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Noninvasive Scale Measurement of Stroke 
Volume and Cardiac Output Compared 
With the Direct Fick Method: A Feasibility 
Study
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BACKGROUND: Objective markers of cardiac function are limited in the outpatient setting and may be beneficial for monitoring 
patients with chronic cardiac conditions. We assess the accuracy of a scale, with the ability to capture ballistocardiography, 
electrocardiography, and impedance plethysmography signals from a patient’s feet while standing on the scale, in measuring 
stroke volume and cardiac output compared with the gold-standard direct Fick method.

METHODS AND RESULTS: Thirty-two patients with unexplained dyspnea undergoing level 3 invasive cardiopulmonary exercise 
test at a tertiary medical center were included in the final analysis. We obtained scale and direct Fick measurements of stroke 
volume and cardiac output before and immediately after invasive cardiopulmonary exercise test. Stroke volume and cardiac 
output from a cardiac scale and the direct Fick method correlated with r=0.81 and r=0.85, respectively (P<0.001 each). 
The mean absolute error of the scale estimated stroke volume was −1.58 mL, with a 95% limits of agreement of −21.97 to 
18.81 mL. The mean error for the scale estimated cardiac output was −0.31 L/min, with a 95% limits of agreement of −2.62 to 
2.00 L/min. The changes in stroke volume and cardiac output before and after exercise were 78.9% and 96.7% concordant, 
respectively, between the 2 measuring methods.

CONCLUSIONS: In a proof-of-concept study, this novel scale with cardiac monitoring abilities may allow for noninvasive, longitu-
dinal measures of cardiac function. Using the widely accepted form factor of a bathroom scale, this method of monitoring can 
be easily integrated into a patient’s lifestyle.
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Cardiovascular disease, in particular heart failure, is 
a major health and economic problem worldwide, 
expected to increase in incidence and prevalence 

because of the aging population and an increase in co-
morbidities.1,2 Novel approaches for easily monitoring 
cardiac function trends over time in the home environ-
ment may prove to be important in dealing with these 
conditions. Accelerated by the COVID-19 pandemic, 
the field of medicine is increasingly shifting toward tele-
medicine and remote patient monitoring, welcoming 

innovation.3,4 In this study, we investigate the accuracy 
of a connected cardiac scale with ballistocardiography, 
impedance plethysmography (IPG), and electrocardi-
ography sensors in measuring stroke volume and car-
diac output compared with the direct Fick method.

Ballistocardiography measures the effects of the 
cyclical hemodynamic forces transmitted from the 
heart with each cardiac systolic ejection.5 The method 
for ballistocardiography was developed and popular-
ized in the 1950s, but its use waned later in the century 
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because of the impractical nature of the apparatus, 
limited reliability of the measurements in diseased 
states, and a focus on other measures of cardiovas-
cular function, such as blood pressure recordings.6,7 
However, over the past decade, ballistocardiography 
has regained popularity as a result of the ability to ob-
tain measurements from novel sensor platforms, such 
as bathroom scales, advances in data processing and 
machine learning algorithms, and the emergence of 
more rigorous studies demonstrating the utility of bal-
listocardiography recordings from patients with cardiac 
diseases.8–10 IPG measures pulsatile blood flow via 
changes in electrical impedance. This measurement, 
along with electrocardiography, can identify important 
cardiac time intervals, such as valvular opening and 
closing, measures of contractility, such as left ventric-
ular ejection time, and estimates for stroke volume and 
cardiac output.11 The simultaneous extraction of elec-
trocardiography, IPG, and ballistocardiography signals 
from a single scale measurement can enhance the 
amount of cardiovascular information obtained for any 
individual signal in isolation.

In this study, Bodyport Inc, a company based in 
San Francisco, CA, and the Brigham and Women’s 
Hospital collaborated to assess the accuracy of the 
Bodyport Cardiac Scale in noninvasively measuring 
stroke volume and cardiac output. The cardiac scale 
has the form of a bathroom scale and has a multisen-
sor system that can capture single lead electrocardi-
ography, IPG, and ballistocardiography signals when 

a patient stands on the scale (Figure  1). This study 
investigates the accuracy of this scale in measuring 
stroke volume and cardiac output compared with the 
gold-standard direct Fick method from pulmonary ar-
terial catheters.

METHODS
Subject Population
The data that support the findings of this study are 
available from the corresponding author on reason-
able request. This research study was approved by 
the institutional review board at Brigham and Women’s 
Hospital. Fifty-six subjects undergoing a level 3 invasive 
cardiopulmonary exercise test (iCPET) at the Shapiro 
Cardiovascular Center at Brigham and Women’s 
Hospital were recruited and consented between July 
2018 and January 2019. The patients were each un-
dergoing the iCPET to evaluate unexplained dyspnea. 
These patients had an array of underlying comorbidi-
ties, including heart failure, pulmonary artery hyper-
tension, peripheral vasomotor abnormalities, valvular 
pathological conditions, and pulmonary diseases. The 
study was not designed to discriminate the accuracy 
of the cardiac output measurements dependent on the 
patient’s underlying medical condition. Of the 56 sub-
jects enrolled in the study, 32 (9 men, 23 women) were 
included in the final analysis. Twenty-four subjects 
were excluded from the final analysis. Among the 24 
patients excluded, 11 experienced light-headedness at 
the completion of the iCPET, making it unsafe for them 
to stand on the scale. Six subjects had missing or in-
correct reference data because of instrumentation-
related issues (ie, patient pulled face mask off before 
Fick measurement completed). Seven patients had 
poor balance during the postexercise recovery meas-
urement, requiring assistance from the clinical staff, 
which caused excessive motion artifacts, requiring 
exclusion of the data. The age range for participants 
was 26 to 78 years (mean, 51.7 years; SD, 14.5 years). 
Among the excluded participants, there were 8 men 
and 16 women, and the age range was 31 to 75 years 
(mean, 53.6 years; SD, 12.9 years).

Study Protocol
We obtained scale measurements before and imme-
diately after the iCPET. Ultrasound-guided pulmonary 
artery catheters were placed before patient arrival in 
the iCPET laboratory. Once in the iCPET laboratory, 
patients were asked to stand, and a baseline pulmo-
nary artery measurement was obtained, followed im-
mediately by a 2-minute baseline measurement on 
the cardiac scale. Patients then mounted an upright 
cycle ergometer to perform the exercise portion of the 
test. The exercise workload was gradually increased 

CLINICAL PERSPECTIVE

What Is New?
•	 This study demonstrates the feasibility of a novel 

connected cardiac scale to approximate stroke 
volume and cardiac output compared with the 
direct Fick method.

What Are the Clinical Implications?
•	 This technology has the potential to be deployed 

in the home setting to easily and longitudinally 
monitor hemodynamic status.

Nonstandard Abbreviations and Acronyms

bpm	 beats per minute
iCPET	 invasive cardiopulmonary exercise test
IPG	 impedance plethysmography
LOA	 limits of agreement
PE	 percentage error



J Am Heart Assoc. 2021;10:e021893. DOI: 10.1161/JAHA.121.021893� 3

Yazdi et al� Cardiac Scale Measurement of Cardiac Output

in a ramped protocol until the patient reached ex-
haustion or developed objective evidence of hemo-
dynamic instability or myocardial ischemia. After the 
exercise limit was reached, patients dismounted from 
the bicycle as quickly as possible to obtain a recov-
ery pulmonary artery catheter measurement. This was 
immediately followed by a 2-minute recovery cardiac 
scale measurement.

Direct Fick Measurements
The measurements obtained from the metabolic cart 
and radial and pulmonary artery catheters before and 
immediately after the iCPET study include ventilation, 
pulmonary gas exchange, venous and arterial blood 
gases, a 12-lead electrocardiogram, heart rate, pulmo-
nary artery pressure, and blood pressure from a radial 
artery catheter. Cardiac output was calculated using 
the direct Fick method as the current gold standard. 
Stroke volume was derived from its relationship with 
the measured cardiac output and heart rate.

Cardiac Scale Measurements
The Bodyport Cardiac Scale is a physical platform 
on which the patient stands with bare feet. Using 
embedded sensors, the scale measures 3 car-
diovascular biosignals that are used to extract vari-
ous cardiac biomarkers. The ballistocardiography, 

electrocardiography, and IPG signals are analyzed 
by Bodyport’s software and proprietary algorithms to 
extract characteristic features in each waveform that 
are used to estimate parameters, including heart rate, 
heart rate variability, cardiac time intervals, and signal 
morphological features used to derive estimates of 
stroke volume and cardiac output.

Signal Processing
The scale signals (ballistocardiography, electrocardi-
ography, and IPG) were filtered and interpolated be-
fore feature extraction and model validation. Signal 
regions containing motion artifacts or excessive noise 
were objectively identified and removed. Motion ar-
tifacts and other sources of signal interference were 
detected through adaptive thresholding and moni-
toring of the patient’s center of pressure during the 
measurement. Linear phase and digital low-pass and 
high-pass filters were applied to the signals to pre-
vent distortion. Cutoff frequencies were established 
for each signal (ballistocardiography, electrocardi-
ography, and IPG) and ranged from 0.5 to 50 Hz. All 
3 signals were simultaneously sampled at 250  Hz. 
Ensemble averaged waveforms were constructed 
from the real-time signals. Signal processing calibra-
tion is not required on a per-patient basis. The signal 
processing algorithms are fixed for all measurements.

Figure 1.  Image of the Bodyport Cardiac Scale (left) and example of scale-derived signals for the impedance plethysmograph 
(IPG), ballistocardiograph (BCG), electrocardiograph (ECG), and derivative of the IPG (ΔIPG) (right).
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Feature Identification, Extraction, and 
Selection
Feature identification and extraction methods were 
designed, developed, and validated on data collected 
from prior internal studies. These customized feature 
extraction methods were tailored for each feature of in-
terest. The candidate feature set included time intervals 
and amplitudes obtained from time aligned ensemble 
averaged signals. Certain features were chosen on the 
basis of existing equations used in impedance cardi-
ography and ballistocardiography, including those of 
Kubicek et al. The ballistocardiography J-wave ampli-
tude, which correlates with pulse pressure, along with 
additional proprietary electromechanical parameters 
from the ballistocardiography, electrocardiography, 
and IPG signals, specifically preejection period and 
left ventricular ejection time, were ultimately included in 
the final feature set.5 Heart rate was used as a correc-
tion factor applied to time interval features. Additional 
noncardiovascular parameters collected directly from 
the scale, such as body weight and basal impedance, 
were also incorporated into the model to remove the 
need for calibration and compensate for individual an-
thropomorphic variability.

From the candidate features, the final stroke vol-
ume model features were selected using light gradient 
boosting machine. Light gradient boosting machine is 
a supervised tree-based model that uses candidate 
features as inputs and the Fick derived stroke volume 
as the model output. It measures the relative impor-
tance of each candidate feature and removes the fea-
tures of lower importance to arrive at the final feature 
set.13

Stroke Volume Model Development and 
Training
Regression model training for stroke volume was ac-
complished using a tree-based pipeline optimization 
tool.14 This tool evaluates the performance of individual 
regression models, while optimizing hyperparameters. 
The following models were preselected to be used by 
tree-based pipeline optimization tool: linear regres-
sion, lasso, elastic net, ridge, random forest, support 
vector regression, and multilayer perceptron. Feature 
preprocessors were also predefined to be included as 
part of the tree-based pipeline optimization tool pro-
cess. Tree-based pipeline optimization tool iterates 
over combinations of models and preprocessors, as 
well as the hyperparameter space. Each trained model 
in this stage used 3-fold cross-validation, and the 
mean absolute error of the model was calculated. The 
final model was selected on the basis of the lowest 
mean absolute error of each evaluated model. The final 
model was an ensemble regression pipeline consisting 
of a random forest and gradient boosting regression.

Stroke Volume Model Validation and 
Cardiac Output Calculation
The accuracy of the selected multivariable regres-
sion model was evaluated using leave one out cross-
validation. This cross-validation technique fits the 
model on all but one measurement, which is then 
used as the test measurement. Each measurement 
was held out once, and the final accuracy was deter-
mined on the basis of the performance of all held out 
test measurements. Bodyport-derived heart rate and 
stroke volume were used to calculate an estimate of 
cardiac output using the relationship: cardiac output 
equals the product of heart rate and stroke volume.

Statistical Analysis
The P value for the correlation coefficients was cal-
culated using the Wald test with t-distribution of the 
test statistic. The Bland-Altman limits of agreement 
analysis for the combined preexercise and postexer-
cise data set accounted for the multiple measurements 
from the same subject using the method described 
by Bland and Altman.15 We measured the degree of 
agreement between the cardiac scale and direct Fick 
methods after exercise by calculating their concord-
ance. Concordance rate was calculated using each 
paired measurement for all subjects. A concordant pair 
is determined if the change in stroke volume or cardiac 
output (postexercise minus preexercise) for each of the 
measured value and the reference value was positive 
or negative. The number of subjects who are concord-
ant divided by the total number of subjects was the 
final concordance rate. To reduce statistical noise from 
the analysis, we excluded data points (13 for stroke 
volume and 2 for cardiac output) where the change 
in stroke volume or cardiac output was <15% of the 
mean value in the study.16

RESULTS
The multivariable regression model demonstrated a 
strong relationship between the scale and Fick-derived 
estimates for stroke volume and cardiac output 
(Figure 2). The stroke volume in the preexercise analy-
sis correlated with the Fick-derived stroke volume with 
a coefficient of r=0.77 (P<0.001), mean error (bias) of 
−2.08 mL, SD of 10.65 mL, 95% limits of agreement 
(LOA) for the mean error of −22.95 to 18.79 mL, and 
percentage error (PE), defined as the 95% LOA divided 
by the average Fick-derived stroke volume, of 39.14% 
(Table). In the postexercise analysis, the model had a 
correlation coefficient of r=0.84 (P<0.001), mean error 
of −1.09 mL, SD of 9.92 mL, 95% LOA of −20.53 to 
18.35 mL, and PE of 33.66%. The combined preexer-
cise and postexercise data set had a correlation coef-
ficient of r=0.81 (P<0.001), mean error of −1.58 mL, SD 
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of 10.30 mL, 95% LOA of −21.97 to 18.81 mL, and PE 
of 36.73%.

Cardiac output was estimated using the scale-
derived stroke volume and heart rate. In the pre-
exercise set, the correlation coefficient was r=0.70 
(P<0.001) (Figure 3), mean error of −0.17 L/min, SD of 
0.92 L/min, 95% LOA of −1.97 to 1.63 L/min, and PE 
of 39.52%. The postexercise set correlation coefficient 
was r=0.83 (P<0.001), mean error of −0.45 L/min, SD 
of 1.36 L/min, 95% LOA of −3.11 to 2.2 L/min, and PE 
of 39.89%. Combining the 2 sets yielded a correlation 

coefficient of r=0.85 (P<0.001), mean error of −0.31   
L/min, SD of 0.98 L/min, 95% LOA of −2.62 to 2.00   
L/min, and PE of 41.18%.

The change in stroke volume and cardiac output 
was evaluated preexercise and postexercise test for 
both the scale-derived and Fick methods, to assess if 
the scale can trend directional changes in these perfu-
sion markers. We measured the degree of agreement 
between these 2 methods by calculating their concor-
dance: the fraction of patients for which the changes 
in stroke volume or cardiac output (postexercise minus 

Figure 2.  Left, Scatterplot with regression line for stroke volume (SV), measured by the scale and direct Fick method (64 
data pairs; r=0.81); Right, Bland-Altman analysis with mean error (bias) of −1.58 mL, 95% limits of agreement (LOA) of −21.97 
to 18.81 mL, and percentage error (PE) of 36.73%
Preexercise data denoted with a black circle, and postexercise data denoted with a white circle. MeanSV indicates mean SV for 
combined scale and Fick measurements.

Table 1.  Summary Statistics and Accuracy Metrics for Scale Estimates of Stroke Volume and Cardiac Output Compared 
With the Direct Fick Method

Variable
Scale measure, mean 
(range)

Fick measure, mean 
(range)

Correlation 
coefficient, r Mean error (95% LOA) % Error

Stroke volume, mL

Preexercise 51.23 (33.72 to 75.77) 53.31 (29.0 to 89.3) 0.77 −2.08 (−22.95 to 18.79) 39.14

Postexercise 56.65 (30.25 to 88.62) 57.74 (24.8 to 95.4) 0.84 −1.09 (−20.53 to 18.35) 33.66

Combined 53.94 (30.25 to 88.63) 55.52 (24.8 to 95.4) 0.81 −1.58 (−21.97 to 18.81) 36.73

Cardiac output, L/min

Preexercise 4.39 (3.07 to 6.74) 4.56 (2.77 to 8.13) 0.70 −0.17 (−1.97 to 1.63) 39.52

Postexercise 6.20 (4.20 to 9.86) 6.65 (3.45 to 13.07) 0.83 −0.45 (−3.11 to 2.20) 39.89

Combined 5.29 (3.07 to 9.85) 5.61 (2.77 to 13.07) 0.85 −0.31 (−2.62 to 2.00) 41.18

Scale cardiac output is calculated from the product of scale-derived heart rate and stroke volume, cardiac output=heart rate×stroke volume. Direct Fick 
stroke volume is calculated from the division of Fick-derived cardiac output and heart rate, stroke volume=cardiac output/heart rate. LOA indicates limits of 
agreement.
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preexercise) were either both positive or negative using 
both modalities. The concordances for stroke volume 
and cardiac output were 78.9% and 96.7%, respectively 
(P<0.001, each, derived from the concordance correla-
tion) (Figure 4). To reduce statistical noise from the anal-
ysis, we excluded data points (13 for stroke volume and 
2 for cardiac output) where the change in stroke volume 
or cardiac output was <15% of the mean value in the 
study.16

After exercise, the average cardiac output increased 
by 1.81 L/min when measured by the scale (4.39 L/min  
preexercise to 6.20  L/min postexercise), and by 2.09   
L/min (from 4.56 to 6.65  L/min) when measured by 
the Fick method. The heart rate increased by an aver-
age of 24 beats per minute (bpm) (88 bpm preexercise 
to 112  bpm postexercise) on the scale, and 40  bpm 
(76 bpm preexercise to 116 bpm postexercise) for the 
Fick measurement. The stroke volume increased by an 
average of 5.24 mL (51.23 mL preexercise to 56.65 mL 
postexercise) on the scale and 4.43 mL (53.31 mL preex-
ercise to 57.74 mL postexercise) using the Fick method.

DISCUSSION
Principal Findings
The results demonstrate a strong relationship be-
tween the cardiac scale and direct Fick estimates 

for stroke volume and cardiac output. The correla-
tion persisted through a dynamic range of stroke 
volumes (30–90  mL) and cardiac outputs preexer-
cise and postexercise (3–10  L/min). A recent meta-
analysis comparing noninvasive measures of cardiac 
output, including pulse wave transit time, noninvasive 
pulse contour analysis, thoracic bioimpedance, and 
CO2 rebreathing with bolus thermodilution, reported 
a pooled mean error of −0.13  L/min, 95% LOA of 
±2.23 L/min, and PE of 47%, which compares simi-
larly to our findings of a mean error of −0.31 L/min, 
95% LOA of ±2.31 L/min, and PE of 42%17,18 One of 
the potential advantages of the scale is to provide 
longitudinal measures of cardiac output in the home 
setting, not to entirely replace the “gold-standard” 
catheterization laboratory measurement. The abil-
ity to track longitudinal measurements needs to be 
evaluated in future studies.

The stroke volume and cardiac output concor-
dances before and immediately after exercise were 
78.9% and 96.7%, respectively. Current advice for 
trending ability in cardiac output studies is a concor-
dance >92%, which is achieved in this cardiac output 
analysis but not the stroke volume.19 The increased 
concordance for the cardiac output is likely a result of 
an increased heart rate postexercise, compared with 
the more variable response seen in the stroke volume. 
Because exercise is incorporated in the iCPET, cardiac 

Figure 3.  Left, Scatterplot with regression line for cardiac output (CO), measured by the scale and direct Fick method (64 
data pairs; r=0.85); Right, Bland-Altman analysis with mean error (bias) of −0.31 mL, 95% limits of agreement (LOA) of −2.62 
to 2.00 L/min, and percentage error (PE) of 41.18%. 
Preexercise data denoted with a black circle, and postexercise data denoted with a white circle. MeanCO indicates mean CO for 
combined scale and Fick measurements.
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output is expected to increase. This is why most of the 
data points fall in the upper right corner of the cardiac 
output concordance plot (Figure  4). Another experi-
mental design is necessary to better detect reductions 
in cardiac output.

Having all sensors integrated in one device is im-
perative for the future adoption of such a technology, 
because applying multiple sensor technologies simul-
taneously is cumbersome and would likely yield low 
patient adherence. The analysis of these orthogonal 
sensor signals is further enhanced by ongoing ad-
vancements in signal processing and machine learning 
techniques. Using the form factor of a bathroom scale 
will also enhance patient adherence, because taking 
scale measurements is a behavior already adapted by 
many patients, especially those with cardiac condi-
tions, such as heart failure.

A noninvasive, scalable, and inexpensive method 
for assessing cardiac function could have widespread 
applications in medicine. Robust estimates of stroke 
volume and cardiac output may help monitor the 
cardiac performance of patients with chronic con-
ditions, such as heart failure, and facilitate early de-
tection of decompensation and the virtual titration of 
goal-directed medical therapy. Given the simplicity of 
use and existing user behaviors for self-weighing on a 
scale, longitudinal data can be obtained and trended 
in large populations to identify novel biomarkers of car-
diovascular health.

Limitations
This proof-of-concept study was not designed or pow-
ered to measure changes in cardiac output in relation 
to the patients’ underlying medical conditions. The 95% 
LOA in cardiac output during the postexercise phase 
was up to 3 L/min. This is partially accounted for by the 
2-minute time delay between the Fick and scale meas-
urements, allowing interval cardiac recovery. There was 
a decrease in postexercise heart rate by an average of 
16  bpm between the Fick and scale measurements, 
whereas the stroke volume only decreased by an av-
erage of 1.09 mL. With an average stroke volume of 
57.74 mL in the postexercise Fick subgroup, a decrease 
in heart rate by 16 bpm would reduce the cardiac out-
put by 0.92 L, supporting a postexercise cardiac out-
put 95% LOA closer to 2 L/min, similar to that seen in 
the preexercise analysis. Additional sources of error in-
clude patient balance post exertion, the study’s limited 
sample size, and intrinsic errors of both the direct Fick 
measurement and scale technology.

A negative trend in the bias with larger stroke vol-
umes and cardiac outputs is observed in Figures 2 and 
3. The trend in bias for cardiac output is partially ac-
counted for by a larger postexercise decrease in heart 
rate in patients with higher cardiac outputs. However, 
this does not account for the negative trend in the 
stroke volume bias. Additional data from future stud-
ies and continued development of the mathematical 
model may potentially help correct for this trend in bias.

Figure 4.  Concordance plot.
Left: Change in stroke volume postexercise minus preexercise from the scale vs the direct Fick method. Right: Similar plot for cardiac 
output. A central exclusion zone (square) represents the data within 15% of the mean stroke volume or cardiac output in the study, as 
they contain a high level of random variation compared with changes in the cardiac output. The line of identity y=x is shown.
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The exclusion of patients in this study was largely be-
cause of unstable hemodynamics (hypotension), symp-
tomatic factors during testing (dizziness and poor balance), 
and incomplete reference measurements. The application 
of this scale in its normal use, a stable, nonstress setting, 
such as the patient’s home, would mitigate these factors.

CONCLUSIONS
This study highlights how enhancements in technology 
have allowed for the integration of ballistocardiography, 
electrocardiography, and IPG sensors into form factors (eg, 
a weight scale creating novel methods for assessing car-
diac function). We observed strong correlations between 
scale-derived and Fick-derived estimates of stroke volume 
and cardiac output, with r=0.81 and 0.85, respectively. 
The mean errors of the scale estimates for stroke volume 
and cardiac output were relatively accurate at −1.58 mL 
(range, −21.97 to 18.81 mL) and −0.31 L/min (range, −2.62 
to 2.00 L/min), respectively. The scale and direct Fick es-
timates for cardiac output were strongly concordant pre-
exercise and postexercise at 96.7%, demonstrating the 
ability for scale to trend increases in cardiac output. Future 
studies will gather additional data to improve the model 
and will also assess longitudinal scale measurements from 
individuals in clinical settings to better understand how 
these biomarkers, when integrated, can be used to assess 
relevant changes in a range of disorders.
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