Table 4.
Statistical Power of the Unadjusted Structural Equation Model (SEM) and Simple Linear Regression (SLR) Models for Random Samples of Different Sample Sizes
| Powera | ||||||
|---|---|---|---|---|---|---|
| CPD | TNE | |||||
| Nb = 50 | N = 100 | N = 50 | N = 100 | |||
| SEM | ||||||
| Latent MA exposure | 0.890 | 0.989 | 0.996 | 0.999 | ||
| SLR with each biomarker | ||||||
| log(3-HPMA) | 0.780 | 0.965 | 0.972 | 0.999 | ||
| log(CEMA) | 0.812 | 0.985 | 0.993 | 0.999 | ||
| log(HMPMA) | 0.805 | 0.980 | 0.979 | 0.998 | ||
| log(2-HPMA) | 0.269 | 0.503 | 0.495 | 0.678 | ||
| log(SPMA) | 0.548 | 0.865 | 0.878 | 0.963 | ||
| SLR with the sum of 5 biomarkers | ||||||
| log(Total) | 0.847 | 0.987 | 0.985 | 0.999 | ||
Note.
Power is the probability of correctly accepting that two variables are related.
N: the sample size within each Monte-Carlo simulation.