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ORIGINAL RESEARCH

PRRX1 Loss-of-Function Mutations 
Underlying Familial Atrial Fibrillation
Xiao-Juan Guo, MD*; Xing-Biao Qiu, MD*; Jun Wang, MD*; Yu-Han Guo, MD; Chen-Xi Yang, MD; Li Li, PhD; 
Ri-Feng Gao, MD; Zun-Ping Ke, MSc; Ruo-Min Di, MD; Yu-Min Sun , MD; Ying-Jia Xu , MD;  
Yi-Qing Yang , MD

BACKGROUND: Atrial fibrillation (AF) is the most common form of clinical cardiac dysrhythmia responsible for thromboem-
bolic cerebral stroke, congestive heart failure, and death. Aggregating evidence highlights the strong genetic basis of AF. 
Nevertheless, AF is of pronounced genetic heterogeneity, and in an overwhelming majority of patients, the genetic determi-
nants underpinning AF remain elusive.

METHODS AND RESULTS: By genome-wide screening with polymorphic microsatellite markers and linkage analysis in 
a 4-generation Chinese family affected with autosomal-dominant AF, a novel locus for AF was mapped to chromosome 
1q24.2–q25.1, a 3.20-cM (≈4.19 Mbp) interval between markers D1S2851 and D1S218, with the greatest 2-point logarithm 
of odds score of 4.8165 for the marker D1S452 at recombination fraction=0.00. Whole-exome sequencing and bioinformat-
ics analyses showed that within the mapping region, only the mutation in the paired related homeobox 1 (PRRX1) gene, 
NM_022716.4:c.319C>T;(p.Gln107*), cosegregated with AF in the family. In addition, sequencing analyses of PRRX1 in another 
cohort of 225 unrelated patients with AF revealed a new mutation, NM_022716.4:c.437G>T; (p.Arg146Ile), in a patient. The 2 
mutations were absent in 908 control subjects. Biological analyses in HeLa cells demonstrated that the 2 mutants had signifi-
cantly diminished transactivation on the target genes ISL1 and SHOX2 and markedly decreased ability to bind the promoters 
of ISL1 and SHOX2 (2 genes causally linked to AF), although with normal intracellular distribution.

CONCLUSIONS: This study first indicates that PRRX1 loss-of-function mutations predispose to AF, which provides novel insight 
into the molecular pathogenesis underpinning AF, implying potential implications for precisive prophylaxis and management 
of AF.
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Atrial fibrillation (AF), characterized by rapid and 
uncoordinated electrical activation of the atria 
and consequently ineffective atrial contraction, is 

the most prevalent form of clinical cardiac arrhythmia 
in humans, with an estimated prevalence of 0.5% in 
the total population worldwide, affecting >33  million 
individuals globally.1,2 The prevalence of AF exponen-
tially increases with advancing age, increasing from 
≈0.1% among adults aged <55 years to ≈10% in peo-
ple aged ≥80 years.3 The lifetime risk for occurrence 
of AF was ≈25% in people aged >40 years, and this 

risk dramatically increased to ≈37% in those aged 
>55 years.4 Considering that AF is commonly silent and 
frequently undiagnosed (termed subclinical AF), the ac-
tual prevalence of AF could be substantially underesti-
mated.5 As a supraventricular tachyarrhythmia, AF has 
been associated with degraded health-related quality 
of life, diminished exercise capacity, ischemic cerebral 
stroke or extracranial systemic thromboembolism, im-
paired cognition or dementia, chronic kidney disease, 
acute myocardial infarction, tachycardia-induced car-
diomyopathy, congestive heart failure, sinoatrial node 
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dysfunction, ventricular arrhythmias, and sudden 
cardiac death.6–20 In fact, AF confers a 4- to 5-fold in-
creased risk of ischemic stroke, accounting for 15% of 
all strokes, a 5-fold increased risk of heart failure, and 
a 2-fold increased risk of demise.20 Therefore, AF has 
become a major socioeconomic burden, given that ex-
isting treatment regimens are limited in efficacy and are 
seldom curative.20,21 Despite the increasing prevalence 
and important clinical significance of AF, its molecular 
pathogenesis remains incompletely defined.

Previous epidemiological investigations have re-
vealed that AF is frequently associated with various 
structural heart diseases and systemic comorbidities 
and other miscellaneous predisposing factors, en-
compassing congenital heart disease, coronary heart 
disease, rheumatic heart disease, cardiomyopathy, 

cardiac and noncardiac surgery, essential hyperten-
sion, hyperthyroidism, diabetes, chronic obstructive 
pulmonary disease, chronic kidney disease, inflam-
mation, obstructive sleep apnea, imbalanced serum 
electrolytes, obesity, and unhealthy lifestyle.1,20,22–36 
However, in up to 30% of AF cases, AF occurs in the 
absence of the above-mentioned, well-recognized car-
diac conditions or modifiable risk precipitants (termed 
as idiopathic AF).2 Recently, increasing studies have 
demonstrated substantial familial clustering of AF, with 
the heritability of AF being as high as 62%, which high-
lights a strong genetic component underlying AF.21 By 
genome-wide screening with polymorphic microsat-
ellite markers and genotyping and linkage analysis in 
3 families with AF, the first locus for AF was mapped 
on chromosome 10q22-24.37 By positional candidate 
gene analysis of a large family affected with autosomal-
dominant AF, the first AF-causative gene, Ser140Gly-
mutant KCNQ1, which encodes the α subunit of the 
slowly repolarizing, delayed rectifying K+ channel, 
was identified on chromosome 11p15.5.38 To date, via 
genome-wide linkage analysis and association study, 
>160 chromosomal loci have been linked causally 
to AF, although for the vast majority of these genetic 
loci, the biological implications remain unclear.21,39–62 
Moreover, in addition to chromosomal abnormalities 
(duplications/deletions), pathogenic mutations in >50 
genes have been implicated with AF, of which most 
encode ion channels, gap junction channels, tran-
scriptional factors, sarcomere proteins, and signaling 
molecules.21,39–62 Of note, loss-of-function mutations in 
TTN and MYL4 also cause AF.42,63 Nevertheless, these 
already well-established genetic defects only account 
for a minority of AF, because of pronounced genetic 
heterogeneity of AF.21,39–63 Therefore, further research 
studies are warranted to better understand the com-
plex genetic basis of AF.

METHODS
The data that support the findings of this study are 
available from the corresponding author on reason-
able request.

Recruitment of Study Subjects
In this investigation, a 36-member 4-generation 
Chinese family affected with AF was identified (for 
pedigree, see Figure  1). The family members avail-
able and another cohort of 200 unrelated patients 
with familial AF, who were matched with the affected 
family members for sex, age, and ethnicity, were en-
rolled as controls. In addition, another cohort of 225 
unrelated patients experiencing AF as well as a total 
of 708 unrelated healthy subjects were recruited. 
All the study subjects underwent a comprehensive 

CLINICAL PERSPECTIVE

What Is New?
•	 By genome-wide scan with polymorphic mi-

crosatellite markers and linkage analysis in a 
large family affected with autosomal-dominant 
atrial fibrillation (AF), a novel locus for AF was 
mapped on chromosome 1q24.2–q25.1, and by 
whole-exome sequencing and bioinformatics 
analyses, a new mutation in the PRRX1 gene, 
NM_022716.4:c.319C>T;(p.Gln107*), was identi-
fied to cosegregate with AF in the family within 
the mapping region.

•	 Sequencing analyses of PRRX1 in another co-
hort of 225 unrelated patients with AF revealed 
a new mutation, NM_022716.4:c.437G>T; 
(p.Arg146Ile), in a patient.

•	 The 2 mutants had significantly diminished 
transactivation on the target genes ISL1 and 
SHOX2, although with normal intracellular 
distribution, and the 2 mutations markedly 
decreased the ability of PRRX1 to bind the pro-
moters of ISL1 and SHOX2.

What Are the Clinical Implications?
•	 Identification of AF-causing genetic mutations 

implies potential implications for personalized 
prophylaxis and precise treatment of AF.

•	 The AF-related genetic data may be used for 
risk stratification and prognostic evaluation of 
patients with AF.

Nonstandard Abbreviations and Acronyms

WES	 whole-exome sequencing
WT	 wild type
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review of clinical data, encompassing personal and 
medical histories (including symptoms such as pal-
pitation and syncope, previously diagnosed car-
diac conditions, and administration of medications), 
physical examination, transthoracic echocardio-
gram, standard 12-lead ECG, and routine laboratory 
tests. When indicated, a 72-hour ambulatory ECG 
and cardiac electrophysiological examination were 
conducted. For the family members who died, their 
medical records were examined. Clinical diagnosis 
and classification of AF was made as described pre-
viously.1,58 An individual with electrocardiographically 
documented AF was defined as “affected,” whereas 
an individual without any proof of AF was classified 
as “unaffected.”58 Blood specimens were collected 
from all study participants. The present investigation 
adhered to the tenets outlined in the Declaration of 
Helsinki, and was approved by the local institutional 
ethics committee (approval number KS1101). Before 

study recruitment, written informed consent was ob-
tained from each study participant.

Genome-Wide Scan With Microsatellite 
Markers and Linkage Analysis
Isolation of genomic DNA from blood leukocytes was 
conducted with the Wizard Genomic DNA Purification 
Kit (Promega, Madison, WI). A genome-wide scan for 
genotyping in the family with AF was performed with the 
ABI PRISM Linkage Mapping Set version 2.5 (Applied 
Biosystems, Foster City, CA), comprising 376 polymor-
phic microsatellite markers spaced at an average reso-
lution of 10 cM from chromosomes 1 to 22.58 Multiplex 
amplification of microsatellite markers was performed 
by polymerase chain reaction (PCR) with the AmpliTaq 
Gold DNA Polymerase (Applied Biosystems) on the 
Veriti 96-Well Thermal Cycler (Applied Biosystems). 
Genotyping was performed under the ABI PRISM 

Figure 1.  Pedigree structure and genetic mapping analysis of a 4-generation family with atrial fibrillation.
The 4-generation family with atrial fibrillation was arbitrarily designated as family 1. Family members are recognized by generations 
and numbers (Roman-Arabic numerals) given below pedigree symbols. A deceased family member is marked by a diagonal line 
through the symbol. A vertical bar beneath a family member means the chromosomal segment determined by genetic analysis. 
Microsatellite markers spanning the linkage region on chromosome 1q24.2–q25.1 are shown to the left of the pedigree, with each 
member’s genotypes (represented by numbers) for each marker displayed next to the chromosome bars. The filled bars denote the 
chromosomal segment derived from the mutation-carrying chromosome of the affected ancestor (I-1).
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3130XL Genetic Analyzer (Applied Biosystems) follow-
ing the manufacturer’s manual. Linkage analysis was 
made using the software S.A.G.E. (Statistical Analysis 
for Genetic Epidemiology at http://darwin.cwru.edu/
sage/), under an autosomal-dominant inheritance 
model with the allele frequency and penetrance value 
of AF set at 0.1% and 95%, respectively.58 A 2-point 
logarithm of odds (LOD) score between each marker 
and the disease locus was calculated under a condi-
tion of evenly shared allele frequency, zero phenocopy 
rate, and no difference in male and female recombina-
tion rates. For fine mapping in the chromosomal region 
determined by the marker D1S452 with an initial sup-
portive 2-point LOD score, 5 additional microsatellite 
markers (D1S196, D1S2799, D1S2658, D1S2851, and 
D1S2790) encompassing the chromosomal region were 
analyzed to validate the linkage and refine the recom-
bination boundaries to delimit the critical chromosomal 
interval. These additional markers were selected from 
the Généthon human linkage maps, spanning the chro-
mosomal region of ≈9.49-cM interval at a mean marker 
distance of 1.90 cM between 2 markers. Information on 
marker order as well as intermarker distances was de-
rived from the linkage map of the Cooperative Human 
Linkage Center. Haplotypes of the family with AF were 
constructed using the software Cyrillic v2.1.3 (Cherwell 
Scientific, Oxford, UK) to ascertain the shared genomic 
regions among affected members in the family with AF 
and confine the recombination boundaries.

Whole-Exome Sequencing and Sequence 
Analysis of the Mapped Chromosomal 
Region
Whole-exome sequencing (WES) and informatics 
analyses in 4 affected family members (II-1, III-2, III-3, 
and IV-2; Figure 1) and 2 unaffected family members 
(III-5 and IV-1; Figure  1) were fulfilled as described 
elsewhere.58,64–67 In short, for each family member to 
undergo WES, 3 μg of genomic DNA was fragmented 
randomly by an ultrasonicator (Covaris, Woburn, MA) 
to construct a whole-exome library, and captured 
with the SureSelect Human All Exon V6 Kit (Agilent 
Technologies, Santa Clara, CA) as per the manufac-
turer’s protocol. The captured exome libraries were 
sequenced under the Illumina HiSeq 2000 Genome 
Analyzer (Illumina, San Diego, CA), by using the HiSeq 
Sequencing Kit (Illumina) following the manufacturer’s 
manual. Pipeline was applied to processing raw image 
data for calling bases and generating the set of se-
quence reads. Sequence reads were mapped to the 
human reference genome (hg19, GRCh37) via the 
Burrows-Wheeler Alignment software. The Genome 
Analysis Toolkit software was applied for calling variants 
(single-nucleotide polymorphisms, insertions, and de-
letions). On the basis of the possible inheritance modes 

of AF in the family (Figure 1), the variants not matching 
any reasonable inheritance pattern of AF were filtered 
out. The variants passing the pedigree analysis were 
annotated with annotation of variance. When a poten-
tial AF-causing mutation was identified by WES analy-
sis in the mapped genomic region, Sanger sequencing 
and segregation analysis in the whole family with AF 
were performed to further confirm it. Once a gene 
harboring an identified causative mutation for AF was 
identified, Sanger sequencing analysis of the gene was 
performed in another cohort of 225 unrelated patients 
with AF and 508 unrelated healthy individuals used as 
controls. For a confirmed deleterious genetic mutation, 
such population genetics databases as the Human 
Gene Mutation Database (http://www.hgmd.cf.ac.uk/
ac/index.php), the UK Biobank (https://www.ukbio​
bank.ac.uk/), the Single-Nucleotide Polymorphism da-
tabase (https://www.ncbi.nlm.nih.gov/snp/), and the 
Genome Aggregation Database (http://gnomad.broad​
insti​tute.org/) were retrieved to check its novelty.

Construction of Expression Plasmids and 
Site-Targeted Mutagenesis
Extraction of total RNA from human heart tissue speci-
mens and generation of cDNA were conducted as 
described previously.59 An 860-bp fragment from nucle-
otide 1 to 860 of the human paired related homeobox 1 
(PRRX1) gene (GenBank accession No. NM_006902.4) 
containing the full-length open reading frame of PRRX1 
was amplified from cDNA by PCR using the PfuUltra 
High-Fidelity DNA Polymerase (Stratagene, Santa 
Clara, CA) and a specific pair of primers (forward primer: 
5ʹ-GCGGAATTCTGATTCGAGCGGGAAGAGGG-3ʹ; re-
verse primer: 5ʹ -CGCCTCGAGTCCTCAGTTGACTGT
TGGCA-3ʹ). The yielded PRRX1 cDNA was subjected 
to double digestion with restriction endonucleases 
EcoRI and XhoI (NEB, Ipswich, MA), and then inserted 
into the plasmid pcDNA3.1 (Invitrogen, Carlsbad, 
CA) at the EcoRI-XhoI sites to construct the eukary-
otic gene expression plasmid PRRX1-pcDNA3.1. The 
mutant PRRX1-pcDNA3.1 plasmid was produced by 
PCR-based site-directed mutagenesis of wild-type 
(WT) PRRX1-pcDNA3.1 by using the QuikChange II 
XL Site-Directed Mutagenesis Kit (Stratagene) with 
a complementary pair of primers, and was validated 
by PCR sequencing. A 1750-bp DNA fragment (from 
‒2007 to ‒258, with the transcriptional start site num-
bered as +1) of the human SHOX2 gene (GenBank 
accession No. NC_000003.12), which harbors mul-
tiple consensus PRRX1-binding sites, (T/C)AATTA, 
was amplified from human genomic DNA by PCR 
with a specific pair of primers (forward primer: 5ʹ-
GACGGTACCTTTGAGAAACACTAATATAT-3ʹ; reverse 
primer: 5ʹ-GTCAAGCTTGACGCTGCGCTTGAAGTCC  
C-3ʹ), cut with KpnI and HindIII (NEB), and inserted 

http://darwin.cwru.edu/sage/
http://darwin.cwru.edu/sage/
http://www.hgmd.cf.ac.uk/ac/index.php
http://www.hgmd.cf.ac.uk/ac/index.php
https://www.ukbiobank.ac.uk/
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http://gnomad.broadinstitute.org/
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into the basic vector pGL3 (Promega) to construct a 
SHOX2 promoter-driven firefly luciferase reporter plas-
mid (SHOX2-luciferase). Similarly, a 1680-bp sequence 
upstream of the translation start site (from ‒1 to ‒1680) 
of the human ISL1 gene (GenBank accession No. 
NC_000005.10) was amplified from human genomic 
DNA by PCR with a specific pair of primers (forward primer: 
5ʹ-GACGGTACCAAATGGAAGGGAAGACAGAT-3ʹ; re-
verse primer: 5ʹ-GTCGCTAGCGGCGCGGCTCGGG  
CACCTCT-3ʹ), digested with KpnI and NheI (NEB), 
and subcloned into pGL3 (Promega) to construct an 
ISL1 promoter-driven firefly luciferase reporter plasmid 
(ISL1-luciferase).

Cellular Transfection and Dual-Luciferase 
Assay
HeLa cells were maintained in DMEM (Invitrogen) sup-
plemented with 10% FCS (Invitrogen) and seeded into a 
24-well plate at a density of 1×105 cells per well 24 hours 
before transfection. Cells were transiently transfected 
with various plasmids by using the Lipofectamine 3000 
transfection reagent (Invitrogen). For analysis of the 
transactivation of SHOX2 by PRRX1, HeLa cells were 
transfected with 0.2 µg of empty pcDNA3.1 or 0.2 µg 
of WT PRRX1-pcDNA3.1 or 0.2 µg of mutant PRRX1-
pcDNA3.1 or 0.1 µg of WT PRRX1-pcDNA3.1 plus 0.1 µg 
of empty pcDNA3.1 or 0.1 µg of WT PRRX1-pcDNA3.1 
plus 0.1 µg of mutant PRRX1-pcDNA3.1, in combination 
with 1.0 µg of SHOX2-luciferase and 0.04 µg of pRL-TK 
(Promega). For analysis of the transactivation of ISL1 by 
PRRX1, the quantity of each expression plasmid (WT or 
mutant PRRX1-pcDNA3.1) was halved (namely, 0.1  µg 
for homozygous expression or 0.05 µg for heterozygous 
expression), whereas the plasmids ISL1-luciferase and 
pRL-TK (Promega) remained the same as the amount 
mentioned above. Notably, various amounts (ranging 
from 0.025  to 0.8  µg) of WT PRRX1-pcDNA3.1 were 
used to evaluate its dose-dependent activation of the 
promoters of SHOX2 and ISL2. Cells were collected and 
lysed 48 hours after transfection, and the luciferase ac-
tivities of cellular lysates were measured on a GloMax 96 
Microplate Luminometer (Promega), with the Dual-Glo 
Luciferase Assay System (Promega). The promoter ac-
tivity was expressed as fold activation of Firefly luciferase 
relative to Renilla luciferase. At least 3 independent ex-
periments were conducted in triplicate for each expres-
sion plasmid.

Electrophoretic Mobility Shift Analysis
Nuclear extracts were prepared from transfected HeLa 
cells using the NE-PER Nuclear and Cytoplasmic 
Extraction Reagent Kit (Pierce Biotechnology, Rockford, 
IL) following the manufacturer’s instructions. The DNA-
binding ability of PRRX1 mutants was examined by 
electrophoretic mobility shift analysis using a 22-bp 

ISL1 promoter or SHOX2 promoter. The oligonucleotide 
with a PRRX1-binding site was synthesized, 5′ end la-
beled with biotin, and incubated with the purified WT 
or mutant PRRX1 protein. The protein-DNA complexes 
were resolved by electrophoresis through 6% nonde-
naturing polyacrylamide gels in 0.5× Tris-borate-EDTA 
buffer at a constant voltage of 100 V, transferred to a 
positively charged nylon membrane (ThermoFisher 
Scientific, Waltham, MA), and cross-linked  by  UV  ex-
posure. The DNA-protein interaction was probed with 
streptavidin–horseradish peroxidase conjugates, and 
detected using the LightShift Chemiluminescent EMSA 
Kit (Pierce Biotechnology), according to the manufac-
turer’s manual.

Subcellular Distribution of the Mutant 
PRRX1 Proteins
HeLa cells were grown on 14-mm glass coverslips in a 
12-well plate. Forty-eight hours after transfection, cells 
were fixed using 4% paraformaldehyde for 10 minutes at 
room temperature and rinsed briefly in prechilled PBS. 
Fixed cells were then heated in antigen retrieval solution 
at 95 ℃ before being permeabilized with 0.5% Triton 
X-100 for 5  minutes. Subsequently, coverslips were 
blocked with 3% BSA for 30  minutes and incubated 
with rabbit anti-PRRX1 polyclonal antibody (Affinity 
Biologicals, Ancaster, ON, Canada) at a 1:200 dilution 
in a dark humidified chamber overnight at 4 ℃. After 
being washed in PBS-Tween, cells were immunostained 
with goat anti-rabbit Alexa-Flour 594–conjugated sec-
ondary antibody at a 1:100 dilution for 1 hour at room 
temperature, keeping away from light. The nucleus was 
stained with 4′,6-diamidino-2-phenylindole for 1  min-
ute. Finally, coverslips were mounted with a drop of 
anti-fading mounting medium and sealed with clear 
nail polish to prevent drying and movement under the 
microscope. Images were acquired under a confo-
cal laser-scanning fluorescence microscope (Leica 
Microsystems, Mannheim, Germany) using an oil ob-
jective (Leica Microsystems).

Statistical Analysis
Statistical analysis was performed using SPSS for 
Windows, Version 18.0 (SPSS, Chicago, IL). The quan-
titative data were represented as mean values with SD 
and compared by Student unpaired t test. A 2-tailed 
P<0.05 was considered as significantly different.

RESULTS
Baseline Clinical Characteristics of the 
Study Participants
A 4-generation family with AF (Figure 1) was identi-
fied from the Chinese Han population, comprising 34 
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living family members (17 men and 17 women; aged 
from 19–73  years). The index patient of the family 
(II-1; Figure 1) was diagnosed with AF 39 years ago 
at the age of 34 years and received anti-arrhythmic 
pharmacologic therapy with amiodarone. He had no 
structural heart diseases, primary hypertension, or 
other systemic disorders. A representative 12-lead 

ECG recorded from the proband is exhibited in 
Figure  2A, showing the typical features of AF. The 
proband’s father (I-1; Figure  1) had medical history 
of AF, and died because of thromboembolic cerebral 
stroke at the age of 65 years. In the whole family, 
all the affected members had ECG-documented AF, 
whereas the unaffected family members had neither 

Figure 2.  The PRRX1-Gln107* mutation causally linked to atrial fibrillation.
A, A representative standard 12-lead ECG from the proband affected with atrial fibrillation. B, Sequencing chromatograms of the 
affected proband and an unaffected control subject, exhibiting the heterozygous PRRX1 mutation and its wild-type control. An arrow 
symbol points to the heterozygous nucleotides of C/T in the affected proband (mutant type) or the homozygous nucleotides of C/C 
in an unaffected subject (wild type). Sequencing analysis unveiled a heterozygous mutation of c.319C>T in PRRX1, resulting in a 
substitution of a premature stop codon for the glutamine (Gln)–encoding codon at amino acid 107 of PRRX1 (PRRX1-Gln107*).
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history of AF nor symptoms of AF (palpitation, breath-
lessness, fatigue, dizziness, and chest discomfort), 
with normal ECGs. None had organic heart diseases 
or other systemic diseases predisposing to AF, such 
as coronary heart disease, essential hypertension, 
diabetes, hyperthyroidism, and obesity. Genetic 
analysis of the pedigree revealed that in the family AF 
is transmitted following an autosomal-dominant pat-
tern of inheritance, with complete penetrance. The 
baseline clinical characteristics of the affected family 
members alive are summarized in Table 1. As shown 
in Table 1, 11 affected members of the family com-
posed a group of familial AF (8 male patients and 3 
female patients, with a mean age of 48 years, ranging 
from 21–73 years). Another cohort of 200 unrelated 
patients with familial AF (145 male patients and 55 
female patients, with a mean age of 48 years, rang-
ing from 21–73 years) were clinically investigated as 

controls, showing that they were matched with the 
affected family members for sex, age, and ethnic-
ity. In addition, another cohort of 225 unrelated pa-
tients with AF was clinically assessed in contrast to 
a total of 708 unrelated healthy individuals without 
AF, and found that the patients (126 male cases and 
99 female cases, with an average age of 49 years, 
ranging from 28–59  years) were matched with the 
healthy subjects (396 male subjects and 312 female 
subjects, with a mean age of 49 years, varying from 
28–59 years) for ethnicity, sex, and age.

Mapping of a New Genetic Locus for AF 
on Chromosome 1q24.2–q25.1
A genome-wide screening was performed for 34 fam-
ily members from the family affected with AF (Figure 1), 
with 376 polymorphic microsatellite markers spanning 

Table 1.  Clinical Characteristics of the Living Family Members Affected With AF, Carrying the Gln107* Mutation of PRRX1

Subject information Phenotype ECG Echocardiogram

Identity 
(family 1) Sex

Age at study 
enrollment, y

Age at initial 
diagnosis of 
AF, y

Recurrent 
palpitation

AF 
(classification)

Heart rate, 
beats/min

QRS 
interval, 
ms

QTc, 
ms

LAD, 
mm

LVEF, 
%

II-1 Male 73 34 Yes Permanent 84 93 403 39 60

II-4 Female 71 38 Yes Permanent 63 114 419 41 58

II-5 Male 68 25 Yes Permanent 83 78 408 45 62

III-2 Female 52 36 Yes Permanent 69 96 432 38 65

III-3 Male 51 30 Yes Permanent 106 90 422 42 64

III-7 Male 50 29 Yes Permanent 84 110 427 40 61

III-9 Male 48 24 Yes Persistent 89 96 472 36 66

III-11 Male 45 23 Yes Persistent 76 106 452 38 63

IV-2 Male 26 25 Yes Paroxysmal 96 84 457 34 64

IV-5 Female 24 24 Yes Paroxysmal 77 100 457 31 62

IV-7 Male 21 21 Yes Paroxysmal 100 86 436 29 68

AF indicates atrial fibrillation; LAD, left atrial diameter; LVEF, left ventricular ejection fraction; and QTc, corrected QT interval.

Table 2.  Two-Point LOD Scores for the Markers on Chromosome 1q24.2-q25.1 at Different θ Values in the Family Affected 
With AF

Marker

LOD scores at θ

0.00 0.01 0.05 0.10 0.20 0.30 0.40

D1S196 (‒∞) ‒1.2490 0.5792 1.1302 1.2677 0.9418 0.4169

D1S2799 (‒∞) ‒1.9266 ‒0.0624 0.5361 0.7797 0.5818 0.2254

D1S2658 (‒∞) 0.1533 1.3005 1.5739 1.4615 1.0175 0.4347

D1S2851 (‒∞) 1.5556 2.0217 2.0176 1.6554 1.0932 0.4524

D1S452 4.8165 4.7379 4.4155 3.9929 3.0738 2.0432 0.9215

D1S2790 3.3113 3.2546 3.0217 2.7166 2.0536 1.3191 0.5696

D1S218 (‒∞) 0.7466 1.8580 2.0844 1.8698 1.3098 0.5930

D1S2818 (‒∞) ‒0.3194 0.8463 1.1452 1.0955 0.7404 0.2950

θ Indicates recombination fraction; AF, atrial fibrillation; and LOD, logarithm of odds.
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the whole human genome spaced  by every 10  cM. 
Genetic linkage analysis indicated significant linkage 
of AF to 1 marker, D1S452, with a maximum 2-point 
LOD score of 4.7379 at recombination fraction=0.00 
(Table  2 and Figure  1). Two-point LOD scores for 
D1S452 remained >3 irrespective of variations in the 
phenocopy prevalence from 0% to 5% and variations 
in the penetrance from 60% to 99%. Analysis of the 

pairwise LOD scores showed no significant linkage 
to markers on other chromosomal regions (Table 2). 
To confine the AF-linked chromosomal region, 5 addi-
tional markers (D1S196, D1S2799, D1S2658, D1S2851, 
and D1S2790) were genotyped, and by haplotype 
analysis (Figure 1 and Table 2), the disease locus was 
ultimately mapped to chromosome 1q24.2–q25.1 
(GRCh38, chr1:170 347 964–174 533 955), a 3.20-cM 

Figure 3.  The PRRX1-Arg146Ile mutation responsible for atrial fibrillation.
A, A representative standard 12-lead ECG from the index patient experiencing atrial fibrillation. B, Sequencing electropherograms 
of the index patient and a healthy control individual, with the identified PRRX1-Arg146Ile mutation indicated by an arrow. Sequence 
analysis revealed a heterozygous mutation of c.437G>T in PRRX1, leading to a transversion of arginine (Arg) into isoleucine (Ile) at amino 
acid 146 of PRRX1 (PRRX1-Arg146Ile).
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(≈4.19 Mbp) interval between markers D1S2851 and 
D1S218. The chromosomal segment between mark-
ers D1S2581 and D1S218, where 95 genes (including 
31 protein-encoding genes, 34 RNA-encoding genes, 
and 30 pseudo genes) were defined, was heterozy-
gous for all the affected family members with AF 
(Figure 1).

Identification of Pathogenic Mutations in 
PRRX1
WES was performed in 4 affected (II-1, III-2, III-3, and 
IV-2; Figure 1) and 2 unaffected family members (III-5 
and IV-1; Figure 1). Analysis of the sequenced DNA se-
quences within the mapping chromosomal region from 
marker D1S2581 to D1S218, only the genetic variant 
chr1:170688944C>T (GRCh37: NC_000001.10), equiv-
alent to chr1:170719800C>T (GRCh38: NC_000001.11) 
or NM_022716.4:c.319C>T;(p. Gln107*) in the PRRX1 
gene, encoding a key cardiac transcription factor, was 

validated by Sanger sequencing and cosegregated 
with AF in the family. The sequence chromatograms 
of the heterozygous c.319C>T mutation in PRRX1 and 
its WT control are displayed in Figure 2B. This varia-
tion was not observed in another cohort of 200 unre-
lated patients with familial AF. In addition, sequencing 
analysis of the coding exons and splicing donors/ac-
ceptors of PRRX1 in another cohort of 225 unrelated 
patients with idiopathic AF revealed a new mutation, 
NM_022716.4:c.437G>T; (p. Arg146Ile), in a male pa-
tient, who was aged 32  years with a positive family 
history of AF. Sequencing analysis of the missense 
mutation carrier’s parents revealed that the mutation 
was present in his 57-year-old father affected with AF 
and absent in his 55-year-old healthy mother. A stand-
ard 12-lead ECG recorded from the missense mutation 
carrier is shown in Figure 3A. The sequence electro-
pherograms of the heterozygous c.437G>T mutation in 
PRRX1 and its WT control are given in Figure 3B. The 2 
heterozygous PRRX1 mutations were neither detected 

Figure 4.  Diminished transcriptional activity of PRRX1 caused by Gln107* or Arg146Ile mutation.
A, In cultured HeLa cells, PRRX1 transcriptionally activated the SHOX2 promoter in a dose-dependent manner. B, Transactivation of 
the SHOX2 promoter-driven luciferase by wild-type PRRX1 (WT) or Gln107*-mutant PRRX1 (Q107*) or R146I-mutant PRRX1 (R146I), 
alone or in combination, showed that Gln107* or R146I had a significantly reduced transcriptional activity. C, In cultured HeLa cells, 
PRRX1 transcriptionally activated the ISL1 promoter in a dose-dependent mode. D, Transactivation of the ISL1 promoter-driven 
luciferase by WT or Q107* or R146I, alone or in combination, showed that Gln107* or R146I had a significantly decreased transcriptional 
activity. Transfection experiments were performed in triplicate, and the results are expressed as means±SD. All the letters from a to h 
indicate P<0.001, when compared with the same amounts of WT.
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in 708 unrelated control individuals nor retrieved in 
such population genetics databases as Human Gene 
Mutation Database, UK Biobank, Single-Nucleotide 
Polymorphism database, and Genome Aggregation 
Database, indicating novel mutations.

Diminished Transcriptional Activity of the 
Mutant PRRX1 Proteins
As shown in Figure 4, WT PRRX1 showed a dose-
dependent transactivation of the SHOX2 promoter 
(Figure 4A) or the ISL1 promoter (Figure 4C). However, 
compared with their WT counterparts, both Gln107*-
mutant PRRX1 (Q107*) and Arg146Ile-mutant PRRX1 
(R146I), in either the homozygous or heterozygous 
state, showed a significantly diminished transcrip-
tional activity on the SHOX2 promoter (Figure 4B) or 
the ISL1 promoter (Figure 4D). Specifically, as shown 
in Figure 4B, homozygous WT activated the SHOX2 
promoter by ≈42-fold, whereas homozygous Q107* 
and R146I activated the SHOX2 promoter by ≈5- and 
≈7-fold, respectively (WT versus Q107*: t=45.8808, 
P<0.00001; WT versus R146I: t=45.4836, P<0.00001); 
heterozygous Q107* and R146I activated the SHOX2 
promoter by ≈14- and ≈13-fold, respectively (WT 
versus WT+Q107*: t=22.9480, P=0.00002; WT ver-
sus WT+R146I: t=18.3957, P=0.00005). Similarly, as 
shown in Figure 4D, homozygous WT activated the 

ISL1 promoter by ≈78-fold, whereas homozygous 
Q107* and R146I activated the ISL1 promoter by 
≈25- and ≈27-fold, respectively (WT versus Q107*: 
t=44.5860, P<0.00001; WT versus R146I: t=42.0624, 
P<0.00001); heterozygous Q107* and R146I activated 
the ISL1 promoter by ≈39- and ≈44-fold, respectively 
(WT versus WT+Q107*: t=31.5338, P<0.00001; WT 
versus WT+R146I: t=13.2953, P=0.00019).

Reduced DNA-Binding Ability of the 
Mutant PRRX1 Proteins
As shown in Figure 5, the nuclear extracts of HeLa 
cells were able to interact with the biotinylated ISL1 
or SHOX2 probe to yield complexes. As shown in 
Figure 5A, the ability of Q107* or R146I to bind to the 
ISL1 promoter DNA significantly reduced compared 
with that of WT. Similarly, as shown in Figure 5B, the 
ability of Q107* or R146I to bind to the SHOX2 pro-
moter DNA markedly decreased to an undetectable 
level.

Normal Nuclear Distribution of the Mutant 
PRRX1 Proteins
As shown in Figure 6, in transfected cells, WT normally 
localized to the nucleus. Similar with WT, both Q107* 
and R146I had a normal intracellular localization.

Figure 5.  Decreased DNA-binding ability of PRRX1 resulted from Gln107* or Arg146Ile mutation.
A, The ability of wild-type PRRX1 (WT), Gln107*-mutant PRRX1 (Q107*), or R146I-mutant PRRX1 (R146I) to bind 
the ISL1 promoter DNA. B, The ability of WT, Q107*, or R146I to bind the SHOX2 promoter DNA. Electrophoretic 
mobility shift assay showed that WT normally bound the ISL1 promoter DNA (A) or the SHOX2 promoter DNA (B), 
but either Q107* or R146I had a significantly decreased DNA-binding affinity for the ISL1 promoter DNA (A) or the 
SHOX2 promoter DNA (B), when compared with WT.
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DISCUSSION
In the present investigation, by genome-wide scan 
with polymorphic microsatellite markers and link-
age analysis in a 4-generation family with AF, a new 
genetic locus for AF was mapped to chromosome 
1q24.2–q25.1. WES and bioinformatics analyses as 
well as Sanger sequencing analyses revealed that 
within the mapping chromosomal region, only the mu-
tation in the PRRX1 gene, NM_022716.4:c.319C>T;(p. 
Gln107*), cosegregated with AF in the whole fam-
ily with complete penetrance. In addition, by Sanger 
sequencing analysis of PRRX1 in another cohort of 
225 unrelated patients with AF, a novel mutation, 
NM_022716.4:c.437G>T; (p. Arg146Ile), was identified 
in 1 patient. Sequencing analysis of the missense mu-
tation carrier’s parents unveiled that the mutation was 
present in his father with AF and absent in his mother 
without AF. The 2 heterozygous mutations were neither 
observed in 1816 control chromosomes nor found in 
such population genetics databases as Human Gene 
Mutation Database, UK Biobank, Single-Nucleotide 
Polymorphism database, and Genome Aggregation 

Database. Functional research studies demonstrated 
that the 2 mutants had significantly diminished trans-
activation on the target genes ISL1 and SHOX2, and 
remarkably reduced the ability to bind the promoters 
of ISL1 and SHOX2, 2 genes that have been causally 
linked to AF.49,56,68,69 Therefore, it is likely that geneti-
cally compromised PRRX1 contributes to AF in these 
mutation carriers.

In humans, PRRX1 maps on chromosome 1q24.2, 
coding for a member of the paired family of homeobox-
containing transcription factor proteins localized to 
the nucleus.70 This DNA-associated protein is amply 
expressed in the developing cardiovascular system 
throughout embryogenesis, predominantly in mesen-
chymal tissues, encompassing the heart, great arter-
ies, and pulmonary veins,71–73 a major source of ectopic 
beats triggering AF in most patients.74 PRRX1 has been 
validated to mediate the epithelial-to-mesenchymal 
transition, a key feature of human heart development.75 
Moreover, in Prrx1-null mice, vascular malformations 
occurred, including abnormal positioning and awkward 
curvature of the aortic arch, a misdirected and elongated 
ductus arteriosus, and an anomalous retroesophageal 

Figure 6.  Normal subcellular distribution of wild-type and mutant PRRX1 proteins.
Subcellular localizations of wild-type PRRX1 (WT), Gln107*-mutant PRRX1 (Q107*), and R146I-mutant PRRX1 
(R146I) were determined by immunofluorescence in HeLa cells. HeLa cells, transfected with WT, Q107*, or R146I, 
were stained with anti‑FLAG (red) and 4′,6-diamidino-2-phenylindole (DAPI) (blue). Enlarged images of FLAG and 
DAPI staining and merged images of HeLa cells were presented. WT, Q107*, or R146I was localized exclusively to 
the nuclei with normal subcellular distribution. Bar=100 μm.
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right subclavian artery, indicating a pivotal role for Prrx1 
in the development of vascular and perivascular matrix.76 
In the current study, PRRX1 was verified to physically 
interact with and transcriptionally regulate SHOX2 and 
ISL1, 2 critical downstream genes essential for the devel-
opment of cardiac pacing and conducting system,77–82 
and loss-of-function mutations in both SHOX2 and ISL1 
have been involved in the pathogenesis of AF.49,56,68,69 
Hence, PRRX1 mutations may predispose to AF by re-
ducing expression of such important target genes as 
SHOX2 and ISL1.

Recently, multiple genome-wide association stud-
ies consistently associated a top genetic variant at the 
AF locus on chromosome 1q24, a single-nucleotide 
polymorphism (rs3903239) ≈63  kb upstream of 
the  PRRX1 gene, with significantly increased risk of 
AF in both Europeans and Asians.83 Further studies 
demonstrated that this AF-associated variant reduced 
the activity of an enhancer upstream of PRRX1, leading 
to diminished expression of PRRX1 in human left atrial 
tissue.83 Moreover, loss of  PRRX1  expression was 
shown to result in shortening of the atrial action poten-
tial duration in human cardiomyocytes and embryonic 
zebrafish myocardium, creating a matrix susceptible to 
AF.83 Collectively, these findings indicate PRRX1 as the 
AF-causative gene at this locus and unveil the electro-
physiological mechanism by which the genetic associ-
ation at the 1q24 locus contributes to AF.

CONCLUSIONS
In conclusion, this study first reports PRRX1 loss-of-
function mutations underlying AF, which provides new 
insight into the molecular pathogenesis of AF, suggest-
ing potential implications for precision medicine of AF 
in a subset of patients.
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