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respectively. And four UCC blocks are used in the decoder. To alleviate the information 

decay issue of deep neural networks, we further added concatenation layers between the 

encoder 1 and the decoder. Finally, this neural network simultaneously outputs 128 values, 

corresponding to the input 128 bins.

Ocelot reveals spatial regulatory relationships among epigenetic marks

To investigate the predictive relationships among histone marks in Ocelot, for each histone 

mark pair (mark A and mark B), we calculated the pairwise Shapley values to interpret 

predictions 20,21. Specifically, we analyzed two types of models: (1) using “predictor” 

mark A as a feature to predict “target” mark B, and (2) using mark B to predict mark 

A. The pairwise absolute SHAP values of six representative histone marks (H3K27ac, 

H3K27me3, H3K36me3, H3K4me1, H3K4me3, H3K9me3) are shown as heatmaps in Fig. 

3a, where the predictor marks are listed vertically on the left and the target marks are 

listed horizontally on the top. These heatmaps were created from 10 bootstraps and the 

original SHAP values of each bootstrap are shown in Supplementary Table 1 (see details 

in Methods – SHAP analysis). In each model, we extracted features from the neighboring 

genomic regions around the center bin of interest: every non-overlapping 25bp bin from 

upstream −125bp to downstream 125bp. These 11 bins are shown along the x-axis in each 

heatmap, representing the spatial distribution of contributions. In general, the high absolute 

SHAP value (red) of a feature indicates its relatively large contribution to the prediction. 

For most predictor-target pairs, the strongest feature resides in the center and the importance 

gradually decreases in the distal intervals. This indicates that in addition to the immediate 

genomic interval of interest, the epigenetic signals in neighboring bins also contribute to 

epigenomic imputation. For example, considering the H3K27ac-H3K4me3 pair, there are 

multiple contributing features distributed in the neighboring region in addition to the center 

bin.

We further analyze the overall prediction contribution of a specific mark against all other 

marks (Fig. 3b). For each mark under consideration, we present all the pairwise SHAP 

values in Fig. 3a as colored circles when treating it as the predictor (y-axis) or the target 

(x-axis). If a circle is above the diagonal dashed line, it indicates that this specific mark has 

larger predictive power (higher absolute SHAP values) as features in predicting the other 

target mark. If the predictor-target relationship is symmetric, the circles should distribute 

along the diagonal. In fact, many predictor-target pairs are off the diagonal, indicating the 

prevalent asymmetric cross-prediction relationships among these histone modifications.

To quantitatively characterize this, we define a statistics, Predictive Power Index (PPI), 

which is the ratio of the average predictor SHAP value over the average target SHAP 

value. If PPI of a histone modification is higher than one, it means this histone has higher 

contributions as a predictor than being a target predicted by others. We find that H3K27me3 

participates more as a predictor with a PPI value of 1.26, whereas H3K27ac is more likely 

being a target with a PPI value of 0.852. The other four histone marks are more balanced 

serving as both a predictor and a target, with a PPI value ranging from 0.969 and 1.08. 

We further calculated Pearson’s correlation of SHAP values between (1) using mark A to 

predict mark B and (2) using mark B to predict mark A in all histone mark pairs (Fig. 3c). 
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Lower correlation (dark blue) indicates higher level of asymmetry in cross-regulation and 

the direction of stronger predictive power is represented by the arrow. We observe a strong 

asymmetric relationship between H3K27me3 and H3K27ac, possibly due to the fact that the 

trimethylation and acetylation can not coincide on the same lysine. In fact, dynamic and 

reciprocal changes of H3K27me3 and H3K27ac have been observed in the promoter regions 

of related genes during decidualization 22. The ratio of dimethylation and trimethylation of 

H3K27 is associated with its acetylation level in embryonic stem cells 23. Compared with 

these experimental observations, we provide a new computational approach to investigate 

the complete pairwise relationships among marks with spatial distributions.

In addition to analysis at the bin level, we further summed the SHAP values of all 11 bins 

and obtained a heatmap matrix at the histone mark level (Fig. 3d). The accumulated values 

for each row (predicting others) and column (being predicted) are shown as bars on the 

left and top. Meanwhile, for each histone mark pair, we calculated Pearson’s correlation 

between the average signals of all available cell types (Fig. 3e). In both matrices, H3K27ac 

has higher SHAP values or correlations with H3K4me1 and H3K4me3. However, the 

correlation is symmetric and undirected for a pair of marks A and B, whereas SHAP 

captures the asymmetric and directional predictive importance, and the feature importance 

of A predicting B is not equal to the feature importance of B predicting A. For example, 

the first rows of two matrices in Fig. 3d (SHAP values of H3K27ac predicting other marks) 

and Fig. 3e (H3K27ac’s correlations with other marks) have a similar pattern and trend. 

Yet the first columns of two matrices have different patterns - the largest contribution to 

H3K27ac’s predictions comes from H3K4me1, whereas H3K27ac has the largest correlation 

with H3K4me3 instead of H3K4me1. Moreover, the SHAP analysis of machine learning 

models reveal the spatial distributions of contributions, while correlations only reflect the 

global trends between two signals.

Ocelot achieved high predictive performance on held-out prospective data

To stringently and systematically evaluate the predictive performance of Ocelot, we 

participated in the recent ENCODE Imputation Challenge, where a large-scale dataset of 

363 epigenomes of 35 marks in 51 cell types were used to train and benchmark different 

methods. Here we first compared Ocelot with a recent deep learning method, Avocado 14, 

which reported lower imputation MSEs than PREDICTD 13 and ChromImpute 12. Nine 

scoring metrics were used to thoroughly compare the differences between the imputed 

and observed data globally and locally on specific peaks or functional regions. The first 

three metrics are (1) Pearson’s correlation, (2) mean squared error (MSEglobal), and (3) 

Spearman’s correlation between the predicted and observed values across the entire human 

genome. The next three metrics are MSEs across genomic regions that are annotated as (4) 

promoters (MSEProm), (5) genes (MSEGene), and (6) enhancers (MSEEnh). The last three 

metrics are (7) MSE weighted by the cross-cell-type variance (MSEvar), (8) MSE across 

genomic regions with top 1% observed values (MSE1obs) and (9) MSE across genomic 

regions with top 1% predicted values (MSE1imp).

The ENCODE Imputation Challenge blind testing dataset consists of a total of 51 

prospective epigenomes covering 8 assays (H3K27ac, H3K27me3, H3K36me3, H3K4me1, 
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H3K4me3, H3K9me3, DNase-seq, and ATAC-seq) in 12 cell types. These 51 testing 

epigenomes were newly acquired and only released for one-shot evaluation after predictions 

were made, so that potential information leakage or overfitting was completely avoided. 

For each testing mark-cell type pair, bootstrap subsampling from the human genome was 

performed 10 times to calculate scores for 10 subsampled region sets. At the mark level, 

the comparison of global Pearson’s correlations is shown in Supplementary Fig. 1. The top 

panel is the scatter plot of Ocelot (y-axis) and Avocado (x-axis). Each square represents 

a bootstrap subsampled region for a testing cell type. The bottom panel is the density 

distribution of Ocelot (solid line) and Avocado (dashed line). Since each mark contains 

multiple testing cell types, there are multiple peaks in the density distribution plot as we 

expected. For different types of marks, we observe varied correlation scores, reflecting 

different imputation difficulties. For example, H3K4me3 is relatively easy to predict with 

the highest Pearson’s correlations of 0.807 and 0.660 for Ocelot and Avocado, respectively. 

For marks related to the open chromatin, Ocelot also achieved relatively high correlations of 

0.683 and 0.623 for ATAC-seq and DNase-seq, respectively. Our predictions for H3K27ac 

and H3K36me3 have medium correlations around 0.5, whereas we only achieved relatively 

low correlations for the other three histone modifications (H3K27me3, H3K4me1 and 

H3K9me3). Similarly, we compared Ocelot and Avocado using the other 8 scoring metrics 

in Supplementary Fig. 2 – 9. The paired Wilcoxon signed-rank test was used to determine 

the statistical significance. Overall, at the mark level, Ocelot significantly outperformed 

Avocado in 62 out of 72 scores (86.1%; 72 scores = 8 marks × 9 scoring metrics). Similarly, 

at the mark-cell type combination level, Ocelot also significantly outperformed Avocado 

in 376 out of 459 scores (81.9%; 459 scores = 51 combinations × 9 scoring metrics; 

Supplementary Fig. 10 – 18). These results demonstrate that Ocelot has considerably 

advanced the imputation accuracy over Avocado when evaluated on completely unseen 

prospective data.

In addition to the MSE based evaluation metrics emphasized in Avocado 14, we further 

considered more non-MSE based metrics proposed in ChromImpute 12. As a pioneering 

approach, ChromImpute has shown better performance than Avocado on multiple non-MSE 

based metrics in epigenomics imputation 14. We included three non-MSE based metrics 

that focus on peak regions: (1) the overlap between the top 1% observed and imputed 

signals (Match1), (2) the overlap between the top 1% observed and 5% imputed signals 

(Catch1obs), and (3) the overlap between the top 5% observed and 1% imputed signals 

(Catch1imp). Now we have 5 non-MSE based metrics and 7 MSE based metrics to compare 

different methods. We trained ChromImpute on the challenge training data and benchmarked 

the performance of Ocelot, ChromImpute and Avocado on the challenge held-out testing set 

of 51 mark-cell type pairs using 12 evaluation metrics. For each testing pair, we calculated 

genome-wide evaluation scores through concatenating signals of 23 chromosomes. For 

each metric, we performed paired one-sided Wilcoxon signed-rank tests across 51 testing 

mark-cell type pairs. The significantly different ones are labeled by asterisks (* p-value 

< 0.01 and ** p-value < 0.001). In terms of the 5 non-MSE based metrics, Ocelot 

significantly outperformed ChromImpute in 2 correlation metrics and achieved comparable 

performance without statistical differences in the other three overlapping metrics (Fig. 4a 

and Supplementary Table 2). In terms of the 7 MSE based metrics, Ocelot significantly 
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outperformed ChromImpute in 6 metrics except for MSE1obs. We compared Ocelot with 

Avocado using these metrics as well. Ocelot significantly outperformed Avocado in 9 out of 

12 metrics, including 2 correlation metrics, Catch1obs and 6 MSE based metrics (Fig. 4b 

and Supplementary Table 2). In general, genomic regions of cell type-specific signals have 

larger cross-cell-type variance than those of constitutive signals. In addition to the global 

MSE that considers both cell type-specific and constitutive regions, the MSEvar metric 

(MSE weighted by the cross-cell-type variance) emphasizes more on cell type-specific 

regions through assigning larger weights to them. In terms of MSEvar, Ocelot significantly 

outperformed both ChromImpute (Fig. 4a) and Avocado (Fig. 4b).

To visualize the imputation result together with the mark-specific and cell type-specific 

signals, we plot an example 200-kbp region of the H3K27ac mark in the WERI-Rb-1 cell 

line, which was a held-out testing entry in the ENCODE Imputation Challenge (bottom right 

heatmap in Fig. 5). We first compare the imputed signal and the observed ground truth (top 

left in Fig. 5), both of which have a high peak in the middle. In general, signals of the 

same mark across cell types are similar. We find similar central high peaks for this 200-kbp 

region in most cell types as expected (left in Fig. 5). Yet this peak is missing in several cell 

types (C17/H1-hESC, C18/H9, C19/HAP-1, and C34/OCI-LY7), which complicates the task 

of cell type-specific imputation of histone marks. We also compare the six histone marks 

(H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me3, and H3K9me3), which display 

diverse patterns (top right in Fig. 5).

Analysis of key factors that determine predictive performance in Ocelot

To gain more insights into the epigenomic imputation problem, we further investigated 

factors that are potentially critical in the improved predictive performance of Ocelot. We 

first studied the effect of involving DNA sequences as input features. In ChromImpute and 

Avocado, DNA sequences are not used as features, whereas we included DNA in both 

lightGBM and neural network models in our challenge final submission. We re-trained 

models without DNA and compared the predictive performance on the same challenge test 

set using 12 evaluation metrics. In lightGBM, the predictive performances of 5 non-MSE 

based metrics are comparable between models with and without DNA sequence information 

(Supplementary Fig. 19 and Supplementary Table 3). Intriguingly, 3 out of 7 MSE based 

metrics are even better without DNA. In the neural network, only Pearson’s correlation 

significantly dropped without DNA, yet the change of median value is relatively small 

from 0.424 to 0.418 (Supplementary Fig. 20 and Supplementary Table 4). In addition, 

for the lightGBM model with DNA input, we calculated the absolute SHAP values that 

represent the contributions to predictions from three types of features: (1) DNA sequence, 

(2) epigenomic signals from other cell types, and (3) epigenomic signals from other marks 

(Supplementary Fig. 21). The average contribution (absolute SHAP value) per feature from 

DNA is only between 1.26% and 2.16% in six histone marks. Since the number of DNA 

features is smaller than the number of epigenomic features, the accumulated contribution 

from DNA is even smaller. Therefore, the majority (>97%) of contributions come from 

epigenomic signals in lightGBM models. We further re-ensembled predictions of Ocelot 

without DNA (Supplementary Fig. 22–23 and Supplementary Table 5) and the results 

are consistent with Ocelot with DNA (Fig. 4 and Supplementary Table 2). Ocelot still 
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significantly outperformed Avocado in 9 out of 12 metrics and ChromImpute in 8 out of 

12 metrics. Therefore, the contribution from DNA sequence is minimal. Ocelot is able to 

accurately impute epigenomes based on available epigenomic signals without DNA.

In Ocelot, we ensemble (1) predictions from lightGBM models, (2) predictions from 

neural network models, and (3) the quantile normalized average signal of a mark in all 

training cell types. The average is a common and straightforward approach in missing 

data imputation, which generally captures the constituent signals across cell lines. To 

investigate the relative importance of different machine learning models, we performed 

ablation experiments by excluding lightGBM models or neural network models. Without 

lightGBM, the average predictive performance significantly changed for 10 out of 12 

metrics, including decreases in 4 non-MSE based metrics (Spearman’s correlation, Match1, 

Catch1obs, and Catch1imp), and increases in 6 MSE based metrics (Supplementary Fig. 

24 and Supplementary Table 6). Without neural network models, the correlations and 

most MSE based metrics are comparable, whereas Match1, Catch1obs and Catch1imp 

significantly increase (Supplementary Fig. 25 and Supplementary Table 6). This is mainly 

due to the relatively poor performance of the neural network in predicting H3K4me1, 

consistent with the ensemble weights selection and cross-validation results - we excluded 

neural network prediction for H3K4me1 in the challenge final submission (see details in 

Methods – Ensemble modeling). Another key step in Ocelot is the quantile normalization of 

epigenomic signals. Without quantile normalization, 3 non-MSE based metrics and 6 MSE 

based metrics became significantly worse in lightGBM, and only Catch1imp became better 

(Supplementary Fig. 26 and Supplementary Table 7). For the neural network model without 

quantile normalization, 11 out of 12 metrics became significantly worse and only MSEvar 

was comparable (Supplementary Fig. 27 and Supplementary Table 8). Therefore, quantile 

normalization improved the predictive performance of both lightGBM and neural network 

models in Ocelot.

In epigenomic imputation across multiple cell types, the similarities among cell types can 

potentially improve the predictive performance. A straightforward way to define similarity is 

using the pairwise Pearson’s correlation based on the epigenomic signal tracks in multiple 

cell types. For each histone mark, we calculated the pairwise correlations on the challenge 

training data (Supplementary Fig. 28). The correlations are weak (<0.3) for most pairs 

and some pairs have negative correlations close to zero, reflecting the complexity of 

epigenomic signals. To leverage the information of similarities among cell types, we use 

the pairwise correlations of the feature marks as the cell type-specific weights to re-weight 

predictions from multiple models. For example, when we aim to predict a cell type-mark 

pair CiMtarget, we train a model using CjMtarget of the same mark in another cell type 

Cj as the gold standard target and CjMfeature of another mark as the feature mark. The 

correlation between CiMfeature and CjMfeature is used as the weight for this model trained 

on cell type Cj. Similarly, when we have multiple training cell types and the associated 

cell type-specific models, we calculate the weighted predictions from multiple lightGBM 

models. For comparison, we also have the ensemble lightGBM prediction with a uniform 

weight without the similarity information (Supplementary Fig. 29 and Supplementary Table 

9). Two types of weights have comparable performance in 8 metrics. Using cell type-specific 

weights had worse performance than using the uniform weight in 4 MSE based metrics. This 
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is mainly because the similarity among cell types derived from feature marks can not reflect 

the similarity among cell types in the target mark to be imputed. These results indicate that 

ensembling predictions based on weights from correlation information of feature marks does 

not improve the predictive performance on the challenge prospective epigenome data.

Imputation of missing entries in the ENCODE3 and Roadmap datasets

The ENCODE3 and Roadmap Epigenomics Consortiums have generated two crucial 

epigenome datasets: (1) the ENCODE3 histone mark dataset consisting of 500 profiles of 

13 epigenetic marks in 79 cell types 9, and (1) the Roadmap histone mark dataset consisting 

of 974 profiles of 27 epigenetic marks in 127 cell types 11. However, compared with the 

complete combinations of every mark in every cell type, only 49.76% and 20.34% of the 

epigenomes were experimentally observed in the ENCODE3 and Roadmap data matrices, 

respectively. To complete these two large-scale datasets, we applied Ocelot to impute 

missing entries. Specifically, for the ENCODE 3 data matrix, we imputed 527 (51.31%) 

profiles of 13 histone marks in 79 cell and tissue conditions (Fig. 6). For the Roadmap 

data matrix, we imputed the 2,455 (71.60%) missing entries covering 27 histone marks in 

127 cell and tissue conditions (Supplementary Fig. 30). Leveraging both the conventional 

machine learning model and the cutting-edge deep learning technique, we provide a total 

of 2,982 whole-genome high-resolution (25bp) imputations, complementing the research of 

these two large consortiums. These imputations will further facilitate systematic studies that 

require complete histone mark profiles in the future.

Discussion

Machine learning models have been widely explored and used to impute missing or 

unavailable data in bioinformatics. They are especially useful when experimental data 

are resource-intensive and hard to obtain. Similar to histone modifications, genome-wide 

transcription factor (TF) binding profiles are also mark- and cell type-specific. Considering 

the large number of TF-cell type combinations, it is infeasible to experimentally measure the 

genome-wide binding profile of every TF in every cell type. The number of combinations 

will further grow exponentially and computational predictions are necessary when we 

consider TF co-binding events 24,25. Conventional machine learning models were first 

developed to predict TF binding 26–28. Recently, deep learning models emerged and proved 

to be powerful 19,29,30. In this work, we leverage both the conventional tree-based model 

and the deep neural network model to predict histone modification marks. By exploiting the 

mark-specific and cell type-specific information in available observed data, we developed 

a method with high predictive performance and imputed missing entries in three large-

scale histone modification datasets. Through dissecting the contributing elements in Ocelot 

models, we further revealed the cross-modulation relationships across histone modifications.

As one of the most crucial mechanisms underlying many cellular processes, epigenetic 

modifications together with TF bindings precisely regulate gene expression. Through 

quantitative analyses, it has been reported that epigenetic modifications and TF bindings 

are correlated and co-localized across cell types in a protein-specific manner 31,32. As a 

result, computational studies have shown that epigenetic modifications and TF bindings 
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are predictive of each other 33,34. Similar to the existence of TF motifs, DNA motifs that 

regulate histone modifications and DNA methylation have been found in human and mouse 
35,36. In this study, we mainly focused on imputation of histone marks within human tissue 

and cell types. Whether the regulation of histone modifications are shared or distinct across 

different organisms would be an interesting topic to study in the future. In fact, it has been 

reported that cross-species prediction of TF binding sites is feasible using neural network 

models 37. There are also studies about cross-species prediction of epigenomic data and 

regulatory sequences in gene expression 38–40. Through transfer learning on datasets of 

multiple organisms could be promising to improve the imputation performance. Considering 

the completeness and data availability, we mainly focus on six representative histone marks 

in this work. As more epigenomes are experimentally characterized, Ocelot can be further 

applied and adapted to investigate complex spatial relationships among more epigenetic 

marks.

Methods

Data collection

In this work, we investigated three datasets. The first one is the ENCODE Imputation 

Challenge dataset that contains 363 epigenomic tracks of 35 marks (33 histone 

modifications, DNase-seq, and ATAC-seq) in 51 cell types at 25bp resolution. During 

the challenge, a training set of 312 tracks were released to participants to build models, 

whereas the remaining 51 testing tracks were newly acquired and only released after 

imputations were completed by all participants (Supplementary Table 10). Therefore, 

potential information leakage or overfitting was avoided on the testing set. The predictive 

performance of our approach was comprehensively evaluated on these 51 genome-wide 

testing tracks. The second one is the recent ENCODE3 histone mark dataset that covers 

13 histone marks in 79 cell types. The complete mark-cell type combination has a total of 

1,027 entries, where 500 (48.69%) entries were experimentally observed. We applied our 

method by re-training models on these 500 entries and imputing the other 527 (51.31%) 

missing entries. The third dataset is the Roadmap histone mark dataset that covers 27 

marks in 127 cell types, after excluding 4 histone marks (H3K23me2, H2AK9ac, H3T11ph, 

H4K12ac) that only have one or two observed whole-genome tracks. We excluded them 

because we could not train a solid lightGBM or neural network model with too few observed 

signal tracks. For this dataset, the complete mark-cell type combination has a total of 3,429 

entries, where only 974 (28.40%) entries were available. We re-trained models based on 

the 974 entries and imputed the remaining 2,455 (71.60%) missing ones. We downloaded 

the standard genome-wide signal tracks that were generated by calculating the statistical 

significance of enrichment, −log10(p-value), where the null distribution is based on a 

local Poisson background estimated from the control experiment 9,11. For the ENCODE 

Imputation Challenge and ENCODE3 datasets, the reference genome is GRCh38. For the 

Roadmap dataset, the reference genome is GRCh37, which is consistent with the original 

release of the data.
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Quantile normalization

To reduce potential batch effects and sequencing biases, we performed quantile 

normalization 41,42 on all signal tracks. Within the machine learning framework, we assume 

that for each histone mark, the overall distributions of epigenomic signals across different 

cell types are identical. This strong assumption allows for generalizability of machine 

learning models, though in reality the distributions of observed epigenomic signals are 

generally different across cell types. The quantile normalization requires a mark-specific 

reference. For each epigenetic mark, the reference was created by averaging the ranked 

original signals across all available cell types. Since the human genome is huge, we 

randomly subsampled signals from 0.1% of the whole genome and generated the average 

reference. Then for the signal track of each cell type, we created a quantile mapping function 

between the subsampled signal of the reference and the subsampled signal of this cell type. 

Then applied the quantile mapping function to normalize the whole-genome signals.

Data partition for model training, validation, and testing

To exploit available data and build high-quality models, for an entry CiMj (cell type Ci and 

mark Mj) to be imputed, we integrate into Ocelot both the cell type-specific information 

across epigenetic marks and the mark-specific information across cell types (Supplementary 

Fig. 31a). Specifically, we first gather all the available other marks (except mark Mj) in this 

cell type Ci and name it as feature set Set-Ci, representing the cell type-specific information 

(Supplementary Fig. 31b). Meanwhile, we gather the epigenomes for mark Mj in all other 

cell types (except cell type Ci), representing the mark-specific information. There are two 

types of mark-specific epigenomes: with or without the complete cell type-specific feature 

set, which are named as Set-Mj and Set-Mj’, respectively. For the Set-Mj, two cell types 

are randomly selected as the training and validation targets to build a model, whereas the 

remaining data are used as the mark-specific features. For the Set-Mj’, they can not serve as 

training targets owing to incompleteness of the cell type-specific features, and are therefore 

used as the mark-specific features.

An example case for imputing entry CiMj is shown in Fig. 1b to demonstrate how the 

available epigenomes are used as either features or targets to build a machine learning 

model. The four violet Mj entries are the common mark-specific features for model training, 

validation and testing. In addition, the cell type-specific features are used in model training 

(C2M1, C2M3, C2M5), validation (C4M1, C4M3, C4M5), and held-out testing (CiM1, CiM3, 

CiM5). Meanwhile, entries C2Mj and C4Mj are the targets for training and validation, 

respectively. We used two iterative machine learning models, convolutional neural network 

and tree-based lightGBM 18, where the validation-based early stopping strategy is required 

for hyperparameter tuning and avoiding overfitting. Of note, an epigenome in Set-Mj is used 

multiple times and can serve as both the feature in one model and the target in another 

model. Ideally, when the Set-Mj contains N entries, we can build N×(N−1) models by 

randomly selecting two entries as the training and validation targets. The computational cost 

will grow exponentially and is extremely high when N is large. To exploit the data with high 

efficiency during the challenge, we only built N models and each entry served as the training 

target once and validation target once. Then the predictions from N models are averaged to 

generate a single prediction.
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Parameters of lightGBM model

We built regression lightGBM models using the Python module “lightgbm” (2.3.0). To avoid 

overfitting during model training, we used an early stopping strategy - if the validation loss 

did not drop for 20 boosting rounds, the training was stopped and the maximum number of 

boosting rounds was 500. The type of boosting is “gbdt” (gradient boosting decision tree). 

The maximum number of leaves within a tree is 50 with the minimum number of 20 data 

points with a leave. The L2 regression was used. The bagging strategy was used to introduce 

further randomness with the bagging frequency of 1 and bagging fraction of 0.7. In addition, 

we built lightGBM models in parallel with 50 boosting rounds without early stopping or 

bagging. Predictions from two types of lightGBM models were averaged.

Neural network architecture

We designed a special deep convolutional neural network architecture for this epigenetic 

imputation task. Specifically, this network contains two encoders and one decoder with 

multiple convolutional, max-pooling, and upscaling layers. The input layer is first connected 

to two convolutional layers and encoder 1. In encoder 1, there are four Pooling-Convolution-

Convolution (PCC) blocks that gradually reduce the input length from 3200 to 200 and 

increase the number of channels. The kernel size of the max-pooling layer is 2. Then 

we added the decoder that has four Upscaling-Convolution-Convolution (UCC) blocks 

that gradually increase the length from 200 to 3200 and reduce the number of channels. 

Meanwhile, layers of the same length in the encoder 1 are transferred to the decoder as 

additional channels through four concatenation layers. Then we added the encoder 2 that has 

two PCC blocks and the max-pooling layers has the kernel size of 5. These two max-pooling 

layers reduce the length from 3200 to 128 = 3200 / 5 / 5. Finally, a last convolutional layer 

with one channel is added to generate the 128-by-1 output. For all the convolutional layers, 

the kernel size is 7 and the non-linear activation is “ReLU”. A batch normalization layer is 

added before each convolutional layer to accelerate the training process. We used the mean 

squared error loss and Adam optimizer. An epoch is defined by randomly sampling 10,000 

genomic regions from the whole human genome with replacement and each sample has 

3,200 bps. We first trained the neural network for 1 epoch with a relatively large learning 

rate of 1e-3. Then we continued to train another 2 epochs with the learning rate of 1e-4. 

The model was implemented using the Python module “Keras” (2.2.4) with “Tensorflow” 

(1.14.0) backend.

Ensemble modeling

To exploit the available training data (Supplementary Table 10) and include as many feature 

marks as possible, for each target mark to be imputed, we designed different combinations 

of feature marks for different testing cell types during the challenge. In the final submission, 

we ensembled predictions from (1) lightGBM, (2) neural network, and (3) the quantile 

normalized average signal of a mark in all training cell types. The ensemble weights are 

summarized in Supplementary Table 11, which were determined by cross-validation results 

on the training data. Specifically, for each combination of feature marks, we tested the 

predictive performance on five cell types (C17, C20, C24, C32, C46) and focused on three 

scoring metrics (1) MSEglobal, (2) Pearson’s correlation, and (3) Spearman’s correlation. 
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Meanwhile, we tested six types of ensemble weights of lightGBM: NN: average = 4:1:1 

(“l4na”), 2:1:1 (“l2na”), 1:1:1 (“lna”), 4:0:1 (“l4a”), 2:0:1 (“l2a”), and 1:0:0 (“l”). The 

results are shown in Supplementary Fig. 32 – 37. Each figure contains the results of one 

histone mark and different colors represent different ensemble weights. For example, we 

designed three combinations for H3K27ac shown in three rows in Supplementary Fig. 

32. Three columns corresponds to three scoring metrics. For each type of weighting, we 

counted the number of best scores among all weightings based on 3 metrics in 5 cell lines. 

The weighting with the largest numbers of best scores was selected. In general, we found 

that the performances varied across combinations, ensemble weights, evaluation metrics 

and cell types, reflecting the complex nature of epigenomic imputation. There were no 

perfect and universal ensemble weights to optimize all different metrics in all cell types. 

Overall, the lightGBM model had stronger predictive power than the neural network and we 

assigned a larger weight for it in most combinations. The predictive power is associated with 

different types of histone marks as well. For example, both lightGBM and neural network 

models were used in predicting H3K27me3, whereas only lightGBM was used in predicting 

H3K4me1.

SHAP analysis

We focused on six representative histone marks (H3K27ac, H3K27me3, H3K36me3, 

H3K4me1, H3K4me3, H3K9me3) that have more than 50% available tracks within the 

51 cell types from the ENCODE Imputation Challenge dataset. We randomly selected five 

cell types (C17, C20, C24, C32, C46) as the testing set and performed SHAP analysis of 

the corresponding predictions in the tree-based lightGBM models. For a pair of histone 

marks, A and B, we built two types of models: (1) using A as the feature mark to predict 

target B, and (2) using B as the feature mark to predict target A. We randomly sampled 

303,104 times (0.01% of the length of the human genome) and each time we calculated 

the SHAP values for a 275bp bin. It corresponds to 303,104 * 275bp = 83,353,600bp, or 

2.75% of the human genome. To robustly evaluate this, we further bootstrap sampled 10% 

of all samples from the five testing cell types for 10 times. The SHAP values from 10 

bootstrapping are similar (Supplementary Table 1). We therefore used the average values 

from 10 bootstrap samplings and plotted the heatmap in Fig. 3a. To test the robustness of 

the predictive relationship pattern in different cell types, we further performed the SHAP 

analysis on bootstrap subsets - every 4 out of 5 cell types. The results of 5 bootstrap subsets 

are shown in Supplementary Fig. 38 and Supplementary Table 12. The corresponding PPI 

values are listed in Supplementary Table 13. The patterns and PPI values are robust across 

the bootstrap.

Evaluation metrics and ranking

Consistent with evaluation of the ENCODE Imputation Challenge, we used nine global 

and local scoring metrics to compare the observed data and imputed data of our method. 

These metrics includes (1) global Pearson’s correlation, (2) global MSE (MSEglobal), (3) 

global Spearman’s correlation across the entire human genome, three local MSEs across 

genomic regions that are annotated as (4) promoters (MSEProm), (5) genes (MSEGene), 

and (6) enhancers (MSEEnh), and (7) global MSE weighted by the cross-cell-type variance 

(MSEvar), (8) local MSE across genomic regions with top 1% observed values (MSE1obs), 
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and (9) local MSE across genomic regions with top 1% predicted values (MSE1imp). The 

annotations of genes and promoters are based on the GENCODE annotations on GRCh38 
43. The annotation of enhancers is obtained from the FANTOM5 project 44. To avoid over 

emphasis on MSE based metrics, we further added three non-MSE based metrics: (10) 

the overlap between the top 1% observed and imputed signals (Match1), (11) the overlap 

between the top 1% observed and 5% imputed signals (Catch1obs), and (12) the overlap 

between the top 5% observed and 1% imputed signals (Catch1imp). Using these five non-

MSE based metrics together with seven MSE based metrics, the predictive performances of 

different methods and strategies are systematically and fairly compared.

During the challenge, the ranking of a method was determined through scoring on 

10 bootstrapped regions and each bootstrap covers about 90% of the human genome. 

Specifically, for a bootstrap k and a testing mark-cell type pair j, the Scorejk of a method was 

first calculated using 9 metrics by

Score jk = ∑
i = 1

Nmetric
ln(

rijk
Nsubmission + 1)

where Njk = 9 is the number of evaluation metrics Nsubmissions = 23, is the number of 

submissions and rijk is the rank among all submissions. Then the Rankjk of a method 

was obtained based on the Scorejk among all submissions. The Rankk of a bootstrap was 

calculated through averaging across 51 testing pairs by

Rankk = 1
Npair ∑

j = 1

Npair
Rankjk

where Npair = 51 is the number of held-out testing pairs Among the 10 bootstrap 

ranks, Rank1, Rank2, … Rank10, the second best rank was used as the final rank to 

reduce the effect of uncertainty during bootstrapping. The complete ranking results in the 

ENCODE Imputation Challenge for 51 testing mark-cell type pairs are available at: https://

www.synapse.org/#!Synapse:syn17083203/wiki/597122. To provide an intuitive comparison 

between the top two methods, we summarized the median scores of 9 metrics and the 

percentage improvements (increase in correlations and decrease in MSEs) in Supplementary 

Table 14.

Benchmarking performance against ChromImpute and Avocado

We trained ChromImpute models on genome-wide signals of the challenge training data. 

We used default parameters during feature generation and model training. The codes 

and results are available at: https://guanfiles.dcmb.med.umich.edu/Ocelot/chromimpute. The 

Avocado imputations for the challenge final testing were directly downloaded from: http://

mitra.stanford.edu/kundaje/ic/avocado/.
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The ENCODE3 histone modification data were downloaded from:

https://www.encodeproject.org/ based on the accession numbers listed in Supplementary 

Table 15.

The Roadmap histone modification data were downloaded from:

https://egg2.wustl.edu/roadmap/data/byFileType/signal/consolidated/macs2signal/pval/

Our epigenome imputation for the missing entries in the ENCODE3 and Roadmap datasets 

are available at:

https://guanfiles.dcmb.med.umich.edu/Ocelot/imputation_encode3/

https://guanfiles.dcmb.med.umich.edu/Ocelot/imputation_roadmap/
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Figure 1: Overview of experimental design.
a, We develop machine learning models to impute genome-wide epigenetic signal tracks 

across cell types and investigate the regulatory relationships among epigenetic marks based 

on available data. b, For each cell type-mark combination to be imputed, we consider 

both the information from other cell types of the same mark and the information from 

other marks in the same cell type. The available data are partitioned into the training and 

validation sets to build machine learning models for epigenome imputation. c, To investigate 

the cross-prediction relationships among epigenetic marks, we dissect the machine learning 

models and extract the spatial contribution of each feature epigenetic mark to a target mark. 

d, The pairwise modulatory relationships among marks are summarized. The relationships 

are directional and asymmetric, where the solid and dashed arrows represent predicting 

others and being predicted respectively. e, The in silico imputation from our approach is 

compared with held-out in vivo measurement, which is collected prospectively to avoid 

information leakage or overfitting. f, The imputed data are compared with observed data 

based on multiple evaluation metrics, including correlations, mean squared errors (MSEs), 

and overlapping for the top 1% - 5% regions.
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Figure 2: Schematic illustration of the tree-based model and neural network model design.
a, We first build a tree-based model through extracting features from both epigenomic tracks 

and DNA sequences. For each 25bp bin to be predicted, we consider the 5 upstream and 

5 downstream bins to extract the neighboring information. For each 25bp bin, we calculate 

the (1) Maximum, (2) Minimum, (3) Mean, and (4) the Number of unique values as the 

“MMMN” features. Then for these 4 features, we further calculate the difference between 

this track and the average values across cell types, resulting in another 4 features - the 

“ΔMMMN” features. When Ntrack is the number of entries that are treated as feature entries, 

a total of 11×8×Ntrack feature values are extracted from the epigenetic tracks. In addition, the 

DNA sequences from the three 25bp bins are one-hot encoded into another 300 = 3×25×4 

features. Then all these features are used to build a lightGBM model to predict one value 

of the target bin. b, In the neural network model, the signal tracks are directly used as 

inputs without feature extraction. Specifically, for each epigenomic entry treated as a feature 

entry, both the signal and Δsignal (the difference between this track and the average track 

across cell types) tracks are considered as two channels. The input length is 3200bp = 128 

bins × 25bp. Then the DNA sequence is one-hot encoded into 4 nucleotide channels. When 

Ntrack tracks are considered as feature entries, the number of channels is (2×Ntrack + 4). 

Then we build a deep convolutional neural network with two encoders and one decoder. The 

building block of the encoders is Pooling-Convolution-Convolution (PCC) layers. There are 
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four and two PCC blocks in encoder 1 and encoder 2, respectively. The building block of the 

decoder is Upscaling-Convolution-Convolution (UCC) layers and four UCC blocks are used 

in the decoder. The encoder 1 and decoder are further connected with concatenation layers to 

reduce information decay. Finally, 128 values are predicted simultaneously, corresponding to 

the 128 bins of the input.
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Figure 3: Ocelot reveals the asymmetric and spatial cross-regulation of multiple histone 
modifications in epigenome imputation.
a, The SHAP analysis was performed on Ocelot models to reveal the pairwise cross-

regulation between six histone modifications represented as six heatmaps. The histone marks 

along the six heatmap rows serve as predictors to predict other marks, whereas the marks 

along the column are the target to be predicted. Each row in a heatmap has 11 positions, 

covering the upstream −125bp to downstream +125bp around the center of the target 25bp 

bin to be predicted. High SHAP values are shown in red. For example, in the first heatmap 

the H3K4me1 row has a high SHAP value (the red block) in the center, indicating that 

H3K4me1 largely contributes to the prediction of H3K27ac at the center position. b, The 

pairwise comparison of SHAP values between two scenarios: (1) using mark A to predict 

mark B and (2) using mark B to predict mark A. For each histone mark, we compare it 

with the other 5 marks and represent these SHAP values as circles. The colors represent the 

other marks. For each color, there are 11 circles, corresponding to the 25bp bins around the 

center bin of interest in panel a. For example, in the first scatter plot, if a circle is above the 

diagonal dashed line, it indicates that H3K27ac has larger predictive power (higher SHAP 

values) as features in predicting the other marks. We define an indicator, Predictive Power 

Index (PPI), which is the ratio of the average SHAP value when this mark predicts others 

over the average SHAP value when other marks predict this mark. c, We further calculate 
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Pearson’s correlation of SHAP values between (1) using mark A to predict mark B and 

(2) using mark B to predict mark A in all histone mark pairs. Lower correlation (dark 

blue) indicates higher level of asymmetry in cross-regulation and the direction of stronger 

prediction power is represented by the arrow. d, In addition to analysis at the 25bp bin 

level, the SHAP values of 11 bins in panel a are summed to obtain the matrix at the histone 

mark level. Each row and column of this matrix are also summed to obtain the accumulated 

SHAP values of predicting other marks (the bar plot on the top) and being predicted by 

other marks (the bar plot on the left). This matrix is asymmetric and directional. e, We also 

calculated the pairwise correlation among histone marks based on the average signal tracks 

from all training cell types. The accumulated correlations are shown as bars on the top. This 

correlation matrix is symmetric and undirected.
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Figure 4: Predictive performance comparisons between Ocelot, ChromImpute and Avocado.
We benchmarked Ocelot with a, ChromImpute and b, Avocado, on 51 genome-wide mark 

profiles collected prospectively, including multiple histone modifications and chromatin 

accessibility (DNase-seq and ATAC-seq). Predictive performance was evaluated using 12 

scoring metrics on the ENCODE Imputation Challenge testing set of 51 mark-cell type 

pairs. For each metric, the paired one-sided Wilcoxon signed-rank test was performed 

between two methods across 51 testing pairs. The significantly different ones are labeled by 

asterisks (* p-value < 0.01 and ** p-value < 0.001)
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Figure 5: An imputation example on the ENCODE Imputation Challenge dataset.
The heatmap is the matrix of the ENCODE Imputation Challenge partial dataset of six 

histone marks across 41 tissue and cell types that have at least one histone mark as the train 

or test data (bottom right). The complete challenge data matrix is shown in Supplementary 

Table 10. A 200-kbp region in Chr 21 of H3K27ac mark in the C51 (WERI-Rb-1) cell line 

is used to compare our imputation and the held-out observed ground truth (top left). For 

comparison, the signals of H3K27ac mark in other cell types are shown on the left, most 

of which are similar to the ground true as expected. In addition, all six marks of the same 

region in the C51 cell line are shown on top right, which are quite different from each other.
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Figure 6: Application of Ocelot to impute missing entries and complete the ENCODE3 histone 
mark dataset.
The ENCODE3 histone mark dataset covers 13 histone marks in 79 cell and tissue 

conditions, including primary tissues (n=36), primary cells (n=6), cell lines (n=28) and 

in vitro differentiated cells (n=9). A total of 500 (48.69%) whole-genome profiles were 

observed (blue blocks) and used to build machine learning models. Then we imputed the 

remaining 527 (51.31%) profiles (red blocks).
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