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Machine learning of material properties: Predictive 
and interpretable multilinear models
Alice E. A. Allen* and Alexandre Tkatchenko*

Machine learning models can provide fast and accurate predictions of material properties but often lack transparency. 
Interpretability techniques can be used with black box solutions, or alternatively, models can be created that are 
directly interpretable. We revisit material datasets used in several works and demonstrate that simple linear com-
binations of nonlinear basis functions can be created, which have comparable accuracy to the kernel and neural 
network approaches originally used. Linear solutions can accurately predict the bandgap and formation energy 
of transparent conducting oxides, the spin states for transition metal complexes, and the formation energy for 
elpasolite structures. We demonstrate how linear solutions can provide interpretable predictive models and high-
light the new insights that can be found when a model can be directly understood from its coefficients and func-
tional form. Furthermore, we discuss how to recognize when intrinsically interpretable solutions may be the best 
route to interpretability.

INTRODUCTION
Predictive models using neural networks (NNs), random forest, and 
kernel regression have been applied across the physical sciences, 
with great success in many areas (1–8). However, explaining how 
these types of “black box” models work can be challenging. Machine 
learning (ML) interpretability methods can help us understand ML 
models, but limitations exist with these techniques (9–16). Rather 
than using interpretability techniques on sophisticated ML solutions, 
an alternative approach is to reformulate a model into an intrinsically 
interpretable model (17). As long as the underlying basis remains 
interpretable and the solution is not overly complex (16), simple 
linear combination of nonlinear basis functions (which we will refer 
to as linear models) is an excellent approach for interpretable pre-
dictions. In this work, we highlight examples where kernel methods 
or NNs have been used, but alternative directly interpretable solu-
tions exist. In doing so, we demonstrate the benefits of moving 
toward simpler regression models where possible. Furthermore, we 
discuss how to identify the set of problems that can be described 
without complex nonlinear solutions and the alternative approaches 
for creating intrinsically interpretable models.

The prediction of a material’s properties using ML has been a 
subject of interest in the material science community for many years 
(1, 18–21). Understanding how these predictive models work is also 
highly important (2–5, 5, 22–29). Interpretability has been consid-
ered in the development of the model itself; examples include the 
rule-based descriptors (5, 22) and symbolic regression (30). These 
are intrinsically interpretable models that do not require further 
processing steps to be analyzed. The development of SISSO (sure 
independence screening and sparsifying operator), which can auto-
matically create analytical formulas from physical properties, has been 
particularly influential in this area (5, 26). Alternatively, post hoc inter-
pretability methods can be used to analyze a nonlinear ML model 
after it has been fit (1, 24, 28). However, most ML regression models 
remain black boxes without clear explanations for their predictions.

As an example, we consider the winning model of the crowd-
sourced material science Novel Materials Discovery (NOMAD) 
Kaggle competition discussed in (19). This competition involved in 
predicting the relative formation energy and electronic bandgap 
energy for a set of transparent conducting oxides (TCOs), specifically 
(AlxGayInz)2O3 compounds (with x + y + z = 1). The winning group 
used a kernel ridge regression (KRR) model. However, while a KRR 
model can explain predictions in terms of similarity to other data 
points, models built with KRR do not provide a description of the 
nonlinearity or the interactions present or give a breakdown of the 
contribution of each variable to an outcome. We begin by considering 
the connection between the representation used in the winning 
solution of the NOMAD Kaggle competition and the cluster ex-
pansion method (31–33). We then demonstrate that linear models 
with pairwise interaction terms can predict the formation energy 
and bandgap energy of TCOs with the same accuracy as the kernel 
approach originally used.

We then show two further examples where simple linear models can 
be built. First, for the prediction of formation energies for elpasolite 
crystals from (21). These are quaternary crystals with the form 
ABC2D6 in the Fm3m space group. Again, KRR is not required, and 
a highly accurate linear model for the formation energy can be 
created. The existence of an accurate linear solution can be anticipated 
by considering both the discrete nature of the variables and the size 
of the dataset used. We then demonstrate that the prediction of spin 
splitting in transition metal complexes, as carried out in (34), can be 
performed with a linear solution. In the resulting model, the coeffi-
cients reflect trends in the dataset and known physical principles.

Before the datasets are revisited, it is important to consider what 
is meant by interpretability. Interpretability is a concept with a defi-
nition that is specific not only to a given field but even also to a 
given paper. Although steps have been taken to try and clarify what 
is meant by interpretability [see (25) for an insightful discussion], a 
clear general definition is lacking. In this work, we refer to the linear 
solutions we create as interpretable as both an overall understand-
ing of the global model can be achieved because of the simplicity of 
the functional form, and individual predictions can be broken down 
into contributions from variables and interactions. However, as 
interpretability is a subjective and field-dependent concept, other 
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viewpoints will exist, particularly regarding the required sparsity of 
the model. Greater consensus may be reached as the area is further 
developed; however, it is currently not possible to strictly define a 
model as interpretable or not.

The problems around interpretability extend to discussions around 
its benefits. Advantages can be stated such as improvement in 
scientific understanding, trust, new chemical and physical insights, 
and increased knowledge. However, rather than focus on indefinite 
concepts, we instead identify a set of characteristics and associated 
advantages:

1) By analyzing the coefficients of a linear model, it can be seen 
whether a model agrees or disagrees with known physical principles. 
As we will show, this can serve as a form of validation test for phys-
ical behavior. For example, the expected trends in the elpasolite 
formation energy across the periodic table can be seen from the 
coefficients of the linear model created.

2) With a clear functional form, the assumptions present in a 
model can be seen. This allows us to compare the new solution to 
existing predictive models and to recognize the physical assump-
tions present. This can indicate in which regimes a model will work 
or fail. By reformulating the solution for the TCOs to a specialized 
linear model, the similarities and differences to cluster expansion—
an established method in materials modeling—can be recognized, 
and the systems the model will accurately describe can be predicted.

3) The coefficients of a linear model can provide information that 
can be used to guide future predictions. This can make property 
prediction faster by focusing on important variables and interactions. 
We use this for the elpasolite universe to perform a focused search 
of low formation energy structures.

While using post hoc interpretability methods on nonlinear solu-
tions can help with the analysis, being able to use the coefficients of 
a linear model is much simpler and does not require further calcu-
lations. Furthermore, the functional form is stated. Visualizing the 
relationship between hundreds of variables and a predicted outcome 
is more complex than having the relationship described by a well-
defined formula. Interaction detection is possible with post hoc 
interpretability methods but can require expensive or complex 
techniques (11–15, 35, 36). Approaches using symbolic regression 
or SISSO also have the characteristics listed (5, 22, 30). However, 
automated searches for analytical formula can become prohibitively 
expensive when there are a large number of features. In addition, 
analyzing a model containing hundreds of basis functions with multi-
ple different transforms becomes extremely challenging. Therefore, 
these techniques have not been used for the applications studied in 
this work. Instead, we use a much smaller number of possible oper-
ators that are guided by physical insight. We also focus on datasets 
with a large number of features, where it has not been realized that 
simple linear combinations of nonlinear basis functions produce 
accurate predictive models.

The examples we revisit were innovative contributions to the 
field that helped to establish the power of complex nonlinear ML 
methods for predicting chemical and material properties. By pro-
ducing specialized linear solutions for these challenging tasks, we 
provide new insight about how these predictive models work and 
demonstrate that changing the type of regression model used can be 
a viable route to interpretability. Generalized nonlinear solutions 
will offer accurate models for a wide range of problems, but the use 
of more specialized regression models can provide benefits beyond 
accuracy. This has already been seen with the development of linear 

interatomic potentials and the associated improvements in speed 
and extrapolation (37–40). Here, we show the benefits of interpret-
ability with predictive linear solutions.

RESULTS
Transparent conducting oxides
The first example that we will examine is the winning model of the 
NOMAD Kaggle competition and the prediction of formation ener-
gies for TCOs. The representation scheme used in this model was 
n-grams. The simplest form of n-grams is 1-grams, which describe 
each atom by its element type and coordination number (see Fig. 1). 
The number of each type of 1-grams in the unit cell is then counted 
and divided by the volume of the unit cell. Sequences of neighbor-
ing 1-grams are constructed, with up to 4-grams in this case. That 
is, the number of connected clusters in a given volume is used as 
the representation.

The motivation for constructing a linear model for this case comes 
from considering the parallels between the n-gram representation 
and cluster expansion. Cluster expansion represents the elements 
present in a material by spin-like variables on a fixed lattice (33). 
Distinct clusters on a lattice are then defined, and the sum of the 
spin product across the clusters is calculated. Coefficients are then 
assigned to each distinct clusters to calculate the formation energy. 
The n-gram representation is not formulated from a spin-based 
model but effectively counts the number of unique spin configura-
tions for small clusters. Given the similarities between the approaches, 
the existence of an accurate linear model using the n-gram repre-
sentation can be hypothesized. Two linear models were constructed 
with the n-gram representation. First, a linear additive model with-
out interactions present

	​ E(χ) = ​∑ i​ ​​ ​α​ i​​ ​ 
​χ​ i​​ ─ V ​ + c​	 (1)

where i is the number of n-gram clusters of type i, V is the volume 
of the unit cell, and the i coefficients are calculated by fitting to the 

Fig. 1. A diagram of the n-gram representation. The n-gram representation is 
shown for an example material. The 2-grams and 3-grams shown do not represent 
all those present in the structure.
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dense functional theory (DFT) data. Second, a linear model with 
pairwise cluster-cluster interactions

	​ E(χ) = ​∑ i​ ​​ ​α​ i​​ ​ 
​χ​ i​​ ─ V ​ + ​∑ j<i​ ​​ ​β​ ij​​ ​ 

​χ​ i​​ ​χ​ j​​ ─ 
​V​​ 2​

 ​ + c​	 (2)

The presence of pairwise interactions between clusters will incor-
porate nonlocal and higher body order effects into the model. Note 
that these are interactions between different n-gram clusters and not 
between different atoms. We will refer to Eq. 2 as a bilinear model. 
A KRR was retrained using the settings described in (19). In (19), it 
was shown that using NN or light gradient–boosting machine did 
not improve results. The linear model was fit to the whole training 
set at once and did not explicitly identify or separate a structure by 
its space group (six different space groups are included in the dataset 
R​​

_
 3​​c, C2/m, Pna21, Ia​​

_
 3​​, P63/mmc, and Fd​​

_
 3​​m). Details of the LASSO 

(least absolute shrinkage and selection operator) fitting procedure 
are given in Materials and Methods.

The mean absolute error (MAE) for the testing and training set 
is shown in Table 1. The comparable performance of the bilinear 
model and the kernel model can be seen. The linear additive model 
has an error that is 51.1% higher than the bilinear model, indicating 
the importance of interactions between clusters for this problem.

Replacing a KRR model with a linear model is advantageous for 
a number of reasons. The functional form and coefficients of the 
model enable a global understanding to be achieved. The n-gram 
representation partitions a structure into distinct clusters that are 
identified by the elements present and their coordination number. 
The linear model then assigns a contribution to the formation energy 
for each of the clusters present. The interaction cluster-cluster term 
adds a further contribution to the formation energy if two specific 
kinds of clusters both occur in the material. As the nonlinearity in-
corporated into the KRR model is not explicitly defined, gaining a 
global understanding of the model is extremely challenging. As pre-
viously noted, the linear n-gram model has similarities with cluster 
expansion, which also identifies distinct clusters of atoms, uses a 
linear model, and is fit to DFT data. However, by using the coordi-
nation number of an atom to identify clusters, the n-gram model 
can be accurately fit to multiple space groups at once and can be 
used on lattices it was not explicitly fit to. This increases the number 
of basis functions but does not decrease performance as LASSO is 
used to sparsify the basis. The advantages of applying l1 regularization 
for cluster expansion have previously been seen (41). An additional 
difference between the two approaches is that cluster expansion does 
not include the pairwise cluster-cluster interactions.

Understanding the link between cluster expansion and linear 
n-grams is not just an interesting insight but has clear practical ben-
efits. Recognizing the assumptions present in a model, and how 
existing predictive models relate to one another, can help us predict 
the systems a model will accurately describe. The capabilities and 
limitations of cluster expansion are known and can be used to 
predict the accuracy of linear n-grams. For example, in (42), cluster 
expansion was shown to perform poorly for the prediction of the 
mixing energy, Eme, of 8043 symmetrically different Zn8Mg24O32 
structures in a 64 atom supercell. This is a dataset with a fixed com-
position, multiple space groups, and a very narrow energy range. The 
assumptions present in the cluster expansion model fail to describe 
the system accurately. In linear n-grams, the atoms are represented by 
the element type and the coordination number, and this allows multiple 
space groups to be accurately modeled. The presence of pairwise 
interaction terms will further improve performance as the model is not 
limited to localize four atom descriptions. We can therefore predict 
that the linear n-gram model will improve on cluster expansion and 
better describe the small energy differences between structures and 
multiple space groups. We are able to make this prediction as the 
physical assumptions present in linear n-grams are known, as is 
the link to cluster expansion. The test set MAE for cluster expansion in 
(42) for the Eme was 20 meV per supercell when trained to 6434 struc-
tures. However, this corresponds to an R2 (coefficient of determination) 
of 0.39 as the energy range is very narrow. In contrast, linear 
n-grams have an MAE of 5.7 meV per supercell and an R2 of 0.96, 
a substantial improvement. We can also predict that linear n-grams 
will accurately describe materials that cluster expansion has shown 
to perform well for, e.g., an AgPd system (43). When fit to 600 
face-centered cubic structures from (43), linear n-grams can reach a 
test set accuracy of 3.6 meV per atom. This is comparable to the 
accuracies reached by state of the art interatomic potentials (43).

Another advantage of a linear model is that the contribution of 
variables to an individual prediction can be calculated. For nonlinear 
models, methods such as SHAP (SHapley Additive exPlanations) or  
LIME (Local Interpretable Model-Agnostic Explanations) can show 
estimated contributions from individual variables (14, 15). Linear 
models do not require assumptions to calculate variable contribution, 
and moreover, interaction and individual effects can be completely 
separated. As the contributions are simply calculated by the coefficient 
multiplied by the variable, there is also little barrier to understanding 
linear contributions.

To explore variable contributions further, we examine the five 
polymorphs of aluminum oxide contained in the dataset (Fig. 2). 
The order of the formation energies for the structures are correctly 
recreated with the linear model, despite R​​

_
 3​​c and Pna21 not being 

present in the training set. Figure 2 shows that R​​
_

 3​​c and Ia​​
_

 3​​ have the 
same variables contributing to the formation energy, demonstrating 
the similarity of these two structures in the n-gram representation. 
Despite the similarity, however, there is still a difference of 0.037 eV 
per atom in the predicted formation energy. This is due to the slightly 
higher amount of Al6 and O4, and associated n-grams, per unit 
volume in R​​

_
 3​​c. This level of insight into individual predictions, with 

variable and interaction contributions identified, is another advan-
tage of linear models.

For the prediction of the bandgap energy, again, we see that a 
linear model with pairwise interactions is sufficient to recreate the 
bandgap energy with comparable accuracy to KRR (Table 1). Therefore, 
both the formation energy and bandgap energy can be predicted 

Table 1. The training and testing set MAE of the KRR regression 
models and the linear regression models for the formation energy (Ef) 
and bandgap energy (Ebg). The score for the bilinear model using the 
measure used in the NOMAD competition is 0.079 and 0.020 for the Ebg 
and Ef, respectively. 

MAE (eV per cation)

Ef Ebg

Model Train Test Train Test

KRR 0.011 0.015 0.088 0.107

Linear 0.022 0.022 0.143 0.143

Bilinear 0.013 0.015 0.085 0.105
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using an alternative linear model. The comparable accuracy between 
KRR and a linear model emphasizes the importance of representa-
tions for this problem. Although cluster expansion has previously 
been used for the prediction of the bandgap energies, its use has been 
limited compared to the wide-spread prediction of formation ener-
gies (42, 44, 45). The performance of cluster expansion for bandgap 
energy prediction has been varied and is dependent on the system 
studied (42, 44,45). It is yet to be seen whether the addition of 
cluster-cluster interactions using l1 regularization and adding the 
coordination number of the element to identify atoms can allow linear 
n-grams to accurately predict bandgap energies for a wider range of 
materials. However, the performance for TCOs is promising.

To investigate whether the kernel solution originally proposed 
resembles the n-gram linear model, post hoc interpretability tech-
niques were used to visualize the kernel solution for the formation 
energy. Partial dependence (PD) plots show the average relationship 
between a variable and the outcome for an ML model; a further 
description is provided in Materials and Methods (9). An ensemble 
of KRR models is used for this analysis with the variation in the 
solutions shown. A measure of the uncertainty present is necessary 
to see if the trends are robust to small changes. The PD plots for the 
kernel model for three variables are shown in Fig. 3. This figure 
demonstrates that the predicted formation energy tends to decrease 
linearly with a higher percentage of O4 and In6-O4-Ga6-O4. This 
linear trend generally continues across other variables and higher-
order n-grams, with a linear solution within the 95% confidence 
interval of the PD plots for the vast majority of examples.

However, for many variables, the uncertainty of the PD is large, 
and conclusions cannot be reached, as there is not a consensus in 
behavior across the ensemble, as shown by Al6 in Fig. 3.

The PD plots can be supplemented by individual conditional 
expectation (ICE) plots to see if the behavior is consistent across all 
data points (Fig. 3) (10). PD plots show the averaged behavior of a 
variable, whereas ICE plot show the behavior at multiple data points. 
For O4, the ICE plot demonstrates that while the relationship be-
tween the variable and outcome remains linear, there is variation in 
the gradient. For other variables, a similar trend can be seen with 
the relationship between the variables and the outcome following a 
linear trend but with inhomogeneity in the gradient across the data 
points. This inhomogeneity indicates that interactions are present 
in the model. The pairwise interactions for the 1-gram features are 
shown in Fig. 3. The strongest interactions present are between Al6 

and O4. This interaction was also important for the aluminum oxide 
polymorphs and is consistently nonzero across an ensemble of 
linear models. The 2-gram interactions are shown in fig. S2.

The linear behavior and the presence of interactions in the kernel 
model suggest that not only is the linear solution as accurate as the 
kernel model but also the solutions have additional similarities. If the 
possibility of using a linear combination of nonlinear basis functions 
had not been previously recognized, then visualizing the relationships 
between the variable and outcome through ICE plots could have ex-
posed this. Likewise, possible transforms could also have been found 
by examining the ICE and PD plots.

We will now demonstrate how the discovery of TCOs can be 
guided by information from the specialized linear models. When 
analyzing predictive models, it is important to consider that there 
may be multiple solutions to the underlying problems and not one 
unique solution. While analyzing individual predictive models can 
be useful, care has to be taken when drawing general conclusions 
about TCOs. The consistency of trends in the coefficients can be 
explored by examining the deviation in values across an ensemble 
of linear models. This is shown in fig. S3, where variation is seen in 
the coefficients across the ensemble. When two properties are being 
optimized, the variables that influence both are of particular interest. 
Their presence will positively contribute to multiple properties. If a 
large bandgap, low formation energy material is desired, then we 
want to identify variables that increase the bandgap and lower 
the formation energy. These variable can be found by examining the 
large coefficients present in both models. This is shown in fig. S3C 
for the ensemble linear models. Three variables result in both a high 
bandgap and low formation energy. Two are interactions variables 
between Al6,O4 and O4,Ga6 and then the single variable O5. If we 
wanted to design new compounds, then we could therefore concen-
trate on creating structures that contain these n-grams. This analysis 
would in theory be possible using a nonlinear model; however, using 
post hoc interpretability methods on all possible pairwise interaction 
would be prohibitively expensive. Of the three identified coefficients, 
the O5 variable is of particular interest as this is only present in the 
Pna21 space group. A focused searches of structures in this space 
group could be performed and weighted toward producing high O5 
concentration structures. When suitable compounds where found, 
the lowest-energy polymorph could then be identified. Within the 
existing dataset, a very clear relationship between the bandgap energy 
and O5 concentration can already be observed (see fig. S3D).

Fig. 2. The variable contributions for the aluminum oxide polymorphs. For the five Al2O3 polymorphs in the transparent conduction oxide dataset, the contributions 
of the top five variables to the predicted formation energy are shown, with the remaining contributions and intercept also given. These can be calculated directly from 
the bilinear model by ixi or ijxixj, and the predicted energy is simply the sum of all variable contributions. Interaction terms are shown in red, and main effects are shown 
in blue. Energies are given in electron volts per cation.
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By reformulating the n-grams model, we have shown how moving 
toward simpler regression models can expose the assumptions in a 
model and discussed how analyzing an ML model can guide future 
predictions. We have begun to demonstrate the advantages of moving 
away from generalized nonlinear solutions, and we will continue to 
do so with two further examples.

Elpasolite crystals
In (21), a predictive model for the formation energy of 10,590 elpa-
solite structures, with quaternary crystal structure ABC2D6 in the 
Fm3m space group, was produced using KRR. The features used to 
describe the structures were the principle quantum number (n) and 
number of valence electrons (v) at each site A, B, C, or D. The pri-
mary reason why a linear model is expected to work for this problem 
is the discrete nature of the variables. As there are only a discrete 
number of possibilities for each variable (either six or eight), the 
variables can be one-hot encoded (i.e., na can instead be represented 
as six separate binary variables: nA1, nA2, nA3, nA4, nA5, and nA6). This 
assigns each row and column in the periodic table a distinct contri-
bution to the formation energy. If a variable is binary, then trans-
forms do not need to be considered, and therefore, the set of possible 
solutions is greatly decreased.

A linear model was produced with interactions between up to 
three variables included (trilinear)

​​
​E​(​​n , v​)​​  = ​ ∑ i​ ​​ ​α​ i​​ ​n​ i​​ + ​∑ i​ ​​ ​β​ i​​ ​v​ i​​ + ​∑ j<i​ ​​ ​α​ ij​​ ​n​ i​​ ​n​ j​​ + ​∑ j<i​ ​​ ​β​ ij​​ ​v​ i​​ ​v​ j ​​+​

​     ​∑ i,j​ ​​ ​γ​ ij​​ ​n​ i​​ ​v​ j​​ + ​∑ k<j<i​ ​​ ​α​ ijk​​ ​n​ i​​ ​n​ j​​ ​n​ k​​ + ​∑ k<j<i​ ​​ ​β​ ijk​​ ​v​ i​​ ​v​ j​​ ​v​ k​​ +​    
​∑ k<i,j​ ​​ ​γ​ ijk​​ ​n​ i​​ ​v​ j​​ ​n​ k​​ + ​∑ k<j,i​ ​​ ​λ​ ijk​​ ​n​ i​​ ​v​ j​​ ​v​ k​​

 ​​

(3)

where i sums over all positions (A, B, C, and D) and all one-hot 
encoded values. Again, LASSO was used to fit the coefficients, with 
further details given in Materials and Methods.

For this problem, it is clear that at least pairwise interactions will 
be important, as otherwise, the formation energy for an atom would 
be dictated purely by its group and period.

There are fundamental limits to the interaction order that can 
accurately be fit in a dataset of a given size. If there are 10,000 data 
points with around 40 different elements at four different positions, 
then this means that if everything is approximately uniform, there 
will only be around six structures in the training set for any two ele-
ments at a given position. For example, the number of training 
structures with Ca at A and Mg at B will be approximately 6. This 
means that it may be possible to include important interactions 
between four variables as there is adequate data. However, beyond 
that, the training set is not large enough to capture important inter-
actions; the sampling is insufficient. High interaction order effects 
can only be important in a model if the dataset size is large enough 
to sample them properly.

At 10,000 data points, the trilinear model has an MAE of 0.11 eV 
per atom. In (21), an MAE of 0.10 eV per atom was reported for a 
KRR model. Therefore, the trilinear model offers comparable accu-
racy to the KRR model. The accuracy of the DFT data has been stated 
as between 0.10 eV per atom for transition metal oxides and ele-
mental solids and 0.19 eV per atom for heats of formation for filled 
d shells (21, 46,47). Three variable interaction terms are necessary 
as the pairwise interaction model does not provide the same per-
formance at 0.14 eV per atom. However, an MAE of 0.14 eV per 
atom is still relatively low and much improved on the linear additive 
model, which has an error of 0.46 eV per atom.

With the linear model, trends in the behavior of elpasolites can 
be directly seen from the model. For example, in (21), it was found 
that fluoride lowered the formation energy at position D the most. 
Carbon at position D, on the other hand, was associated with the 
highest formation energy. Using the coefficients of linear model 
(simply summing the coefficients of nDx and vDy and the pairwise 
interaction term nDx, vDy), the contribution of each element to 
the formation energy can be isolated (Fig. 4A). In Fig. 4A, it can be 

Fig. 3. The PD, ICE, and interactions for the KRR TCO model. PD and ICE plots for two 1-gram features (O4, Al6) and one 4-gram feature (In6-O4-Ga6-O4) for the KRR 
model for formation energy. The interactions between the 1-grams in the KRR model are also shown. The code required for this plot is available at https://github.com/
aa840/icepd.git.

https://github.com/aa840/icepd.git
https://github.com/aa840/icepd.git
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seen that carbon at position D has the highest contribution to the 
formation energy, while fluorine at position D has the smallest. This 
trend reflects that fluorine prefers to form heteronuclear bonds 
rather than homonuclear bonds, while carbon prefers to form homo-
nuclear bonds. Therefore, we can see how the coefficients reflect 
known physical principles. In addition, the contribution of the indi-
vidual coefficients can be calculated (fig. S4). For example, carbon’s 
contribution to the formation energy at position D is composed of 
nD2 and vD4 and nD2, vD4 with coefficients of 0.48, 0.68, and 1.39, 
respectively. This demonstrates the importance of the pairwise inter-
action term for this case, indicating that carbon does not follow the 
trends of its group and period.

In addition, we can begin to understand why extrapolation to a 
new regime may fail. To illustrate this, we retrained the trilinear 
model with a training set of 10,000 structures, none of which con-
tained carbon in position D. A test set was constructed consisting of 
295 elpasolite structures with carbon in position D, and the resultant 
error was 2.07 eV per atom. The error on a test set without carbon 
in position D was 0.11 eV per atom, 20 times smaller. The contribu-
tion of each atom to the formation energy at position D for this model 
is shown in Fig. 4B). The trends are identical to original model, 
except for carbon’s formation energy, which is noticeably different, 
2.24 eV per atom compared to 4.34 eV per atom. This is because the 
important pairwise interaction term previously discussed is zero in 
this new model. Generalizability and interpretability are connected 
concepts, and when we can understand how a model works, we can 
begin to understand whether a model will work or fail.

To show that the linear model is still capable of exploring the 
elpasolite universe, the formation energies for ~2 ×106 ABC2D6 
structures were calculated. We then examined the 250 lowest-energy 
structures to see if the lowest-energy structure suggested in (21), 
CaSrCs2F6, was found. In (21), the low-energy structures all con-
tained fluorine in positions D, and the same is seen for the linear 
model. We also again see that CaSrCs2F6 is in the bottom of 
250 energies identified by the linear model. As with the TCOs, the 

contributions of each term to an individual prediction can be cal-
culated. However, in this case, it should be appreciated that as each 
value is one-hot encoded, the meaning of the zero value has changed. 
Therefore, we can now understand why CaSrCs2F6 is predicted to 
have a low energy (Fig. 5). Fluorine at position D lowers the forma-
tion energy as we have previously seen, and the cesium atom at 
position C has a negative contribution to the formation energy too. 
However, what is also essential is the pairwise interaction terms 
between vD,vA and vD,vB and vD,vC, which all lower the formation 
energy by at least −0.25 eV. Therefore, not only can a linear model 
be used to explore the elpasolite universe and identify low-energy 
structures, but it can also show the important interactions present.

As previously noted, one of the benefits of interpretable ML 
models for materials is assisting in predictions. The coefficients 
of the linear model from the elpasolite structures can help us more 
efficiently explore regions of the elpasolite universe we wish to 
investigate further. For example, we may be interested in the low 
formation energy elpasolites. At the simplest level, this could mean 
exploring only materials with fluorine at position D. However, if we 
only used information about single sites, the optimal structure sug-
gested would be FFBa2F6. This is not a low-energy structure, and the 
bonding between different sites is not considered. Therefore, inter-
actions between terms must be taken into account. These interac-
tions are not easily accessible in a nonlinear model. With a three 
variable linear model, we have access to a large amount of informa-
tion from the coefficients. If we want to identify materials with a 
low formation energy, as an example, then we can exploit this in-
formation. Rather than search the full space of the elpasolites, we can 
instead focus on the highly negative three variable contributions and 
construct algorithms that will favor low-energy structures.

A set of 260 unique structures was produced using an algorithm 
based on three variable contributions described in Materials and 
Methods, with the position of these structures in the elpasolite uni-
verse shown in fig. S5. The sampled structures are consistently in 
the low-energy regime, with 46 of the 100 lowest structures in the 
elpasolite universe of 2 ×106 structures being identified within this 
small set of proposed structures. This is far more efficient than ran-
domly searching the elpasolite universe even when position D is 
constrained to containing fluorine (see fig. S5). Given that the elpa-
solite universe can be fully explored and has been already analyzed, 
improving sampling for this system is not necessary. Nonetheless, 
the possibility of using analysis from an ML model to guide predic-
tions has been highlighted, and the advantages of using linear com-
binations of terms have been seen.

Transition metal complexes
In transition metal complexes, the degeneracy of the d-orbitals of 
the central metal ion is broken by the presence of the surrounding 
ligands. For octahedral complexes, three d-orbitals are at a lower 
energy than the remaining two d-orbitals. This leads to the existence 
of two spin state configurations, a high and a low spin state. The size 
of the spin splitting is connected to various properties of the ligand 
and the metal ion, and therefore, these properties were used as vari-
ables for an NN model in (34). The Hartree-Fock exchange fraction 
of the B3LYP functional was also used as a variable. The energy dif-
ference between high and low spin state, EH − L, was predicted for 
a set of octahedral transition metal complexes.

For this example, continuous variables are present, but the vari-
ables describing the oxidation state/element of the metal ion and the 

A

B

Fig. 4. The contribution to the formation energies across the periodic table for 
site D. The formation energy (in electron volts per atom) for each atom at site D for 
(A) a model with carbon included in the training set and (B) a model without carbon 
included in the training set at position D. This is calculated directly from the coeffi-
cients of the model, and the zero point is set to the lowest value of fluorine.
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connecting element of the ligand atoms are binary. The variables 
describing the charge and denticity of the ligands have only three 
possible values. Furthermore, spin splitting has previously been shown 
to be linearly dependent on the Hartree-Fock exchange fraction 
(48, 49). Therefore, restricting this variable to a linear form will not 
decrease the predictive performance. The variables mentioned are 
all expected to be highly important in the predictive model. Given 
these factors, a linear model with interactions is a viable option. A 
trilinear model was constructed, with three variable interaction terms 
included and again fit using LASSO, with details given in Materials 
and Methods. Interaction terms between three variables allow for 
contributions that are dependent on the nature of the two types of 
connecting ligands and the metal ion. Interactions also allow the 
sensitivity to the Hartree-Fock exchange to be dependent on prop-
erties of the ligand, which has been previously observed (49).

The trilinear model offers comparable accuracy to the NN result 
used in (34). The testing (training) set root mean square error is 
2.2 (1.7) kcal/mol for the linear model and 3.1 (3.0) kcal/mol for the 
NN reported in (34). Figure 6A) shows how the contribution to the 
predicted spin splitting changes with the metal ion and its oxidation 
state. This can be calculated using the coefficients for the metal ion, 
oxidation state, and pairwise term for the metal and oxidation state 
together. Higher-order effects are again not considered. In Fig. 6B, 
the distribution of the spin splitting for different metal ions and oxi-
dation states dataset is shown. Manganese with oxidation state 2+ is 
predominantly in the high spin state configuration, and therefore, 
the net negative contribution for the Mn2+ coefficients is expected. 
Other factors will be important for the prediction, but it would be 
suspect if the coefficients for Mn2+ were large and positive. In addi-
tion, the differences between the oxidation states can be seen. 
Cobalt shows this as Co3+ has a larger value than Co2+. This is then 
reflected in the distribution of the energy difference for cobalt, with 
Co3+ in the low-energy state more frequently than Co2+.

The coefficients of the linear model reflect the physical principles 
that underpin transition metal spin splitting. The electron configu-
ration for Cr3+ is [Ar]3d3, and therefore, it cannot exist in a low spin 
state as at least four electrons must be present in the d-orbitals. The 
lack of low spin states can be seen in the distribution of EH − L in 
Fig. 6B. Consequently, the coefficient contributions for Cr3+ are highly 
negative, reflecting that Cr3+ is always associated with the high spin 
state. This shows how analyzing a linear model can reveal that phys-
ical properties are reflected in the model.

DISCUSSION
One of the interesting aspects of interpretable ML is that the best 
route to interpretability depends on the underlying problem and 

dataset. Identifying if a directly interpretable regression model is 
available requires the consideration of a number of factors. Com-
paring the representation used in a nonlinear model with existing 
physically motivated models, as well as considering the nature and 
known relationships between variables, can help to identify when 
simplistic linear solutions can replace a nonlinear model. Another 
key factor is the size of the dataset, as discussed for the elpasolite 
structures, as the larger the dataset, the more constrained the space 
of possible solutions is.

Once it has been identified that complex nonlinear solutions may 
not be necessary, the next step is to decide how to construct an 
interpretable model. In this work, we have constructed linear com-
binations of nonlinear basis functions by applying knowledge about 
the physical system and variables and manually adding new terms. 
Although we have not used variable transforms in these examples, 
this could additionally be incorporated into the process. However, 
alternative approaches have also been used to discover intrinsically 
interpretable solutions.

Automated methods exist to produce physically meaningful de-
scriptors with well-defined formula. These methods include symbolic 
regression and rule-based descriptors (5, 22, 30, 50, 51). Complex 
relationships can be recreated with these approaches, but because of 
poor scaling, there are difficulties in using these methods if there are 
a large number of variables (5, 50). However, they remain an ex-
tremely effective approach to producing physically meaningful 
formula. Complex linear polynomials, such as those used in inter-
atomic potentials, can also be created with automated approaches 
(37–40). However, if there are tens of thousands of basis functions 
with varying forms, then analyzing a linear solution by its individual 
coefficients becomes practically impossible.

To varying degrees, the links between linear and nonlinear 
models can be described analytically. For example, there is a known 
exact equivalence between linear models and polynomial kernels, 
and for other kernel types, approximations to linear models can 
be produced. Visualizing nonlinear solutions provide an alternative 
way to compare the links between a linear and nonlinear solution. 
PD and ICE can both be used to visualize the relationship between 
a variable and the predicted outcome as seen for the TCOs (9, 10). 
If clear relationships can be seen in the nonlinear solution, then a 
linear model can subsequently be built that incorporates these rela-
tionships. For example, Fig. 7 shows PD and ICE plots for simulated 
data. The quadratic relationship of the x0 can be observed in both 
plots, and if the relationship was not previously known, then the 
x0 variable could be squared and used in a linear model. The ICE plot 
would confirm that the relationship seen was consistent across many 
data points in the dataset. Alternative methods exist for produc-
ing intrinsically interpretable models, such as using generalized ad-
ditive models or simple decision trees. They provide another route, 
which also does not rely on using post hoc interpretability methods.

There are many problems that cannot be simplified this way. For 
example, intrinsically interpretable models cannot be created for 
interatomic potentials or for predicting the formation energy of 
a material purely from stoichiometric information without a large 
reduction in accuracy (6, 52, 53). While linear models can be creat-
ed for interatomic potentials, their form is far more complex. Some 
understanding can still be gained given their linear form, but they 
cannot be as readily analyzed as the simplistic linear models de-
scribed in this work (37–40). It is important to distinguish and identify 
those applications that require nonlinear solutions or complex 

Fig. 5. The variable contributions for CaSrCs2F6. The variable contributions for 
CaSrCs2F6; the formation energy for this material is −3.11 eV per atom.
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linear solutions and those that do not. While the former cannot be 
represented by intrinsically interpretable models, the latter often 
can. The required complexity of the regression model for a given 
problem determines the best route for interpretability.

The works we have revisited were chosen as they are excellent 
examples of how ML can assist in material and molecular property 
prediction. However, remarkably simple regression models can be 
used for these problems. We have demonstrated that a black box 
model is not the only option for exploring the elpasolite universe, 
predicting the spin states of transition metal complexes, or even 
winning the NOMAD Kaggle competition. The nature of the vari-
ables present in the model, as well as knowledge of the physics of the 
underlying problem, can both help to identify when simplistic 
linear solutions will offer comparable performance. Specialized re-
gression models can provide multiple advantages. With linear inter-
atomic potentials, improvements in speed and extrapolation have 
already been observed (37–40). With simplistic linear solutions, the 
benefits of interpretability become apparent.

These benefits include showing how a model agrees or disagrees 
with known physical principles. This is reflected by the trends seen 
in the coefficients of the models for the elpasolites and the transition 
metal complexes. In addition, linear models can provide informa-
tion that can guide future predictions, and this was seen with the 
search for low-energy elpasolite structures and the discovery of the 
variables responsible for large bandgap and low formation energy 
structure for TCOs. Furthermore, the similarities between the n-gram 
model and cluster expansion could be analyzed in the linear refor-
mulation. This information could then be used to predict the sys-
tems that the linear n-gram model could accurately describe.

In this work, we have focused on examples from the material 
science community; however, producing interpretable predictive 
models by creating simple linear combinations of nonlinear basis 
functions is widely applicable. While certain problems require deep 
learning or other such techniques, this is not always the case. It 
is important to be able to identify when more transparent solutions 
are available.

A

B

Fig. 6. The model coefficients and dataset distributions for the transition metal complexes. The (A) contribution from the metal and oxidation state to the predicted 
spin splitting. The gray indicates that Ni3+ is not present in the dataset. The (B) distribution of EH − L for different metal ions in the dataset. If the difference is positive, then 
the spin configuration is low, and if the difference is negative, then the spin configuration is high.

A
B C

Fig. 7. An example of PD, ICE and interaction detection for simulated data. The (A) PD and (B) ICE plot for x0. The simulated data have the form ​f(x ) = ​x​0​ 2​ + 0.1 ​∑ 
i=1

​ N−1 ​​ ​x​ i​​ + ϵ​, 
where x is drawn from a uniform probability distribution between −1 and 1 and ϵ ∼ N(0,0.25). The ​​x​0​ 2​​ relationship can be seen in the PD. The dashed lines show the 95% 
confidence interval, and the solid line is the mean value for the five models fit. An NN model is used. The PD plot it centered so that PD(0) = 0 for the mean of the ensemble. 
The ICE plot is centered so that ​​ ̂ f ​(0, ​x​c​ (i)​ ) = 0​. (C) The distribution of H statistics for the real ensemble model and null distribution for an NN ensemble model fit to f(x) = x0 + 
x1 + x0x1 + ϵ.
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MATERIALS AND METHODS
LASSO fitting
To fit the coefficients of the model, LASSO was used with the regu-
larization optimized by a grid search (54). Fivefold cross-validation 
was used on the training set to find the optimal regularization 
parameter.

For the TCOs, features with less than 10 entries were removed to 
reduce the size of the dataset, resulting in 62,089 remaining vari-
ables. The final model for Ef had only 387 nonzero coefficients.

Kernel ridge regression
A radial basis kernel was used for the TCO examples as in (19). A 
Laplacian kernel was used for the elpasolite example as in (55). 
Hyperparameters controlling the length scale of the Gaussian and 
the regularization strength were optimized using a grid search. The 
Python package scikit-learn was used.

Transparent conducting oxides
The formation energy is defined relative to the binary phases and nor-
malized per number of cations: Ef = E(AlxGayInz)2O3 − xE(Al2O3) − 
yE(Ga2O3) − zE(In2O3), where ​x  = ​   ​N​ Al​​ ___________  ​N​ Al​​ + N ​a​ Ga​​ + N ​a​ In​​​​, ​y  = ​   ​N​ Ga​​ ___________  ​N​ Al​​ + N ​a​ Ga​​ + N ​a​ In​​​​ 

and ​z  = ​   ​N​ In​​ ___________  ​N​ Al​​ + N ​a​ Ga​​ + N ​a​ In​​​​. This differs from the usual definition and 
gives a measure of the stability of the ternary compound relative to 
the binary compounds. The formation energy and n-gram repre-
sentation is taken from (19). For a detailed explanation of how 
the n-gram features were built, how the formation energy was cal-
culated, and the contents of the dataset, see (19). The dataset con-
sists of 3000 structures, 2400 are used in the training set and 600 are 
in the testing set.

Both properties were calculated using DFT with the Perdew-
Burke-Ernzerhof (PBE) exchange functional in FHI-aims (56). The 
accuracy of the bandgap calculation is discussed in (19). The features 
are scaled so that 0/1 is the minimum/maximum value of the feature 
in the dataset. The model was then fit to the formation energy. Two 
other models were discussed in (19), the first one used an smooth 
overlap of atomic positions (SOAP) representation with an NN 
(52, 53) and the second one represented the local atomic environ-
ment with a variables derived from analytic bond-order poten-
tials along with other geometric and chemical properties and used 
LightGBM, a form of gradient boosting (57–59). We focus here just 
on the n-gram model as this representation can be interpreted easily.

The n-grams for the MgZnO and AgPd systems use cutoff radii 
based on the covalent radii of the elements scaled by 1.5. The MgZnO 
model was trained to 6434 structures and tested on 1609 structures 
with five different test/train splits used. The AgPd model was trained 
to 600 structures and tested on 76 structures with five different test/
train splits used.

Elpasolite dataset
The elpasolite dataset consists of ABC2D6 structures and contains 
all main-group elements up to Bi. There are 10,590 structures in the 
dataset, with up to 10,000 are used as training data, and it is taken 
from (55).

Transition metal complexes
The transition metal complexes dataset was taken from (34). There 
are 807 structures in the training set and 538 in the testing set. All 
complexes are octahedral, and the central metal ion can be Cr, Mn, 

Fe, Co, or Ni. Oxidation states of 2+ and 3+ are included in the set. 
Variables describing the electronegativity differences and the shape 
of the ligand are also included. The high and low spin state energy 
was calculated using DFT with the hybrid functional B3LYP at 
seven Hartree-Fock exchange fractions. The exchange fraction is 
also included as a variable in the model.

Post hoc interpretability methods
PD is a commonly used method for visualizing the relationship be-
tween an independent variable and the dependent variable and can 
be calculated by

	​ PD(​x​ s​​) = ​ 1 ─ n ​ ​∑ i=1​ n  ​​ [ ​   f ​(​x​ s​​, ​x​c​ 
(i)​)]​	 (4)

where xs is the variable of interest, xc is all other variables excluding 
xs, and ​​   f ​​ is the ML model. Therefore, the PD is a measure of the 
mean value of the ML model at xs across a dataset. A PD plot for 
simulated data with a quadratic form is shown in Fig. 7. The x2 rela-
tionship can clearly be seen in the figure.

ICE plots help to overcome the problems associated with PD (10). 
PD averages the data points contributions, while ICE plots instead 
show all points ​​   f ​(​x​ s​​, ​x​c​ 

(i)​)​ for a given xs. This can be used to check for 
interactions and to see if the averaged trends seen in the PD plots 
persist across all data points. An example of an ICE plots for simu-
lated data is shown in Fig. 7B

PD measures can also be used to determine whether an interac-
tion exists. An interaction is said to exist between variables xi and xj 
if a function, F(x), where x = (x1, x2, …, xn), cannot be expressed as 
two functions

	​ F(x ) = ​f​ ∖j​​(​x​ 1​​, … , ​x​ j−1​​, ​x​ j+1​​, … , ​x​ n​​ ) + ​f​ ∖i​​(​x​ 1​​, … , ​x​ i−1​​, ​x​ i+1​​, … , ​x​ n​​)​	 (5)

where f∖j does not depend on xi and f∖j does not depend on xi (35). 
An interaction between two variables can be quantified using H sta-
tistics (36). The interaction between two variables j and k is defined by

	​​ H​jk​ 2 ​  = ​ 
​∑ i=1​ n  ​​ [P​D​ jk​​(​x​j​ (i)​, ​x​k​ (i)​ ) − P​D​ j​​(​x​j​ (i)​ ) − P​D​ k​​(​x​k​ (i)​)]

    ─────────────────────────   
​∑ i=1​ n  ​​P​D​jk​ 2 ​(​x​j​ (i)​, ​x​k​ (i)​)

 ​​	  (6)

with ​​H​ jk​​  = ​ √ 
_

 ​H​jk​ 2 ​ ​​. For meaningful interpretation, the H statistics 
for ​​   f ​(x)​ must then be compared to the distribution of H statistics 
if no interactions are present. The null distribution, H0, is pro-
duced by generating artificial data from the best possible additive 
model (36, 60)

​​​ ~ y ​​ i​​  = ​​    f ​​ A​​(​x​ i​​ ) + [​y​ p(i)​​ − ​​   f ​​ A​​(​x​ ​p​ (i)​​​​)]​, where ​​​   f ​​ A​​(x)​ is the best additive 
model and p(i) represents a random permutation of integers 1,2,...,N.

The original model is then fit to the artificial data (​​​ ~ y ​​ i​​​, xi), and H0, jk 
is calculated. An interaction is then define as Hjk − mean(H0, jk) >  × 
std(H0, jk), where  = 4 is used in this work unless otherwise stated. 
An example of the distribution of the H statistics for the null distri-
bution and the components in an ensemble NN model is shown in 
Fig. 7 for f(x) = x0 + x1 + x0x1 + ϵ.

By using ensemble methods to show uncertainty, checking the 
consistency of nonlinearity with ICE plots, and calculating the null 
distribution for H statistics, we have taken steps to test the robust-
ness of conclusions drawn. The code used to calculate and produce the 
figures in this work is provided (https://github.com/aa840/icepd). 

https://github.com/aa840/icepd
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The H statistics for the KRR were calculated using 1000 values in the 
dataset and 10 null data points. The convergence with respect to the 
number of values for Al6,O4 is shown in fig. S1.

Algorithm for exploring elpasolite universe
The algorithm that we use has the following steps:

1) The three variable values of cicjck + cicj + cick + cjck + ci + cj + ck, 
where ci is the coefficient of variable i, are calculated for all possible 
combinations of n and v at each site (A, B, C, and D).

2) The minimum three variable contributions are found and de-
fine up to three of the variables present in the final structure.

3) Under the constraint of the existing variables in the final 
structure, the minimum in the set of remaining three variable con-
tributions is found.

4) This process is repeated until all variables are defined.
Many different variations of this algorithm could be used, and 

this is not a unique solution to the problem. Performing this proce-
dure for the elpasolite three variable model results in the structure 
CaSrCs2F6 being identified first. This is in the bottom 250 structures 
in the elpasolite universe and coincidentally the lowest-energy struc-
ture found by subsequent DFT calculations. Multiple structures can 
be created by systematically preventing low-energy three variable 
contributions previously identified from being used in new struc-
tures. Up to four different interactions identified from the previously 
produced structure were prevented from being chosen in the creation 
of a new candidate. The effective degenerate structure of ABC2D6, 
BAC2D6, was also added to the set. This resulted in the production 
of 260 unique structures.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abm7185
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