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C A N C E R

CancerVar: An artificial intelligence–empowered 
platform for clinical interpretation of somatic  
mutations in cancer
Quan Li1,2, Zilin Ren2, Kajia Cao3, Marilyn M. Li3,4, Kai Wang2,4*, Yunyun Zhou2*

Several knowledgebases are manually curated to support clinical interpretations of thousands of hotspot somatic 
mutations in cancer. However, discrepancies or even conflicting interpretations are observed among these data-
bases. Furthermore, many previously undocumented mutations may have clinical or functional impacts on cancer 
but are not systematically interpreted by existing knowledgebases. To address these challenges, we developed 
CancerVar to facilitate automated and standardized interpretations for 13 million somatic mutations based on 
the AMP/ASCO/CAP 2017 guidelines. We further introduced a deep learning framework to predict oncogenicity 
for these variants using both functional and clinical features. CancerVar achieved satisfactory performance when 
compared to several independent knowledgebases and, using clinically curated datasets, demonstrated practical 
utility in classifying somatic variants. In summary, by integrating clinical guidelines with a deep learning framework, 
CancerVar facilitates clinical interpretation of somatic variants, reduces manual work, improves consistency in 
variant classification, and promotes implementation of the guidelines.

INTRODUCTION
A large number of somatic variants have been identified by next- 
generation sequencing (NGS) during clinical oncology practice to 
facilitate precision medicine (1, 2). To better understand the clinical 
impacts of somatic variants in cancer, several knowledgebases have 
been curated, including OncoKB (1), My Cancer Genome (3), CIViC 
(4), Precision Medicine Knowledge Base (5), JAX Clinical Knowledge-
base (CKB) (6), and Cancer Genome Interpreter (7). Although clin-
ically relevant, interpretation of somatic variants is not a standardized 
practice, and different clinical groups often generate different or 
even conflicting results. To standardize clinical interpretation of 
somatic variants in cancer and support clinical decision-making, the 
Association for Molecular Pathology (AMP), American Society of 
Clinical Oncology (ASCO), and College of American Pathologists 
(CAP) jointly proposed standards and guidelines for the interpreta-
tion and reporting of somatic variants, classifying somatic variants 
into four tiers: strong clinical significance (tier I), potential clinical 
significance (tier II), uncertain significance (tier III), and benign 
(tier IV) (8). These AMP/ASCO/CAP 2017 guidelines incorporate 
12 pieces of evidence, including diagnostic, prognostic, and thera-
peutic clinical evidence; mutation type; variant allele fraction [mosaic 
variant frequency (likely somatic) and nonmosaic variant frequency 
(potential germline)]; population databases; germline databases; 
somatic databases; predictive results of different computational 
algorithms; pathway involvement; and publications (8, 9).

However, as the AMP/ASCO/CAP classification scheme heavily 
relies on published clinical evidence for a given variant, ambiguous 
assignments among human curators frequently occur when using 

the same evidence for a given variant. For example, Sirohi et al. (10) 
compared human classifications for 51 variants by 20 randomly 
selected molecular pathologists from 10 institutions. The original 
overall observed agreement was only 58%; when providing the same 
evidential data for variants to the pathologists, the agreement rate of 
reclassification increased to 70%. The reasons for such discordance 
are as follows: (i) gathering information/evidence is complicated and 
may not be reproducible by the same interpreter at different time 
points; (ii) different researchers may use different algorithms, cutoffs, 
and parameters, rendering interpretation less reproducible; and 
(iii) newly published evidence for certain variants may not be incor-
porated into the evaluation system instantly and systematically, which 
is especially relevant for variants of unknown significance (VUSs).

To standardize interpretation of somatic variants across multiple 
knowledgebases, a more recently published knowledgebase, MetaKB 
from The Variant Interpretation for Cancer Consortium, has aggre-
gated evidence based on the AMP/ASCO/CAP 2017 guidelines (11). 
However, this MetaKB knowledgebase also has the following lim-
itations: (i) it only focuses on consensus interpretations for a limited 
number of known hotspot mutations, such that a large number 
of variants are now classified as unknown clinical significance, but 
they may be oncogenic through “loss of function” or “gain of func-
tion” in cancer; (ii) it only provides a summarized classification for 
each variant, without demonstrating itemized evidence in detail when 
mapping to the 12 criteria of the AMP/ASCO/CAP 2017 guidelines, 
and therefore, users cannot conduct customized evaluations based 
on their own protocols, experiences, and updated clinical knowledge; 
and (iii) it uses a simple scoring system to rank driver mutations 
without considering heterogeneity of functional consequences (such 
as predictions of deleteriousness) of variants, especially for newly 
identified variants reported in the literature.

In clinical practice, when a somatic mutation is considered to 
have strong confidence in causing a functional impact on protein 
changes, clinicians likely interpret it with clinical significance or 
likely clinical significance (12, 13). Although a number of useful 
software tools (2, 14–22), especially sorting intolerant from tolerant 
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(SIFT) (23), PolyPhen-2 (24), and functional analysis through hid-
den Markov models (FATHMM) (21, 25), have been developed to 
predict functional impacts, disagreements regarding certain muta-
tions are consistently observed. Some of these tools use similar 
background information based on alignment, evolutionary conser-
vation, and homology, such as MutationAssessor (20), FATHMM 
(21,  25), cancer-specific high-throughput annotation of somatic 
mutations (CHASM) based on random forest (RF) classifier (15), 
and CanDrA based on support vector machine (SVM) (16); others 
use consensus information by integrating multiple sources of in-
formation from many computational tools, such as combined tool 
adjusted total CTAT-cancer (2). Although some meta-analysis tools, 
such as deleterious annotation of genetic variants using neural net-
works (DANN) (26) and DriverPower (27), were later developed to 
prioritize functionally important variants using more comprehen-
sive functional scoring features as input, they have limitations in 
jointly modeling clinical impact features based on the AMP/ASCO/
CAP guidelines. Because the guidelines tend to be conservative 
(“negative diagnosis” is preferred to “wrong diagnosis”), more vari-
ants than expected were misinterpreted as VUSs (28–36). In addition, 
the AMP/ASCO/CAP guidelines only designate seven functional 
impact prediction tools, such as MutationAssessor (20), as the offi-
cial recommended tools, and only the variant from majority voting 
(more than four from seven tools) can be considered “with clinical 
significance,” which oversimplifies the heterogeneity of predictions 
of functional consequence in cancer progression. Although using 
existing tools may be useful in the prediction of the overall impacts 
of cancer driver genes, it may not be optimal for prioritizing novel 
mutations in these genes. In addition to the in silico predictive 
methods above, interactome network approaches have attracted much 
attention for identifying oncogenic variants in cancer through 
genotype-phenotype studies (37, 38). In interactome networks, certain 
perturbed mutations (network nodes) can disrupt certain signaling 
pathways and protein-protein interactions (PPIs), resulting in sim-
ilar cancer phenotypes in different patients. These perturbed muta-
tions, termed “edgetic” mutations, are functionally important but 
are understudied with existing cancer variant interpretation tools 
(39, 40). To address these challenges and improve automated clini-
cal interpretations of somatic variants in cancer, there is a strong 
need for reliable and accurate computational methods using both 
clinical evidence and functional impact score features.

We previously developed the standalone software VIC written in 
Java, which was among the first tools for interpreting clinical im-
pacts of somatic variants using a rule-based scoring system based 
on 12 criteria of the AMP/ASCO/CAP 2017 guidelines (9). In the 
current study, we developed an improved somatic variant interpre-
tation tool called CancerVar (cancer variant interpretation) imple-
mented in Python with an accompanying web server. Compared to 
VIC, CancerVar is a markedly improved tool providing more op-
tions to users: (i) Python implementation provides more flexibility 
to incorporate CancerVar into custom command-line workflows; 
(ii) CancerVar involves a user-friendly web server with precomputed 
clinical evidence for 13 million variants from 1911 cancer census 
genes through literature mining and database aggregations; (iii) we 
use a flexible AMP/ASCO/CAP rule-based score system and a deep 
learning–based scoring system that allows for improved interpreta-
tions; and (iv) RESTful application programming interface (API) 
is used to enable developers to freely access complied knowledge. 
CancerVar allows users to query clinical interpretations for variants 

using the chromosome position, cDNA change, or protein change 
and interactively fine-tune weights of scoring features based on 
prior knowledge or additional user-specified criteria. The CancerVar 
web server generates automated text with summarized descriptive 
interpretations, such as diagnostic, prognostic, targeted drug re-
sponses, and clinical trial information for many hotspot mutations, 
significantly reducing the workload of human reviewers in drafting 
clinical reports in the practice of precision oncology.

RESULTS
Summary of the functionality of the CancerVar web server
The CancerVar web server provides multiple query options at vari-
ant, gene, and copy number alteration (CNA) levels across 30 can-
cer types and two versions of reference genomes: hg19 (GRCh37) 
and hg38 (GRCh38). With user-supplied input, CancerVar gen-
erates an output web page, with information organized as cards, 
including interpretation summary, gene overview, mutation infor-
mation, evidence overview, pathways, clinical publications, protein 
domains, in silico predictions, and exchangeable information from 
other knowledgebases. The CancerVar web server provides full 
details for variants, including all automatically generated criteria, 
most of the supporting evidence, and predictive scores for clinical 
significance. In the CancerVar webserver, we compiled a variant 
database from a list of 1911 cancer censuses or driver genes with 
13 million exonic variants from seven existing cancer knowledge- 
bases, including catalogue of somatic mutations in cancer (COSMIC), 
CIViC, and OncoKB, and two datasets collected from the literature 
about driver gene predictions (table S1). CancerVar can be accessed at 
https://cancervar.wglab.org, and the Python command-line program 
can be downloaded at https://github.com/WGLab/CancerVar.

By implementing a rule-based approach, users have the ability to 
manually adjust the criteria and perform reinterpretation based on 
their prior knowledge or experience. If the user already knows the 
information of each of the scoring criteria for the variant (possibly 
inferred by using other software tools), they can alternatively com-
pute the clinical significance of the variant from the “Interpret by 
Criteria” service. Each variant is provided with a prediction score 
and clinical classification categories, which are strong clinical sig-
nificance, potential clinical significance, uncertain significance, and 
likely benign/benign, based on the 12 criteria of the AMP/ASCO/
CAP 2017 guidelines. Figure 1 provides descriptions of 12 types of 
evidence and summarizes the functionality of the CancerVar server. 
Descriptions of the complete scoring system for each piece of evi-
dence can be found in table S2. In addition, we developed a scoring 
method for oncogenic prioritization by artificial intelligence (OPAI). 
Using a deep learning–based approach, CancerVar provides a prob-
ability score predicted by OPAI to determine the oncogenicity of a 
variant using 12 evidence features from the AMP/ASCO/CAP 
guidelines and 23 functional features with scoring metrics predicted 
by various computational tools. However, the absolute value of the 
predictive score cannot provide meaningful information, and the 
classification greatly depends on the cutoff of the predictive score. 
Unlike typical deep learning algorithms that train a predictive model 
from a set of positive and negative training samples, OPAI is based 
on a semisupervised generative adversarial network that includes 
observed but unclassified somatic mutations from real-world sequenc-
ing data for patients with cancer. Figure 2 illustrates the workflow and 
architecture of the generator and discriminator/classifier used in 

https://cancervar.wglab.org
https://github.com/WGLab/CancerVar
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the generative adversarial network of OPAI. The OPAI’s functionality 
and user instructions are already integrated within CancerVar soft-
ware, allowing users to predict their own variants in the future.

Comparative evaluations of CancerVar with  
human interpreters
Sirohi et al. (10) measured the reliability of the 2017 AMP/ASCO/
CAP guidelines using 51 variants [31 single-nucleotide variants 
(SNVs), 14 insertions and deletions (indels), 5 CNAs, and 1 fusion] 
based on a literature review. Among these variants, we selected 43, 
including all 31 SNVs and 12 indel variants (we did not find alterna-
tive allele information for two indels in the CHEK1 and MET genes). 

CancerVar interpreted the clinical impacts of these 43 variants with 
respect to the specified cancer types. As these 43 variants do not have 
solid/consistent clinical interpretation, we compared 20 pathologists’ 
opinions from 10 institutions with CancerVar’s predictions. As shown 
in Table 1, CancerVar assigned 21 variants as tier I/II (strong or 
potential clinical significance). Among these 21 variants, the patholo-
gists classified 17 variants (17 of 21, approximately 81%) as tier I/II, in 
agreement with CancerVar. Moreover, CancerVar assigned 21 vari-
ants as VUS; among these 21 variants, 9 variants (9 of 21, approxi-
mately 43%) were also classified as VUS by pathologists. In total, the 
clinical significance of 26 variants (approximately 61%) matched 
between human interpreters and CancerVar.

Fig. 1. Summary of the functionality of CancerVar and descriptions of 12 types of evidence. AWS, Amazon Web Services; LOF, Loss of Function; MAF, Minor allele 
frequency; HGMD, Human Gene Mutation Database.

Fig. 2. Workflow and architecture of the generator and discriminator/classifier used in OPAI. The generator contains three linear layers with batch normalization, 
LeakyReLu as the activation layer, and a 60% dropout rate in each layer. The final layer is a linear layer with batch normalization and tanh as the activation layer. For the 
discriminator we implemented three Convolutional Neural Network (CNN) layers with tanh as the activation layer.
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Details regarding the interpretation of these 43 variants can be 
found in table S3 and Fig. 3. Compared to human interpreters, the 
advantage of CancerVar is clear, in that it can automatically generate 
clinical interpretations with standardized, consistent, and reproducible 
workflows, with evidence-based support for each of the 12 mentioned 
criteria. Therefore, CancerVar can greatly reduce the workload of 
human reviewers and facilitate the generation of precise and repro-
ducible clinical interpretations.

Benchmark studies on OncoKB annotations
OncoKB (1), a manually curated database of somatic mutations with 
oncogenic effects, is widely used in the cancer research community. 
OncoKB provides an evidence-based classification system to interpret 
somatic variants and classifies them as inconclusive, likely neutral, 
predicted oncogenic, likely oncogenic, or oncogenic. In total, 
3455 SNVs involving 245 genes were downloaded from the OncoKB 
annotation database (downloaded 1 March 2020). This version con-
tains 2582 oncogenic/likely oncogenic (O/LO) mutations, 587 likely 
neutral mutations, and 286 mutations annotated as inconclusive for 
this study. CancerVar evidence-based and deep learning–based 
prediction methods were applied to classify the mutations and com-
pared them with OncoKB classifications. For the O/LO group in 
OncoKB, the CancerVar rule-based method classified 1839 (1839 
of 2582, 71.2% consistent with OncoKB classification) variants as 
having strong or potential clinical significance; the CancerVar deep 
learning–based method (OPAI) classified 2319 variants (2319 of 
2582, 90% consistent with OncoKB classification). The details are 
given in Table 2, Fig. 4A, and fig. S1. An UpSet plot shows the inter-
sections of predictions between OncoKB, the CancerVar rule-based 
method, and the deep learning–based method (OPAI). Although 
most variants were consistently interpreted by the three methods, 
OPAI appears to be more concordant with OncoKB than rule-based 
interpretations.

Benchmark studies on CIViC annotations
CIViC is a crowdsourced and expert-moderated public resource for 
somatic variants in cancer (4) with five evidence levels to differentiate 
reported mutations, namely, A: validated, B: clinical, C: case study, D: 
preclinical, and E: inferential. In total, 1681 unique SNVs/indels 
of 113 unique genes were retrieved from the CIViC website (https://
civicdb.org/releases, accessed 1 May 2020) and assessed by Cancer-
Var. The CancerVar rule-based method predicted 1230 (1230 of 
1681, 73.2% consistent with CIViC classification) variants as having 
strong or potential clinical significance, whereas the CancerVar deep 
learning–based method OPAI predicted 1581 (94.1% consistent with 

CIViC classification) variants. Table 3 and Fig. 4B show the details 
of the CancerVar predictions. Similar to what we report above, 
OPAI appears to be more concordant with CIViC than rule-based 
interpretations.

Benchmark studies on IARC TP53 transactivation mutations
TP53 is the most frequently mutated gene in human cancer, and 
many of its mutants have been functionally assessed based on median 
transactivation levels and compiled in the International Agency for 
Research on Cancer (IARC) TP53 database (41). On the basis of the 
median of eight different yeast functional assays (WAF1, MDM2, 
BAX, h1433s, AIP1, GADD45, noxa, and P53R2), TP53 mutations 
can be classified as oncogenic, resulting in lower transactivation 
(a median transactivation level ≤ 25% wild type), or neutral, result-
ing in higher transactivation (level ≥ 25% wild type). We retrieved 
1915 missense mutations (532 mutations used as oncogenic cases 
and 1383 mutations used as neutral cases) from the IARC TP53 
database. For 532 oncogenic mutations, the CancerVar rule-based 
method predicted 522 [true-positive rate (TPR) = 98%] variants, and 
the model-based method predicted 512 (TPR = 96.2%) variants as 
having strong/potential clinical significance. Compared to OncoKB, 
which predicted 489 (489 of 532 = 91.9%) oncogenic variants, 
CancerVar rule-based and deep learning–based methods have a 
higher TPR. The details of CancerVar and OncoKB prediction are 
shown in Fig. 4C, table S4, and fig. S2.

Benchmark studies on cell viability in vitro assays
The oncogenic effects of somatic mutations can be directly assessed 
by preferential growth or survival advantage to cells using cellular 
assays. Ng et al. (42) recently developed a medium-throughput 
in vitro system to assess the functional effects of mutations using 
two growth factor–dependent cell lines: Ba/F3 (a sensitive leukemia 
cell line frequently used in drug screening) and MCF10A (a breast 
epithelial cell line). Cell viability data of mutations in these two cell 
lines were used to generate consensus functional annotation to in-
terpret the functional impacts of somatic mutations. The mutations 
were considered oncogenic when cell viability was labeled as acti-
vating and neutral when labeled as neutral from the consensus func-
tional annotation. Although we recognize that results from in vitro 
assays cannot be directly translated to the clinic, they offer a com-
prehensive and unbiased way of assessing the potential functional 
significance of somatic variants. From the published study, we 
retrieved 717 missense mutations (253 oncogenic and 464 neutral) 
in 44 genes. For 253 oncogenic variants, the CancerVar rule-based 
method predicted 217 (TP = 85.7%) and the deep learning–based 

Table 1. Comparison of classification of 43 variants between 20 pathologists and CancerVar.  

Annotators Classifications
20 Pathologists

I/II* III IV Total

CancerVar

I/II 17 4 0 21

III 12 9 0 21

IV 0 1 0 1

Total 29 14 0 43

*Tier I, strong clinical significance; tier II, potential clinical significance; tier III, variants of unknown clinical significance (VUS); and tier IV, benign/likely benign.

https://civicdb.org/releases
https://civicdb.org/releases
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method predicted 208 (82.2%) as having strong/potential clinical 
significance; OncoKB predicted 204 (TP = 80.6%) variants as onco-
genic, likely, or predicted oncogenic (Fig. 4D, table S5, and fig. S3). 
Therefore, CancerVar rule-based and deep learning–based methods 
perform slightly better than OncoKB.

Performance of OPAI in predicting oncogenic variants
One unique feature of CancerVar is the inclusion of the OPAI 
approach, which allows prediction of oncogenic variants that have 
never been reported in public databases. Unlike conventional mod-
els trained on labeled data, OPAI can learn the hidden distribution 
of unlabeled mutations collected from clinical data. In the current 
study, training the OPAI models required ~100 hours with 1000 
epochs on an Nvidia Tesla M40 GPU. Next, we assessed the ability 
to predict novel oncogenic variants. OPAI was compared with 
five other machine learning algorithms, including gradient boosting 
tree, SVM, AdaBoost, RF, and XGBoost, using the Python package 

scikit-learn (43). We further compared performance with the other 
five cancer-specific driver mutation analysis tools, including CanDrA, 
CHASM, CTAT-cancer, and MutationAssessor, using the area under 
the curve (AUC) score from receiver operating characteristic (ROC) 
plots and the true-negative rate (or specificity) as performance mea-
surements. To evaluate imbalanced classes, we also calculated the 
area under precision-recall curve (AUPRC) to assess the predictive 
performance of various models. On the basis of an independent 
testing set of 6226 somatic variants, Fig. 5 (A and B) shows that 
when using the AUC measure, the OPAI method in CancerVar 
(AUC-ROC = 0.854) performed the best compared to cancer- 
specific driver predicting methods and any individual functional 
prediction tool. Figure 5 (C and D) highlights that OPAI performed 
the best (AUPRC = 0.686) among these methods. Because of the 
imbalanced classes, that is, the fraction of positives (oncogenic) 
was less than that of negatives (benign), it was expected that OPAI’s 
AUPRC value would be lower than the AUC-ROC value.

Fig. 3. Comparison of the interpretation of 43 variants between 20 pathologists and CancerVar. The heatmap shows the ratio of 20 pathologists voting for the four tiers: 
tier I, strong clinical significance (SCS); tier II, potential clinical significance (PCS); tier III, variant of uncertain clinical significance (VUS); and tier IV, benign/likely benign (B/LB). 
The last two columns are CancerVar-predicted scores and classifications. CancerVar showed an 81% (17 of 21) agreement rate with pathologists’ majority voting for tier I/II 
and a 60.5% (26 of 43) agreement rate for all tiers. This agreement rate is comparable to the 58% agreement rate among the 20 pathologists, but CancerVar can automate 
the interpretation process. P, Pathogenic/strong clinical significance; LP:Likely Pathogenic/potential clinical significance; B:(Likely)Benign.
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Evaluation of FDA-approved or -recognized cancer biomarkers 
for therapeutic, diagnostic, and prognostic purposes
To further evaluate the performance and reliability of CancerVar in 
clinical applications, we collected 22 cancer biomarkers specified 
by the U.S. Food and Drug Administration (FDA) and interpreted 
these biomarkers and predicted their oncogenicity. Among them, 

9 were classified as tier I strong clinical significance when using only 
the evidence-based method; the other 13 biomarkers were classified 
as tier II potential clinical significance. For the OPAI model, most 
of the biomarkers (19 of 22) were predicted to have scores ≥0.95, 
suggesting a very high probability of having clinical significance. 
The interpretation of these biomarkers is shown in Table 4.

Fig. 4. UpSet plot highlighting the intersection of multiple methods with oncogenic prediction from different datasets. (A) Mutations were taken from the OncoKB dataset. 
(B) Mutations were taken from CIViC. (C) Mutations were taken from the IARC TP53 transactivation dataset. (D) Mutations were taken from in vitro cell viability by Ng et al. (42).

Table 2. Summary of CancerVar prediction on OncoKB mutations.  

OncoKB
Model-based CancerVar (OPAI) Rule-based CancerVar

Oncogenic Neutral I/II (S/P*) III (VUS*) IV (Benign)

Oncogenic/likely 
oncogenic 2319 263 1839 690 53

Neutral/likely neutral 348 239 281 279 27

Inconclusive 152 134 132 150 4

Total 2819 636 2252 1119 84

*S, strong clinical significance (tier I); P, potential clinical significance (tier II); VUS, variant of unknown clinical significance (tier III).
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Oncogenicity prediction of edgetic mutations
Gene products can interact with each other in PPI networks or 
cellular signaling networks. Network rewiring is crucial for under-
standing the complex genotype-phenotype relationships in cancer 
(37, 39). Some cancer mutations have been found to broadly or spe-
cifically affect these interactome networks or pathways via pertur-
bation (38). These mutations in cancer are called edgetic mutations, 
and they may cause loss of molecular function, representing novel 
oncogenic candidates (44).

Li et al. (45) built an e-MutPath (edgetic mutation–mediated 
pathway perturbations) database to report cancer somatic edgetic 
mutations based on genome-wide somatic mutation profiles with 
gene expression and PPI networks. We downloaded 2541 edgetic 
mutations (P < 0.05) related to non–small cell lung cancer from the 
e-MutPath database and predicted their oncogenicity using CancerVar. 
Among these 2541 variants, CancerVar predicted 987 (39%) variants 
to be oncogenic using clinical features only; it predicted 2047 (81%) 
variants to be oncogenic using ensemble features, including both 

Table 3. Summary of CancerVar prediction of CIViC mutations.  

CIViC
Model-based CancerVar (OPAI) Rule-based CancerVar

Oncogenic Neutral I (Strong) II (Potential) III (VUS) IV (Benign)

A: Validated 17 2 2 7 0 10

B: Clinical 259 40 111 109 61 18

C: Case study 792 30 178 439 198 7

D: Preclinical 466 22 91 277 119 1

E: Inferential 47 6 5 11 33 4

Total 1581 100 387 843 411 40

Fig. 5. Performance comparisons. (A and B) Receiver operating characteristic (ROC) curves for performance comparison between OPAI and five other machine learning 
algorithms, including gradient boosting tree (GBT), support vector machine (SVM), AdaBoost (ADA), random forest (RF), and XGBoost (XGB), and five other in silico pre-
dictive tools using 6226 somatic mutations as the testing set. (C and D) Area under the precision-recall curve (AUPRC) comparison between OPAI and five other machine 
learning tools and in silico predictive tools. OPAI outperformed any individual tool in the prediction of somatic driver mutations in cancer. TPR, true-positive rate; FPR, 
false-positive rate.
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clinical and functional evidence. This result is consistent with the 
expectation that the functional impact of edgetic variants contrib-
utes more weight than clinical features in the prediction model for 
oncogenicity.

Enrichment analysis for CancerVar-predicted driver 
mutations in well-known ONCs and TSGs
We also performed enrichment analysis on CancerVar-predicted 
driver mutations in 10 well-known tumor suppressor genes (TSGs) 
and 10 oncogenes (ONCs) reported in Bayley’s driver gene list (46). 
In total, ~223,000 exome mutations (147,141 in TSGs and 76,362 in 
ONCs) were observed. CancerVar predicted 1641 driver variants in 
TSGs (approximately 1641 of 147,141 = 1.1%) and 875 in ONCs 
(approximately 875 of 76,362 = 1.1%). According to the theoretical 
estimation of Bozic et al. (47), on average, ~114 driver mutations 
are expected in one TSG, and ~14 driver mutations are expected in 

one ONC. CancerVar predicted ~164 (1641/10) driver mutations in 
each TSG and ~88 (875/10) in each ONC, greater than the theoret-
ical expectations. This observation may be partially attributed to the 
fact that although ONCs tend to have hotspot (recurring) somatic 
mutations as gain-of-function mutations, this is not taken into 
account in the prediction model. The numbers and frequencies of 
predicted oncogenic variants are shown in table S6.

For comparison, we used CancerVar to predict oncogenic variants 
in 10 randomly selected nonessential genes (“human knockout” genes) 
from two studies [Narasimhan et al. (48) and Saleheen et al. (49)] 
with 250 overlapping genes. We scanned 86,094 possible exome 
mutations in these 10 genes, including AKR1E2, BROX, BTN3A3, 
EFCAB13, KLHL25, LRRC69, MGST1, MROH2A, TTLL2, and 
ZSCAN16. CancerVar did not detect any oncogenic variants (0%) 
in these genes but predicted 84,445 (98%) as benign and 1649 (2%) 
as VUSs. These results further suggest that oncogenic variants 

Table 4. FDA-approved or -recognized biomarkers (therapeutic, diagnostic, and prognostic) from the rule-based model and the deep learning model 
(OPAI) in CancerVar.  

Gene Alternation Cancers Levels Rule-based CancerVar OPAI

ABL1 T315I

B-lymphoblastic 
leukemia/lymphoma/
chronic myelogenous 

leukemia

Therapeutic (ponatinib) Tier II (score 8) 0.93

AKT1 E17K
Breast cancer/ovarian 
cancer/endometrial 

cancer
Therapeutic (AZD5363) Tier II (score 10) 0.98

BRAF V600E Melanoma/non–small 
cell lung cancer

Therapeutic 
(dabrafenib + 

trametinib; 
vemurafenib)

Tier I (score 11) 0.98

EGFR T790M Non–small cell lung 
cancer

Therapeutic 
(osimertinib) Tier II (score 9) 0.98

EGFR L861Q Non–small cell lung 
cancer Therapeutic (afatinib) Tier II (score 10) 0.99

EGFR S768I Non–small cell lung 
cancer Therapeutic (afatinib) Tier I (score 11) 0.99

EZH2

Y646F

Follicular lymphoma Therapeutic 
(tazemetostat)

Tier I (score 11) 0.99

Y646H Tier I (score 11) 0.99

Y646N Tier I (score 11) 0.99

Y646S Tier I (score 11) 0.99

FGFR3

R248C

Bladder cancer Therapeutic 
(erdafitinib)

Tier II (score 9) 0.99

S249C Tier II (score 9) 0.99

Y373C Tier II (score 10) 0.99

JAK2 V617F Primary myelofibrosis Prognostic Tier I (score 11) 0.87

KIT

A829P

Gastrointestinal stromal 
tumor

Therapeutic (imatinib, 
regorafenib, ripretinib, 

and sunitinib)

Tier II (score 9) 0.83

T670I Tier II (score 9) 0.98

V654A Tier I (score 11) 0.99

Y823D Tier II (score 10) 0.99

D816V Systemic mastocytosis Diagnostic Tier II (score 9) 0.99

KRAS G12C Non–small cell lung 
cancer Therapeutic (AMG-510) Tier I (score 11) 0.99

PDGFRA D842V Gastrointestinal stromal 
tumor

Therapeutic 
(avapritinib)

Tier II (score 9) 0.97

D842Y Tier II (score 10) 0.99
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predicted by CancerVar are enriched (1.1%) in putative ONCs 
and TSGs compared to the lack of findings (0%) for the human 
knockout genes.

Use case: Comprehensive interpretation of FOXA1 somatic 
mutations in prostate cancer
In this use case, we show the clinical interpretation of the FOXA1’s 
mutation in prostate cancer (Fig. 6) from rule-based and deep 
learning–based models in CancerVar. Prostate cancer is the most 
commonly diagnosed cancer in men worldwide (50). The FOXA1 
protein (forkhead Box A1, previously known as HNF3a) is essential 
for normal development of the prostate (51). FOXA1 somatic muta-
tions are frequently observed in prostate cancer (52) and associated 
with poor outcomes. In 2019, two studies demonstrated that FOXA1 
acts as an ONC in prostate cancer (53, 54), whereby the hotspot 
mutation at R219 (R219S and R219C) drives a proluminal phenotype 
in prostate cancer exclusive to other fusions or mutations (53, 54). 
We interpreted these two mutations, but, here, we only illustrate the 
clinical interpretation of R219C, as that of R219S is very similar. We 
searched for the missense mutation R219C using the protein change 
and gene name “FOXA1” in the CancerVar web server. CancerVar 
did not find any therapeutic, diagnostic, or prognostic evidence for 
this mutation. Because this mutation has recently been incorporated 
into somatic databases, including COSMIC (ID: COSM3738526) and 
international cancer genome consortium (ICGC) (ID: MU67448716), 
CBP_9 was applied as moderate evidence. Recently, two publications 
reported its biological functions in prostate cancer, and CBP_12 

was applied. According to CBP_7, this mutation is absent or has an 
extremely low minor allele frequency in the public allele frequency 
database. As all seven in silico methods predicted this mutation as 
(likely) pathogenic, CBP_10 was applied. According to the AMP/
ASCO/CAP/CGC guidelines, this variant falls into the class “tier 
III uncertain significance,” with a score of 7, but very close to the 
class “tier II potential.” On the other hand, on the basis of the OPAI 
model, the score on this variant is 0.99, suggesting that it is very likely 
oncogenic. This use case demonstrates that a semiautomated inter-
pretation approach can greatly improve prediction accuracy for 
each variant given existing knowledge and domain expertise. In 
addition, this user case shows that a model-based approach involving 
machine intelligence can be applied as additional evidence to support 
rule-based methods.

DISCUSSION
Clinical interpretation of cancer somatic variants is important for 
clinicians and researchers working in the field of precision oncology, 
especially given the transition from panel sequencing to whole-exome/
genome sequencing in cancer genomics studies. To build a standard-
ized, rapid, and user-friendly interpretation tool, we developed 
command-line software tools together with a web server to assess 
the clinical impacts of somatic variants using the AMP/ASCO/
CAP 2017 guidelines. CancerVar is an enhanced version of the 
cancer variant knowledgebase incorporated from our previously 
developed tools for variant annotations and prioritizations, including 

Fig. 6. A use case of using rule-based and deep learning-based models in CancerVar for interpretation of FOXA1 variants. – We queried the FOXA1 mutation R219C 
in prostate cancer. The rule-based prediction of this variant was tier III (uncertain significance), with a score of 7, which is very close to tier II. However, the OPAI model 
predicted this variant to be oncogenic, with a score of 0.99. On the basis of a manual review of the results, we suggest that this variant has clinical significance.
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ANNOVAR (55), InterVar (56), VIC (9), and iCAGES (57), as well 
as assembling existing variant annotation databases such as CIV-
iC (4), CKB (6), and OncoKB (1). We stress here that CancerVar will 
not replace human acumen in clinical interpretation but rather gen-
erate evidence to help human reviewers by providing standardized, 
reproducible, and precise output for interpreting somatic variants.

With CancerVar, we did not reconcile the well-known “conflicting 
interpretation” issues across knowledgebases; instead, we docu-
mented and harmonized all types of clinical evidence (i.e., drug 
information and publications) for both hotspot and non-hotspot 
mutations in detail to allow users to make informed clinical deci-
sions based on their own domain knowledge and expertise. Com-
pared to existing knowledgebases such as OncoKB, CIViC, and 
metaKB, CancerVar provides an improved platform in four areas: 
(i) comprehensive, evidence-based annotations with rigorous quality 
control for ~13 million somatic variants, which is not limited to the 
small number of known hotspot mutations; (ii) a flexible scoring 
system allowing users to fine-tune the importance of clinical evi-
dence criteria according to their own domain knowledge; (iii) im-
proved prioritization for cancer driver mutations using the novel 
semisupervised deep learning method OPAI; and (iv) automatically 
summarized interpretation text such that users do not need to com-
pile evidence from multiple knowledgebases manually. We expect 
CancerVar to become a useful web service for the interpretation of 
somatic variants in clinical cancer research.

We also need to acknowledge several limitations in CancerVar. 
First, the scoring weight system is not very robust and may be con-
sidered ad hoc by some users. We note that existing clinical guidelines 
did not provide recommendations for weighting different evidence 
types, and therefore, we treat all weights as equal by default. Never-
theless, with increasing amounts of clinical knowledge regarding 
somatic mutations, we expect that we may build a weighted model 
in the future to enhance prediction accuracy. Second, a small number 
of CNAs (similar to hotspot mutations) have emerged as important 
biomarkers for disease characterization and therapeutic decision- 
making; however, there is a lack of a specific database for clinically 
actionable somatic CNAs. Although AMP/ASCO/CAP recently pub-
lished a CNA guideline, CNAs are very heterogeneous in size, and 
their significance is much harder to score in practice. Therefore, in 
the future, we will design and implement the scoring system for 
CNAs based on the platform used to discover CNAs (which deter-
mines the resolution of calls), the reliability of the CNA calls, the 
genes covered by the CNAs, and additional cancer type–specific in-
formation from existing databases (given that different cancer types 
have different CNA profiles). Third, CancerVar currently cannot 
interpret inversions or gene fusions and cannot interpret gene 
expression alterations, although these genomic alterations may play 
important roles in cancer development/progression. Before a specific 
guideline for these types of mutations becomes available, we suggest 
that users treat them as CNAs (gene inversions/fusions as deletions 
and gene expression down-regulation or up-regulation as deletions 
or duplications). Last, CancerVar web servers cannot process indels 
because there are many more possible indels than SNVs in cancer to be 
precomputed en masse. However, users have the flexibility to use the 
command-line version to predict the clinical significance of indels, 
including those in genes that are not included in the cancer gene census.

Overall, accurate interpretation of clinical significance depends 
greatly on evidence harmonization, which should be precisely derived 
and standardized from multiple databases and annotations. Compared 

to existing knowledgebases that document a limited number of 
hotspot mutations, CancerVar provides polished, comprehensive, 
and semiautomated clinical interpretations for somatic variants 
with clinical evidence, and it greatly facilitates human reviewers’ 
drafts of clinical reports for panel sequencing, exome sequencing, 
or whole-genome sequencing in cancer. Although some commercial 
software tools also use the AMP/ASCO/CAP rules to standardize 
variant interpretation, they require a high license fee that many 
academic researchers may not afford. In addition to interpreta-
tion based on the AMP/ASCO/CAP rules specified by consensus 
from human experts, the CancerVar deep learning–based approach 
jointly models both rule-based clinical features and functional 
prediction features to support oncogenic predictions for novel un-
reported mutations. We believe that CancerVar allows for compre-
hensive clinical interpretations and prioritizations for both hotspot 
and non-hotspot variants, which may facilitate the implementation 
of precision oncology.

In summary, CancerVar is both a web server and a command- 
line software tool that provides polished and semiautomated clinical 
interpretations for somatic variants in cancer. Moreover, CancerVar 
facilitates drafting clinical reports semiautomatically for panel se-
quencing, exome sequencing, or genome sequencing in cancer. We 
expect to continuously improve CancerVar and incorporate new 
functionalities in the future, similar to the wInterVar server (56) 
and wANNOVAR server (58).

MATERIALS AND METHODS
Overview of mapping of clinical evidence to the AMP/ASCO/
CAP 2017 guidelines
According to the AMP/ASCO/CAP 2017 guidelines, there are a total 
of 12 types of clinical-based evidence to predict the clinical signifi-
cance of somatic variants, including therapies, mutation types, variant 
allele fraction [mosaic variant frequency (likely somatic) and non-
mosaic variant frequency (potential germline)], population databases, 
germline databases, somatic databases, predictive results of differ-
ent computational algorithms, pathway involvement, and publica-
tions (8, 9). As shown in Fig. 1, CancerVar contains all the above 
12 pieces of evidence, among which 10 are automatically generated; 
the other two, including the variant allele fraction and potential 
germline, require user input [possibly included in variant call for-
mat (VCF) files] for manual adjustment.

Cancer variant collection and preprocessing
The cancer gene census list and potential driver gene list are essen-
tial for somatic variant annotation. We curated a list of 1911 cancer 
census or driver genes with 13 million exonic variants from seven 
existing cancer knowledgebases, including COSMIC, CIViC, and 
OncoKB, and two datasets collected from the literature on driver gene 
predictions (table S1). For each exon position in these 1911 genes, 
we generated all three possible nucleotide changes. Unlike other 
knowledgebases, which only compile variants reported or documented 
previously, we precomputed annotations for all possible variants for 
CancerVar interpretation. We compiled clinical evidence based on 
the AMP/ASCO/CAP 2017 guidelines, which makes the variant 
searching in the CancerVar web server very fast. In CancerVar, we 
document all types of clinical evidence, such as in silico prediction, 
drug information, and publications, in detail to help users adjust 
criteria and make their own decisions using prior knowledge.
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The evidence-based scoring method to prioritize the clinical 
significance of somatic variants
CancerVar evaluates each set of evidence and then scores each 
clinical-based prediction (CBP). The variant evidence receives 
2 points for strong clinical significance or oncogenic, 1 point for 
supporting clinical significance or oncogenic, 0 for no support, 
and −1 for benign or neutral. The CancerVar score is the sum of all 
evidence scores. The complete scoring system for each CBP can be 
found in table S2. Let CBP[i] be the ith evidence score, and let weight 
[i] be the score for the ith evidence; the CancerVar score is calculated 
using Eq. 1. The weight is 1 by default, but users can adjust it based 
on its importance from prior knowledge. On the basis of the score 
range in Eq. 2, we classify each variant into one of the four tiers: strong 
clinical significance, potential clinical significance, variants of unknown 
clinical significance (VUS), and benign/likely benign (neutral)

  CancerVar score (CS ) =  ∑ i=1  12   Weight [ i ] *  CBP [ i]  (1)

  Interpretation =  

⎧

 
⎪

 ⎨ 
⎪

 

⎩

    

Strong clinical significance CS ≥ 11

    Potential clinical sinigicance 8 ≤ CS ≤ 10    
 VUS 3 ≤ CS < 8

   

(Likely ) Benign CS ≤ 2 

    

(2)

The deep learning–based scoring method to predict 
oncogenic variants
We developed a scoring method for OPAI using 12 clinical evidence 
prediction scores and 23 precomputed scores predicted by other 
computational tools, such as SIFT (23), DANN (26), and SiPhy (59), 
by improving a semisupervised generative adversarial network model 
that we previously built. As the score ranges are diverse among the 
predictive tools, we used their categorical outputs as prediction fea-
tures. Some variants have missing values on certain features, and we 
thus excluded variants with more than two missing features. After 
filtering, 12.9 million variants were used for downstream analysis.

OPAI uses one type of deep learning architecture, the semi-
supervised generative adversarial network method, to predict the 
probability of oncogenic variants. As depicted in Fig. 2, this archi-
tecture consists of two parts: the generator (G) and the discriminator 
(D). The generator generates synthetic samples (fake) by random 
noise from the normal distribution, and the discriminator differen-
tiates realistic samples and synthetic data. In our model, the input 
data consist of labeled samples, unlabeled samples, and random 
noise from a normal distribution as the synthetic data. Then, the 
discriminator/classifier classifies the sample into three classes: 
(i) neutral, (ii) nonneutral (oncogenic mutations), and (iii) fake 
synthetic data, in which the unlabeled real samples can be identified 
as 1 or 2 and the synthetic samples are 3. Therefore, loss function 
L can be written as two parts

  L =  L  supervised   +  L  unsupervised    

   L  supervised   = −  𝔼  X,y~ p  data  (X,y)   log [ p  model  (y =  l  i  ∣X, y < 3)]  

 
  
   L  unsupervised   = −  {   𝔼  X~ p  data   (  X )     log [  1 −  p  model   (  y = 3∣X )   ]   + 

     
  𝔼  X~ p  G     log [    p  model   (  y = 3∣X )   ]   }    

    (3)

where pdata is the underlying distribution of real samples and pG is 
the distribution of the output from the generator. For the loss 
of the generator, we used feature matching as our loss function: 
 ∥ 𝔼  x~ p  data     D(x) −  𝔼  z~ p  G     D(G(z))∥ .

OPAI training and testing
Labeled data were obtained from expert curation on diagnostic 
reports of patients with cancer in our in-house database; we used 
4000 variants (1000 positive) as the training set and 1234 variants 
(669 positive) as the validation set. We tested our model on 6226 vari-
ants (1335 positive), which were compiled from a literature review. 
For unlabeled data, we randomly selected 60,000 variants from 
12.9 million samples with non-missing features and repeated this 
process multiple times.

For synthetic samples, the generator produces random noise 
from a standard normal distribution in each batch step and outputs 
the synthetic samples. In each minibatch, the model calculates 2000 
labeled samples, 10,000 unlabeled samples, and 10,000 synthetic 
samples from the generator. The discriminator/classifier is trained 
by calculating the loss from supervised learning and unsupervised 
training separately. Then, the generator is trained by minimizing 
the feature matching in each batch.

To improve analysis interpretability and evaluate the feature 
contribution in our study, RF analysis was used to evaluate the im-
portance of 35 features (23 in silico functional features and 12 clin-
ical evidence scores) in the above expert manually labeled variant 
database. The importance score of each feature was calculated and 
ranked, as provided in the Supplementary Materials (fig. S4).

Pan-cancer benchmarks from public datasets
Complementary and comprehensive benchmark datasets are needed 
for systematic evaluation of the performance of CancerVar. In the 
current study, we used several different benchmark datasets with 
references: (i) a multi-institutional evaluation study with 51 variants 
from Sirohi et al. (10); (ii) a literature annotation database from 
OncoKB (1) and CIViC (4); (iii) TP53 mutations and their target 
transcription activity from the IARC database (41); and (iv) func-
tional annotation based on in vitro cell viability assays from the 
study of Ng et al. (42).

High-quality expert-labeled variants from in-house 
clinical reports
In addition to datasets from public resources, we also have an in-
house dataset with 7967 somatic mutations from deidentified patients 
at the Children’s Hospital of Philadelphia (CHOP). Each variant 
has been manually annotated and classified by human experts in the 
diagnostic labs. Using the AMP/ASCO/CAP guidelines, the four-tier 
classification assignment for each somatic mutation was agreed 
upon by at least two cancer experts from the Division of Genomic 
Diagnostics Laboratory at CHOP. Furthermore, to train the deep 
learning model, we used variants from strong clinical significance 
(tier I) and potential clinical significance (tier II) categories as posi-
tive samples and used benign/likely benign variants (tier IV) as nega-
tive samples. There were 5234 variants, 1668 positive samples and 
3566 negative samples, for training and validation.

CancerVar and OPAI software accessibility
Users can access CancerVar and OPAI in three ways, including a 
web server that is free and open to all users without login requirements 
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(https://cancervar.wglab.org), a command-line software written in 
Python that is freely available from GitHub (https://github.com/
wglab/CancerVar) for noncommercial users, and a RESTful API 
service to facilitate other web developers in accessing our precom-
puted evidence and OPAI scores for ~13 million coding variants. 
Users can use the command-line version to predict the clinical sig-
nificance of indels, including indels in genes not included in the 
cancer gene list precomputed by CancerVar.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abj1624

View/request a protocol for this paper from Bio-protocol.
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