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Extrachromosomal circular DNA (eccDNA) elements are circular DNA molecules that are derived from but are independent of
chromosomal DNA. EccDNA is emerging as a rising star because of its ubiquitous existence in cancers and its crucial role in
oncogene amplification and tumor progression. In the present study, whole-genome sequencing (WGS) data of cancer samples
were downloaded from public repositories. Afterwards, eccDNAs were identified from WGS data via bioinformatic analyses. To
leverage database coverage, eccDNAs were also collected by manual curation of literatures. Gene expression and clinical data were
downloaded from TCGA and CCLE and then used to investigate the roles of eccDNAs in cancers. Finally, the first integrated
database of eccDNAs, eccDNAdb, was developed. eccDNAdb currently includes 1270 eccDNAs, which were identified in
480 samples (of 42 cancers) after analyzing a total number of 3395 tumor samples (of 57 cancers) including patient tissues, patient-
derived xenografts, and cancer cell lines. A total number of 54,901 eccDNA genes were annotated and included in the database as
well. With the integration of gene expression, clinical information and chromatin accessibility data, eccDNAdb enables users to
easily determine the biological function and clinical relevance of eccDNAs in human cancers. In conclusion, eccDNAdb is freely
accessible at http://www.eccdnadb.org. To our knowledge, eccDNAdb is the first database in the eccDNA research field. It is
expected to provide insight for novel cancer therapies.
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BACKGROUND
Nuclear DNA is packaged into 23 pairs of linear chromosomes.
Researchers have long observed the existence of extrachromoso-
mal circular DNA (eccDNA) elements [1, 2]. EccDNAs are derived
from chromosomes but are independent of chromosomal DNA
[3, 4]. Unlike chromosomal amplicons, eccDNAs follow a
nonchromosomal mechanism of inheritance: because they lack
centromeres, eccDNAs are segregated unequally into daughter
cells; thus, daughter cells can have a higher eccDNA copy number
than the parental cells [5, 6]. This unique mechanism of
inheritance enables eccDNAs to change rapidly with the environ-
ment [6]. These observations demonstrate that eccDNAs undoubt-
edly exist, but these results were obtained before the advent of
human genome sequencing technology. Computational analysis
of high-throughput sequencing datasets offers a new perspective
on eccDNAs in the genomic landscape of tumors.
Recently, through high-throughput sequencing, eccDNAs were

found to exist more ubiquitously in human cancers, including
glioblastoma, neuroblastoma, and breast cancer, than previously
anticipated [4, 5, 7, 8]. eccDNA is a driver of eukaryotic genome
plasticity and is involved in numerous biological processes [9].
Turner et al. noted that oncogene amplification, which drives

tumor progression and intratumoral heterogeneity, is prevalent on
eccDNAs [5]. Intratumoral heterogeneity induces chemotherapeu-
tic resistance, and cancer cells can evade therapies that target
oncogenes maintained on eccDNAs [10]. Moreover, eccDNAs drive
the transcription of numerous oncogenes, including MYC, EGFR
and CDK4, by increasing DNA copy numbers [7] and chromatin
accessibility and enabling ultra-long-range chromatin contacts to
promote cancer growth [4]. Two recent studies highlighted the
association of eccDNAs with poor clinical prognosis in multiple
cancers, including neuroblastoma [8, 11]. Clearly, the above
studies indicated that amplification of eccDNA genes plays a
crucial role in intratumoral heterogeneity, drug resistance and
cancer progression. Revealing the underlying mechanism may
broaden the horizon for targeted disruption of key oncogenes
currently considered undruggable. Thus, eccDNA and eccDNA
genes have great potential as treatment targets to prevent the
progression and even the occurrence of cancers and as
biomarkers for cancer diagnosis or prognostic prediction.
Thanks to this renewed understanding, there is an urgent need

for a database to study the biological properties of eccDNAs and,
more importantly, to facilitate eccDNA-based techniques for
cancer treatment and prognosis prediction. Here, we developed
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the first integrated database of eccDNAs, eccDNAdb, which aims
to identify known and novel eccDNAs in human cancers by
computational analysis of whole-genome sequencing (WGS) data
and to annotate and illustrate the potential roles of these eccDNAs
in human cancers.

RESULTS
Statistics of eccDNAdb data
In total, 1270 eccDNAs were identified, with 754 from WGS data
and 516 from literature curation. EccDNAs were found in most
studied cancers, demonstrating its ubiquitous existence in human
cancers (Supplementary Table S2). Brain cancers, including
glioblastoma, glioma, and lower grade glioma, had the most
eccDNAs, while biliary tract cancer, oral cancer and thyroid cancer
had the fewest. Most cancers had more than 5 eccDNAs (Fig. 1A).
EccDNAs were identified on all chromosomes (Fig. 1B) and
eccDNAs had a size ranging from 21 bp to 1 Gb (Fig. 1C).
Approximately, one-fourth of the eccDNAs were <3.2 kb, half of
the eccDNAs were <282 kb, and 75% of the eccDNAs were
<2.5 Mb in size. The average eccDNA size was 9.4 Mb (Fig. 1C). The
eccDNAs were composed of 1 to 99 segments, but most (61.26%)
had only one segment (Fig. 1D). One-fourth of the eccDNAs were
composed of three or more segments (Fig. 1D). For those eccDNAs
identified from WGS data: eccDNA copy counts ranged from 1 to
160; mean copy count was 11.51; half of the eccDNAs had a copy
count between 4 and 15; and nearly 30% of the eccDNAs had a
copy count of <2 or >15 (Fig. 1E).
In total, 54901 genes were annotated as eccDNA genes

(Supplementary Table S3). The number of genes varied among
eccDNAs, with an average of 7 genes per eccDNA (Fig. 2A).
Approximately 85.83% of eccDNAs had at least 1 gene (Fig. 2A).
More than ten eccDNA genes were found in most cancers, except
for colon cancer, renal cancer and thyroid cancer (Fig. 2B). The
most eccDNA genes were identified in pancreatic cancer. EccDNA
genes were distributed on all chromosomes (Fig. 2C; Supplemen-
tary Table S4). ConsensusPathDB [12] pathway analysis showed
that these genes were enriched in biological processes including
gene expression, transcription, estrogen signaling, GPCR signaling
and so on (Fig. 2D). The distributions of eccDNA and eccDNA gene
number by chromosomes were listed in Supplementary Table S5.

Database description
The database homepage provides a succinct introduction, a
welcome message, and the development workflow. The naviga-
tion bar contains links for all resources in the database (Fig. 3A).
On the “Browse” page, eccDNAs are listed in a table by row, and
the information associated with the eccDNA is shown in the
columns (Fig. 3B). In the top right corner of the table, there is a
search box that can be used to filter content in the table. Clicking
on the ID of an eccDNA will open its detail page, which is
described in detail later in the “Database utility” section. The
search process in eccDNAdb is straightforward, and various search
strategies are provided (Fig. 3C–G). To submit data to eccDNAdb,
the submit form on the submit page can be used (Fig. 3H).
Regarding feedback, users are encouraged to send their sugges-
tions to us via the feedback form on the contact page (Fig. 3I).

DATABASE UTILITY
In this section, we mainly describe the “Browse”, “Search”, and
“GB” modules and demonstrate how to utilize eccDNAdb with
examples.

Browse
All eccDNAs identified in this study can be accessed via the
“Browse” link. In the data table on the “Browse” page, eccDNA
entries are listed in rows, and eccDNA features are displayed in

columns. Of note, a copy count of −1 in the “Copy count” column
means this type of data is not available. The “ID” column shows
the eccDNAdb ID of each eccDNA. The ID of an eccDNA is
formatted as A_B_C_D, where (i) A is the origin of the species, (ii)
B is the origin and number of the host chromosome(s), (iii) C is the
number of segments, and (iv) D is the inclusion order of eccDNAs
with the same designators for A, B, and C. Specifically, only data
derived from humans were used in this study; thus, A is uniformly
represented by “hsa”. B is represented by “Chr” plus a number or
by a number plus “Chr”. The former format indicates that the
eccDNA is derived from only one chromosome, and the number
indicates the chromosome number; the latter format means that
the eccDNA is derived from multiple chromosomes, and the
number indicates the number of chromosomes. C is represented
by a number plus “S”. “S” represents the word “segment”, and the
number indicates the number of segments contained in the
eccDNA. D is a random designator representing the order in
which we assigned IDs to eccDNAs with the same designators for
A, B, and C. D is always 1 if the A_B_C designator is not duplicated.
Three eccDNA IDs are presented as examples: hsa_Chr20_6S_1
indicates that this eccDNA is derived from human chromosome
20 and consists of six segments; hsa_4Chr_9S_1 denotes a
eccDNA that is derived from four distinct chromosomes and
composed of nine segments; hsa_2Chr_8S_2 indicates that this
eccDNA is derived from two human chromosomes, is composed
of eight segments, and is the second eccDNA assigned the same
hsa_2Chr_8S designator.
The eccDNA ID in the table is clickable. Clicking on the ID of an

eccDNA opens its detail page. The information on the detail page
is organized in separate sections. The “Basic information” section
shows a basic description of the eccDNA, which is the same as the
content on the “Browse” page.
After the “Basic information” section, structures of the eccDNA

and amplicon are shown. The eccDNA structure is shown as a
circular plot, and it also possesses interactive features. The inner
circle of the plot shows the copy count of the eccDNA. The copy
count appears when the mouse cursor moves on the layer. The
outer circle shows the eccDNA segments and segment labels.
Segment details will show up when moving mouse cursor onto it.
A segment label is composed of a digital number and “>” or “<”
symbols. The number indicates the segment order, and the “>”
and “<” symbols denote the directions of the eccDNA segments.
The directional symbols offer users a clear picture of how genomic
segments are connected to form the eccDNA.
In the “eccDNA gene list” section, eccDNA genes are listed in a

table. Clicking on a gene row will pick up the gene and show it in
the following “eccDNA gene selector” panel. The “Pan-cancer
eccDNA gene expression profile (TCGA)” and “Pan-cancer eccDNA
gene expression profile (CCLE)” sections show the expression
profiles of eccDNA genes in patient tissues and cancer cells,
respectively. The “eccDNA gene expression in Tumor vs. Normal”
section shows box plots of eccDNA genes’ expression in tumor vs.
normal samples. In the box plot, p-values calculated by Student’s t
test are shown in parentheses next to gene name on the x-axis.
The “eccDNA gene in pan-cancer prognosis” section shows the
survival analysis results for patients stratified by mean and median
eccDNA gene expression levels. Near the bottom of the detail
page, eccDNA gene-gene interaction network is shown in the
section of “Interaction network of eccDNA genes”.

Search
Search by eccDNA. We use “hsa_Chr7_3S_1” as an example to
show the information provided by eccDNAdb. When
“hsa_Chr7_3S_1” is inputted as a keyword, eccDNAdb returns
available information about this eccDNA: “ID”, “Segments”,
“Unique genes”, “Copy count”, “Sample type”, “Tissue”, “Disease”,
and “Cell line”. When the link to this eccDNA is clicked, its detail
page appears. On the detail page, we can see “Segments” as “1
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chr7:55222713–55676816+ 2 chr7:55677806–56117062+ 3
chr7:54830972–55194959+” and “Disease” as “Glioblastoma” in
the “Basic information” section. The eccDNA plot is shown
following basic information (Fig. 4A). When the cursor moves

onto a segment in the outer ring of the circular plot of eccDNA
hsa_Chr7_3S_1, more information about this segment is
revealed (Supplementary Fig. S1A). The inner ring shows the
copy count (here, 100.25) of the eccDNA in glioblastoma
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(Supplementary Fig. S1B). The list of eccDNA genes belonging to
hsa_Chr7_3S_1 is shown as Supplementary Fig. S1C. If the user is
interested in the expression rank of any genes in a TCGA cohort
(such as glioblastoma), the expression profile can be found in the

“Pan-cancer eccDNA gene expression profile (TCGA)” section
(Fig. 4B). Gene expression ranks in cancer cell lines can be found
in the “Pan-cancer eccDNA gene expression profile (CCLE)” section
(Supplementary Fig. S1D). Moreover, eccDNA gene expression
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differences between tumor and normal groups in TCGA cohorts can
be found in the “eccDNA gene expression in Tumor vs. Normal”
section (Fig. 4C). Further, we might wonder whether these eccDNA
genes are associated with cancer prognosis. We can find that

among the hsa_Chr7_3S_1 genes, high expression of EGFR
indicates poor prognosis of LGG (Fig. 4D). Additionally, interactions
of hsa_Chr7_3S_1 genes are visualized in the “Interaction network
of eccDNA genes” section (Supplementary Fig. S1E).

(A)

(B)

(G) (I)

(H)

(C) (D)

(E) (F)

Fig. 3 Overview of eccDNAdb. A Navigation bar. B “Browse” page of eccDNAs. C–G “Search” pages. H “Submit” form. I “Contact” form.
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A                                                       B

E

C                                                       D

Fig. 4 Introduction to eccDNA detail page. A Circular structure of hsa_Chr7_3S_1 in eccDNAdb. B Expression rank of hsa_Chr7_3S_1′s
eccDNA gene in human glioblastoma (TCGA-GBM). C Comparison of hsa_Chr7_3S_1′s eccDNA gene expression between tumor and normal
groups in glioblastoma (TCGA-GBM). D Overall survival differences between low grade glioma (TCGA-LGG) patients stratified by mean EGFR
expression. E Chromatin accessibility of eccDNA-containing region chr7:54370001–55996000 in two glioblastoma samples.
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Search by gene. On the page of “Search by Gene”, either gene
symbol or gene location can be used to search eccDNAs. For
example, entering ELDR in the search box would find all eccDNAs
to which this gene belongs. In the result table, eccDNAs are listed
by row, with columns showing ID, segments, unique genes, copy
count, sample type, tissue, disease, and cell line. Clicking on an ID
will open the detail page of indicated eccDNA.

Search by cancer. On the page of “Search by Cancer”, either
cancer or disease name can be used to search eccDNAs. For
example, entering “acute myeloid leukemia” in the search box
would find all eccDNAs identified in this cancer. In the result
table, eccDNAs are listed by row, with columns showing ID,
segments, unique genes, copy count, sample type, tissue,
disease, and cell line. Clicking on an ID will open the detail
page of indicated eccDNA.

Search by tissue or sample type. On the “Search by Tissue or
Sample Type” page, either the tissue name or sample type can be
used to search eccDNAs. For example, entering “brain” or “cancer
PDX” in the search box finds all eccDNAs in the corresponding
tissue or sample. In the results table, eccDNAs are listed in the
rows, with the columns showing ID, segments, unique genes, copy
count, sample type, tissue, disease, and cell line. Clicking on an ID
opens the detail page for the indicated eccDNA.

Chromatin accessibility of eccDNAs
To determine the chromatin accessibility of eccDNA-containing
genomic region, open chromatin regions across the genome
were identified in assay for transposase-accessible chromatin
with sequencing (ATAC-seq) data. ATAC-seq data were inte-
grated, and a genome browser was provided for easy use of this
feature. On the “GB” page, available ATAC-seq datasets are listed
by cancer on the left. Clicking on the cancer name expands the
viewport, and BigWig tracks are shown. The selected reference
sequence, annotations, eccDNA segments, and ATAC-seq data
are shown as tracks on the genome browser viewport. Users can
use genome browser handlers to easily select and view the
genomic region of interest.
We take EGFR and GBM as an example to describe how to use

the “GB” feature. First, we check “GRCh37-hg19”, “ENCODE genes”
and “eccDNA segments” boxes on the left of the genome browser.
Then, we click “GBM_bigwigs” to expand this menu. After that, we
input “EGFR” in the text box at the top of the genome browser
viewport and click “Go”. The results show that chromatin is highly
accessible at the EGFR gene locus and indicate its mapping
eccDNA in GBM (Fig. 4E).

DISCUSSION
To our knowledge, eccDNAdb is the first integrated database of
eccDNAs identified by the analysis of WGS data and literature
curation. Interest in eccDNA elements is increasing because of
their ubiquity and important roles in human cancers. EccDNAdb
will facilitate eccDNA research in different ways. (i) A landscape
of eccDNAs in human cancers is provided. The data we analyzed
were derived from 3395 samples across 57 tumor types. (ii) The
eccDNAs in eccDNAdb were carefully annotated. Database users
can easily retrieve eccDNA structure, eccDNA gene, eccDNA
gene expression profile, differentially expressed eccDNA gene,
and cancer prognosis. This knowledge facilitates the under-
standing of why an eccDNA or eccDNA gene is important in
cancer biology, thus providing insight for the development of
novel cancer therapies. (iii) Database users can search eccDNAdb
in multiple ways. Currently, searches by eccDNA, gene, cancer,
tissue, and sample type are available. In addition, chromatin
accessibility data of eccDNA-containing genomic regions in
primary human cancers is provided in eccDNAdb. These features

are very useful for finding the information that database users
are interested in. Through large-scale WGS data analysis,
eccDNAdb will allow a more comprehensive understanding of
cancer etiologies from new perspectives and lay foundations for
new therapeutics and impactful clinical trials.
EccDNAs exist more ubiquitously than expected in human

cancers. They drive massive amplification of genes, leading to
high gene expression. With an estimation of 19,292,789 new
cases and 9,958,133 deaths in 2020 [13], cancer is a high
incidence and leading cause of death worldwide. In the United
States, ~1,898,160 cancer cases were expected to be diagnosed
and 608,570 deaths from cancer were expected to occur in
2021 [14]. The overall clinical outcomes of patients are poor in
many cancers and vary considerably among cancers and
individuals. A recent study showed that oncogenes contained
by eccDNA can predict unfavorable prognoses for cancer
patients [8]. In eccDNAdb, associations between the overall
survival of cancer patients and expression level of eccDNA
genes are provided. Many eccDNA genes are indeed correlated
with the clinical survival of cancer patients, as shown in our
database.
ATAC-seq is a method for identifying open chromatin

regions [15–19]. Corces et al. provided the genome-wide
chromatinic accessibility profiles of 410 tumor samples across
23 cancer types from TCGA [20]. Chromatin accessibility, a
hallmark of activated DNA modulation elements, plays a crucial
role in linking the gene expression spectrum with epigenetic
changes and ultimately influences the outcome of clinical
treatment of cancer. EccDNA has been reported to exhibit
higher chromatin accessibility and active chromatin state than
chromosomal DNA, and this property is linked to higher
transcription level of eccDNA [4]. In our database, the ATAC-seq
data of 23 cancers were downloaded from the TCGA database.
These data are shown on the “GB” page and combined with
annotations of eccDNA and eccDNA genes. These integrated
ATAC-seq and eccDNA data provide users with information on
the chromatin regulatory landscape of eccDNA in primary
human cancers.
Currently, there are four high-throughput methods for

systematic identification of eccDNAs: WGS [4, 5, 7, 11], Circu-
larization for In vitro Reporting of CLeavage Effects by
sequencing (CIRCLE-seq) [21, 22], circular DNA enrichment
sequencing (CIDER-Seq) [23] and ATAC-seq [24]. CIRCLE-seq is a
technique for evaluating genomic off-target mutations
induced by CRISPR-Cas9 editing [21, 22]. CIDER-Seq is a novel
method to generate accurate eccDNA sequences and circular
viral DNA sequences [23]. These two methods are anticipated
to be rising stars for eccDNA research. However, a few
sequencing data of these techniques are currently available.
As mentioned above, ATAC-seq is usually used to identify open
chromatin regions, and Kumar et al. found that it can detect
eccDNA from tumor at the preamplification stage [24].
Unquestionably, the WGS technique has been used in more
studies than other techniques and is reported in more scientific
literature [4, 5, 7]. AmpliconArchitect is a robust and feasible
tool for detecting eccDNA elements from WGS data [25].
Therefore, in this study, we systematically identified eccDNAs
in human cancers by analysis of WGS data using Amplico-
nArchitect. Meanwhile, manual curation of eccDNAs from
published articles was also performed to increase the database
coverage.
In the future, we will continuously update eccDNAdb with

newly published data and data submitted by users. Additional
eccDNAs confirmed by low-throughput experiments or identi-
fied by other methods, such as CIDER-Seq [23], will be recorded
in eccDNAdb to overcome current limitation that all eccDNAs
in the database were identified by the AmpliconArchitect
pipeline. In addition, more genetic and epigenetic information

L. Peng et al.

2702

Oncogene (2022) 41:2696 – 2705



related to eccDNAs will be integrated. Numerous eccDNAs
have been found in other organisms, including plants [26–28],
yeast [29–31], kinetoplastids [32], Saccharomyces cerevisiae
[33, 34], Drosophila [35], Xenopus laevis [36, 37], and Mus
musculus [38]. Hence, more species and diseases will be
considered in future updates.

CONCLUSIONS
In summary, eccDNAdb, the first integrated database of eccDNAs, is
a comprehensive catalog of eccDNAs identified in human cancers
by computational analysis of WGS data and by manual literature
curation. EccDNA genes were identified and annotated with
expression data from TCGA and CCLE databases. The database
provides not only basic information about eccDNAs but also the
prognostic value of eccDNA genes. Meanwhile, ATAC-seq data from
TCGA were integrated for the exploration of eccDNA’s chromatin
accessibility. It is expected that the database will deepen our
understanding of the mechanisms of eccDNAs in cancer develop-
ment and facilitate eccDNA research.

MATERIALS AND METHODS
Data collection
WGS data of 183 tumor samples and 8 normal samples (Supplementary
Table S1) were downloaded from the NCBI SRA database. First, low-
coverage (<5×) WGS data of 131 samples (123 tumor and 8 normal),
originally generated by Turner et al. [5] were downloaded from SRA
study SRP081035. Second, high-coverage (>5×) WGS data of 44 tumor
samples were collected and downloaded from SRA. To find high-
coverage data for different types of human cancers, a reference list of
cancer types was created according to the major primary cancer sites
included in the TCGA database, and the SRA database was then
searched with the reference cancer types as a search term. Considering
biological significance and computation speed, no more than three
high-coverage SRA runs per cancer type were downloaded and
analyzed in this study. For cancers that had more than three SRA runs,
three runs were randomly selected for analysis. Third, WGS data of
16 samples of cancer cells generated by the CCLE project
(PRJNA523380) were downloaded from SRA. Finally, the low- and
high-coverage WGS data and CCLE data were combined into a single
WGS dataset for further analysis.
In order to make our database comprehensive, we also performed

manual curation of literatures to collect eccDNAs that are identified using
AmpliconArchitect and readily available, in addition to ab inito analysis of
WGS data. Eventually, we collected 516 eccDNAs from the article published
by Kim et al. [8] who generated the results after analyzing 3212 patient
samples (Supplementary Table S1).

EccDNA identification from WGS data
WGS reads were mapped to the human reference genome hg19 with BWA
[39]. Copy number variations (CNVs) were identified with ReadDepth using
default parameters [40]. Notably, sex chromosomes were eliminated from
the analysis because ReadDepth regards them as entirely deleted in males.
CNVs with copy number >5 and size >100 kb were selected and merged
into seed intervals with amplified_intervals.py, and amplicons were further
identified with AmpliconArchitect.py in the AmpliconArchitect software
suite [25]. We considered copy number >5 by referring to Deshpande
et al.’s study who investigated CNV of matched tumor and normal cases
from TCGA and found this as the criterion to identify somatically amplified
intervals [25]. Default settings of AmpliconArchitect were used during the
analysis. After amplicon detection, eccDNAs were extracted from cycle files
by converting amplicon cycle data into eccDNA data via in-house scripts.
Because a cycle in the cycle file can also be reconstructed without the
determined endpoint, such a cycle is in fact a linear contig and will not be
selected as an eccDNA.
Normal samples were used as a control for the detection of eccDNA in

tumors. CNVs of eight normal samples were obtained. The set of
amplified intervals for normal samples were created and then marked as
blacklisted regions. Afterwards, tumor intervals overlapping blacklisted
regions were trimmed to exclude the portions within 1 Mbp of the
blacklist regions [25].

Annotation of eccDNA genes
Genes that entirely or partially overlap with one or multiple eccDNAs are
defined as eccDNA genes. To identify eccDNA gene, comprehensive gene
annotation was downloaded from the GENCODE database (GRCh37
version of release 38). Then, BedTools intersect was used to find overlaps
between eccDNA and GENCODE gene [41]. Overlap size, namely the
number of intersecting bases, was recorded and subsequently used to
calculate the overlap ratios for eccDNA and gene, respectively. The eccDNA
ratio (Re) was calculated as the overlap size divided by the eccDNA size, i.e.,
Re ¼ Overlap size

eccDNA size, while the gene ratio (Rg) was calculated as the overlap size

divided by the gene size, i.e., Rg ¼ Overlap size
Gene size . Overlap ratio ranges between

0 and 1, with 0 indicating no intersection between two queried features
while 1 indicating one feature entirely overlaps with the other. For
example, a gene ratio of 1 means this gene completely resides in the
queried eccDNA.

Expression of eccDNA genes
To examine the expression of eccDNA genes in human cancers, data for
gene expression in patient samples and cancer cells were downloaded
from TCGA via the GDC Data Portal (https://portal.gdc.cancer.gov/) and
CCLE (https://portals.broadinstitute.org/ccle), respectively. EccDNA gene
expression was analyzed at two levels: (i) a detailed expression profile of
eccDNA genes in each cancer; and (ii) a comparison of gene expression
levels between normal and tumor samples. Two-tailed t test was
performed in Python to determine differences between the normal and
tumor groups.

Survival analysis
To analyze the prognostic value of eccDNA genes in human cancers,
clinical information was also downloaded from TCGA via the GDC Data
Portal (https://portal.gdc.cancer.gov/). The mean or median expression
levels of eccDNA genes were used to stratify cancer patients. Given an
eccDNA gene, patients with an expression level below the mean or median
value were defined as the low expression group, and those with an
expression level above the mean or median value were defined as the high
expression group. The lifelines library in Python was then used to analyze
the effect of eccDNA genes on cancer prognosis.

Database implementation
The database was developed with modern web programming languages
such as HTML5 and CSS3. Bootstrap v4 (https://getbootstrap.com/) was
used to design the layout of the user interface. DataTables (https://
datatables.net/) was used to show tabular data on the webpages. jQuery
(https://jquery.com/) was used for enhanced interactive functionality.
The circosJS (https://github.com/nicgirault/circosJS) library was used to
visualize eccDNA structures on the webpage. The Plotly graphing library
(https://plotly.com/) was used for dynamically rendering graphs on the
webpage. Data were stored in an SQLite (https://www.sqlitetutorial.net/)
database. The STRING database API was used to construct interaction
network of eccDNA genes [42]. The web application was developed with
the Django (http://djangoproject.com/) framework. The website was
deployed in the Alibaba Cloud in an ECS host running Ubuntu 18.04 and
Apache2.

DATA AVAILABILITY
All data generated or analyzed during this study are included in this published article
and its Supplementary Information files.

CODE AVAILABILITY
The source code for the identification of eccDNAs and for the annotation of eccDNA
genes is available at https://github.com/solo7773/eccDNAdb.
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