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The interaction between endogenous GABA,
functional connectivity, and behavioral flexibility
is critically altered with advanced age
Kirstin-Friederike Heise 1,2✉, Laura Rueda-Delgado1,3, Sima Chalavi1,2, Bradley R. King1,2,4,

Thiago Santos Monteiro1,2, Richard A. E. Edden5,6, Dante Mantini 1,7 & Stephan P. Swinnen1,2

The flexible adjustment of ongoing behavior challenges the nervous system’s dynamic control

mechanisms and has shown to be specifically susceptible to age-related decline. Previous

work links endogenous gamma-aminobutyric acid (GABA) with behavioral efficiency across

perceptual and cognitive domains, with potentially the strongest impact on those behaviors

that require a high level of dynamic control. Our analysis integrated behavior and modulation

of interhemispheric phase-based connectivity during dynamic motor-state transitions with

endogenous GABA concentration in adult human volunteers. We provide converging evi-

dence for age-related differences in the preferred state of endogenous GABA concentration

for more flexible behavior. We suggest that the increased interhemispheric connectivity

observed in the older participants represents a compensatory neural mechanism caused by

phase-entrainment in homotopic motor cortices. This mechanism appears to be most rele-

vant in the presence of a less optimal tuning of the inhibitory tone as observed during healthy

aging to uphold the required flexibility of behavioral action. Future work needs to validate the

relevance of this interplay between neural connectivity and GABAergic inhibition for other

domains of flexible human behavior.
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F lexibly adjusting ongoing behavior poses a specific challenge
to the neural control mechanisms and this becomes parti-
cularly visible with increasing age1. Functional deficits in

endogenous γ-aminobutyric acid (GABA)-mediated neural sig-
naling represent one suspect mechanism among the many
potential causes of age-related behavioral decline2. GABAergic
interneurons are suggested to have a major role in scaling and
fine-tuning neural oscillations3,4. More specifically, GABAergic
neurotransmission is believed to be an essential regulator of phase
synchronization of neural oscillations5, which has been proposed
to constitute one of the brain’s main modes of communication6,7.
Thus, phase-based connectivity is indicative of the time-sensitive
modulation of inter-site neural communication and therefore
serves as a proxy for the responsiveness of the neural system.

An age-related decline of neural distinctiveness i.e., the
recruitment of additional neural resources in the aging brain, has
been associated with the age-related alteration of GABA con-
centration in perceptual and motor domains8–10 and is mean-
ingful to add to the original formulation of the dedifferentiation
hypothesis of cognitive aging11,12. Consistent with this hypothesis,
previous work indicates that GABAergic synaptic mechanisms on
the cortical level, evaluated at resting state, predict the system’s
capacity for dynamic event-related modulation of cortical inhibi-
tion, and that this is linked to efficient motor control13. This work
suggests that, once baseline GABAergic neurotransmission is
imbalanced, the system’s responsiveness is impaired, and this may
have detrimental behavioral consequences. Such imbalance may
occur at older age when disinhibition becomes more prominent.
Experimental evidence for this association between age-related
GABAergic dysfunction and declining behavior across perceptual
and cognitive domains points towards a stronger impact on those
types of behavior that require a high level of dynamic control
(e.g.14–16). Yet, lowered motor cortical GABA levels are found to
correlate with age-related changes in sensorimotor connectivity
and diminished motor control17. These recent findings suggest a
broader link between GABA availability and connectivity as a
read-out for neural communication with implications for beha-
vioral efficiency. However, whether these phenomena are simply
co-occurring or whether they can be attributed to underlying
causal mechanisms remains an open question.

Here, we chose a behavioral paradigm involving the dynamic
control of transitions between dynamical motor states of varying
complexity, which has shown to engage widespread, and in par-
ticular interhemispheric, neural communication within the sen-
sorimotor system18,19. This behavioral paradigm is a prototype
for flexible behavior, which involves a range of cognitive and
motor control processes to perform these phase transitions20.
By employing a multimodal approach to fuse endogenous GABA
levels with the dynamic modulation of interhemispheric motor-
cortical phase synchronization in the context of motor-state
transitions in neurotypical young and older volunteers, we shed
light on the nature of the interactions between task-related con-
nectivity dynamics, behavior, and tuning of the motor-cortical
inhibitory system during healthy aging.

Results
To investigate the impact of individual variations in baseline
GABA levels for the association between interhemispheric motor-
cortical connectivity and complex bimanual behavior, we used a
cross-sectional multimodal approach. The participants under-
went in total three sessions, including magnetic resonance spec-
troscopy (MRS) in the first session and familiarization with the
behavioral paradigm (motor-state transitions) in the second ses-
sion. The third session followed 24 h after the familiarization and
involved electroencephalography (EEG) during task performance.

MRS data were used to extract the endogenous GABA con-
centration. EEG data served to compute the task-related func-
tional connectivity metric based on the circular variance of
frequency-specific phase angle differences alongside the beha-
vioral parameters (Fig. 1, see the Methods section for details).
While the unimodal analyses (neurochemical, neural, behavioral)
served to verify expected age differences, our primary interest was
to integrate all three modalities to investigate the character of
their interactions.

GABA+ concentration. To examine the endogenous motor-
cortical GABA concentration, MRS data from left, right sen-
sorimotor cortex (S/M1), and a control region, i.e., the occipital
cortex (OCC) were acquired in 22 older and 22 young adults. In
two cases (one older, one young), the data of the right S/M1
were excluded from further analysis due to motion artifacts and
insufficient model fit. Consistency of the voxel placement across
participants and individual traces of edited spectra for each
voxel were visually inspected (Fig. 2). Quantitative quality
metrics were comparable to those published in recent studies
from our and other groups21–23 (for descriptive statistics see
Supplementary Table 1).

A gamma generalized linear mixed model (GLMM, identity
link) was fitted to predict GABA+ with GROUP (young, older)
and VOXEL (left S/M1, right S/M1, OCC) as factors of interest.
All quality metrics (see “Methods” for details) and raw gray
matter fraction (GM fraction) were added as covariates (after
mean-centering) to identify their influence on GABA+ levels and
their potential interaction with voxel or group through stepwise
backward selection. This procedure revealed that of all quality
metrics only GABA Fit error interacted with voxel and raw GM
fraction interacted with group (Supplementary Table 2), all other
interactions (all p > 0.2) were excluded from the final model. Of
note, only interactions were removed during backward selection
but all factors and covariates were kept in the final model to
control for their influence. The final model (Supplementary
Table 3) confirmed a significant effect of GABA signal-to-noise
ratio (GABA SNR, Type II Wald X2(1)= 6.74, p < 0.01) and
Frequency offset (Type II Wald X2(1)= 17.20, p < 0.0001). In
addition, compared to the occipital voxel, both sensorimotor
voxels tended to show higher GABA+ levels with increasing
GABA Fit Error (VOXEL × GABA Fit Error (centered), Type II
Wald X2(2)= 5.84, p= 0.05). Relative to the young, the older
adults showed overall lower GABA+ levels with increasing GM
fraction (β=−0.49 ± 0.19, 95%CI [−0.86, −0.12], X2=−2.61,
p < 0.01, GROUP × raw GM fraction (centered), Type II Wald
X2(1)= 6.82, p < 0.01, Fig. 2d) across all voxels (for further
discussion of this result see Supplementary Note 1).

With reference categories young and occipital voxel, we found
an overall average GABA+ level around 2.86 i.u. (intercept
β= 2.86 ± 0.26, 95% CI [2.34, 3.37], X2= 10.8, p < 0.0001). Based
on the Type II Wald statistics, GABA+ was found to be
significantly different between age groups and this was specific
to the voxel (GROUP × VOXEL X2(2)= 9.57, p < 0.01, Fig. 2c).
Specifically, marginal means contrast estimated for the individual
parameter levels of the GROUP × VOXEL interaction revealed
lower GABA+ levels in both sensorimotor voxels compared to the
occipital voxel in the older (OCC-LEFT S/M1: ΔEMM= 1.65 ±
0.227, 95% CI [0.99, 2.32], z= 7.29, pholm < 0.0001; OCC-RIGHT
S/M1: ΔEMM= 1.564 ± 0.2, 95%CI [0.93, 2.20], z= 7.27, pholm <
0.0001) while the young showed no differences between the voxels
(marginal means contrasts given in Supplementary Table 4).
Furthermore, the older showed significantly lower GABA+ levels
in both sensorimotor voxels compared to the young (LEFT S/M1:
ΔEMM= 0.64 ± 0.15, 95% CI [0.21, 1.07], z= 4.40, pholm < 0.0001;

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-022-03378-w

2 COMMUNICATIONS BIOLOGY |           (2022) 5:426 | https://doi.org/10.1038/s42003-022-03378-w |www.nature.com/commsbio

www.nature.com/commsbio


RIGHT S/M1: ΔEMM= 0.55 ± 0.12, 95% CI [0.19, 0.91], z= 4.48,
pholm < 0.0001) but not the occipital voxel.

In short, controlling for quality metrics and raw gray matter
fraction, we identified a relative reduction of GABA+ levels in the
older compared to the young, which was specific for both
sensorimotor voxels but not the occipital voxel.

Behavior. The control of transitions between motor states was
tested with a variation of an established paradigm24–27, in which
the participants had to rhythmically tap in individually adjusted
pace with the index and middle fingers of both hands and to
control transitions between two coordinative patterns of different

complexity (in-phase/anti-phase, Fig. 1a). The behavioral data
collected during the performance of the behavioral paradigm was
analyzed in a time window of 2000ms following the ‘switching’
cue. The time window of interest for these parameters was based
on previous work27 and pilot testing in older participants with the
same task, which revealed that change in coordination mode is
realized over an extended period. Furthermore, these previous
results showed that a simple binarization of the precision
(correct–wrong) does not reflect the ongoing adjustments made
until the new coordination mode is mastered. Therefore, we
aimed at quantifying performance with respect to (1) the preci-
sion (error rate) and (2) the speed (transition latency). Please see

Fig. 1 Experimental procedures and parameters of interest. a Study outline with MRI/MRS (session 1), task familiarization (session 2) preceding the main
experiment (session 3) including EEG during task performance. Edited MRS and T1-weighted images were used to extract tissue-corrected GABA levels
and additional macromolecules (GABA+) from left and right sensorimotor and occipital voxels. The behavioral paradigm involved transitions between a
stable (mirror-symmetric in-phase tapping of both index or middle fingers synchronously) and a less stable (anti-phase tapping, i.e., contralateral index and
middle finger synchronously) motor state. Task familiarization included stimulus-response mapping and individual performance frequency adjustment.
Performance in motor-state transitions was described with transition latency and error rate. The EEG signal was projected into source space based on the
centroid coordinates of the GABA voxels. Phase angles were computed based on spectrally decomposed (Morlet wavelet transform) source time series.
Phase angle differences between source signal pairs were used to compute connectivity (inter-site phase clustering, ISPC) between cortical sources. Phase
angle differences were associated with behavioral performance in a single trial-based analysis. Then parameters of interest from the individual modalities
(neurochemical, neural, behavioral) were integrated with a Bayesian moderated mediation analysis estimated for interhemispheric motor-cortical
connectivity as independent variable [IV]. In both cases, dependent variable [DV] behavior was either median transition latency or cumulative error rate.
Details on formalization of model paths α; β; τ0; τ given in “Methods”. b Flow of events within the behavioral paradigm. Periods of finger movement (start,
continuation, switching) were interleaved with rest periods (pause). A randomly occurring thumb reaction time task, a fast key press with either left or right
thumb in response to appearance of a circle on the side of the required response was interspersed with the other events with a 5% probability of
occurrence. Inlay highlights the time zones relevant for the analysis of behavioral data and EEG/EMG data analysis (time of interest, yellow). Data collected
in the within-trial pause (demarked in blue) was used as baseline for the EEG/EMG analysis of the data from the time of interest (yellow). All parts of this
figure have been created and published by the corresponding author on https://doi.org/10.6084/m9.figshare.19609842 licensed under CC BY 4.0.
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Methods for details about the behavioral paradigm and para-
metrization of outcome parameters. On average 119 ± 20.5 trials
of individual transitions per participant were subjected to the
analysis including N= 21 young and N= 22 older participants
(descriptive statistics given in Supplementary Table 5).

Error rate. An overview of the distribution of error rate across age
groups and transition modes is depicted in Fig. 3a. To capture a
comprehensive picture of performance during the transition
phase, we chose to split the precision measure into three distinct
levels, namely, fully correct transitions representing transitions
showing 100% correct tapping, failed transitions reflecting tran-
sitions with 100% of erroneous tapping, and cumulative error rate
consisting of all remaining transitions not considered fully correct
or failed.

Failed transitions [trials with 100% error rate]. A logistic GLMM
was used to predict failed transitions using group [OLDER,
YOUNG], transition mode [in-phase, anti-phase], and number of
trials as independent variables (full results in Supplementary
Table 6). With around 0.3%, the overall odds of completely failing
a transition were low (intercept for group= young, nTRIALc= 0,
transition mode= IP: β=−5.66 ± 0.60 (odds ratio 0.003 ± 0.002),
95% CI [−6.83, −4.49], X2=−9.475, p < 0.0001). Based on the
Type II Wald statistics, trial number significantly modulated the
occurrence of failed transitions in a transition mode specific way
and distinct for both age groups (GROUP × TRANSITION
MODE × nTRIALc, X2(1)= 4.4, p= 0.04, Fig. 3c left). Compared
to the young, the older showed a higher number of failed trials
early on and subsequently a steep decline of about 5% in like-
lihood of failed transitions from early to late trials for transitions
into anti-phase (odds ratio=−0.51 ± 0.17, 95% CI [0.27, 0.96],
X2=−2.09, p < 0.05). Independent of group, transitions into
anti-phase were twice as likely to fail than transitions into in-
phase (odds ratio= 2.08 ± 0.54, 95% CI [1.24, 3.46], X2= 2.80,

p < 0.01, TRANSITION MODE Type II Wald X2(1)= 34.99,
p < 0.0001). Overall, with each additional trial, the odds of
completely failing the transition tended to decline (odds
ratio= 0.70 ± 0.14, 95% CI [0.47, 1.04], X2=−1.78, p= 0.08,
nTRIALc Type II Wald X2(1)= 9.86, p < 0.01) irrespective of
group or transition mode.

Fully correct transitions [trials with 0% error]. Like failed transi-
tions, a logistic GLMM was fitted to predict fully correct transi-
tions (full results in Supplementary Table 7). After removing
failed transitions from the data, the overall odds for transitions
to be fully correct were 4% (odds ratio= 0.038 for intercept:
β=−3.26 ± 0.28, 95% CI [−3.80, −2.72], X2=−11.77,
p < 0.0001). Following the Type II Wald statistics, the two main
explanatory parameters were GROUP (X2(1)= 15.43, p < 0.0001)
and TRANSITION MODE (X2(1)= 24.4, p < .0001) and this was
stable over number of trials. Remarkably, older participants were
three times more likely to show completely correct trials (odds
ratio= 3.52 ± 1.25, 95% CI [1.76, 7.045], X2= 3.6, p < 0.001),
irrespective of transition mode. Compared to transitions into IP,
switching into anti-phase was half as likely to result in fully
correct transitions (odds ratio= 0.44 ± 0.10, 95% CI [0.29, 0.69],
X2=−3.63, p < 0.001) independent of group.

Cumulative error rate [0 < error rate/100 < 1]. A beta GLMM
(logit link) was fitted to predict cumulative error rate including the
same parameters as described above (full results in Supplementary
Table 8). After excluding fully correct and fully erroneous transi-
tions [0 < error rate/100 < 1], transitions between transition
modes in either direction involved around 20% of erroneous tap-
ping, i.e., cumulative error rate (intercept: β= 0.21 ± 0.04, 95% CI
[0.15–0.29], X2=−9.07, p < 0.0001). Based on the Type II Wald
statistics, the two main parameters influencing cumulative error rate
were number of trials (nTRIALc, X2(1)= 6.692, p < 0.01) and
TRANSITION MODE (X2(1)= 4.91, p < 0.05). Investigating the

Fig. 2 GABA+ spectroscopy results. a Sum of individual GABA voxels projected into MNI space overlaid on standard brain template. Color coding
indicates overlay agreement in percentage of all available images within group. Neurological display (i.e., coronal and axial view with left side on the left and
right side on the right of image). b Individual edited spectra for LEFT S/M1, RIGHT S/M1, and OCC voxel color-coded for older (blue) and young (yellow)
participants. Darker lines present average spectra per group (orange—young, dark blue—older). c Boxplots (lower/upper whiskers represent smallest/
largest observation greater than or equal to lower hinge ± 1.5 * inter-quartile range (IQR), lower/upper hinge reflects 25%/75% quantile, the lower edge of
notch = median − 1.58 * IQR/ sqrt(n), middle of notch reflects group median) and distributions shown for the interaction effect of group and voxel on
GABA+, which is driven by the differences between the occipital voxel and both sensorimotor voxels within the older in addition to the between age group
differences for both sensorimotor voxels. Asterisks indicate significant effects of model-derived marginal mean contrasts corrected for multiple
comparisons at ***pholm < 0.0001. d Age-group specific effect of raw gray matter (GM) fraction on GABA+ levels. Scatterplot (regression lines for
subgroups with shading representing 95% CI) showing a relative decrease in GABA+ levels with increasing raw GM fraction in the older across all voxels
(pholm < 0.0001). The analysis of GABA+ concentration included data from N= 22 older and N= 22 young participants for LEFT S/M1 and OCC voxels and
from N= 21 older and N= 21 young for RIGHT S/M1.
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parameter estimates revealed that cumulative error increased about
7% over the number of trials irrespective of group or transition
mode (β= 1.07 ± 0.02, 95% CI [1.02, 1.12], X2= 2.87, p < 0.01).
In comparison to transitions into IP, switching into anti-phase
tended to yield around 6% higher cumulative error rate irrespective
of group (β= 1.06 ± 0.03, 95% CI [0.99–1.13], X2= 1.78, p= 0.08).

Transition latency. The transition latency was defined as the time
delay between cue onset and valid response, i.e., the first occur-
rence of the correct transition mode indicated by the cue.
Accordingly, failed transitions were excluded from the trials for
the calculation of the transition latency. An overview of the dis-
tribution of transition latency across age groups and transition
modes is depicted in Fig. 3b. A GLMM (Gamma family with a
log link) was fitted to predict transition latency with the same
independent variables described for error rate (full results in
Supplementary Table 9). Given the model’s reference categories,
the average transition latency was estimated around 569 ms
(intercept β= 568.7 ± 25.1, 95% CI [521.68, 620.03], X2= 143.98,
p < 0.0001). Based on the Type II Wald statistics, GROUP
(X2(1)= 37.74, p < 0.0001), TRANSITION MODE (X2(1)= 8.92,
p < 0.01), and number of trials (nTRIALc, X2(1)= 3.95, p < 0.05)
were the parameters explaining most of the transition
latency’s variance. The parameter estimates revealed, that older
switched around 38% slower between transition modes compared

to the young (β= 1.38 ± 0.08, 95% CI [1.22, 1.55], X2= 5.22,
p < 0.0001). Transitions into the anti-phase pattern tended to be
7% slower than transitions into in-phase (β= 1.07 ± 0.04, 95% CI
[0.99, 1.17], X2= 1.73, p= 0.08). Independent of group or tran-
sition mode, transitions tended to become around 4% faster over
time (nTRIALc, β= 0.96 ± 0.03, 95% CI [0.91, 1.02], X2=−1.37,
p= 0.17).

In summary, the behavioral results for error rate and transition
latency show an expected slowing of the older participants but both
age groups showed a decrease in transition latency across the
experiment. However, the results show no general age-group effect
on the precision of transition performance. While older seemed to
have a slightly higher rate of failing transitions into the more
difficult anti-phase mode early on, they showed an overall higher
rate of completely correct transitions throughout the experiment
compared to the young. The overall cumulative error rate, i.e., the
percentage of erroneous taps in the course of a single transition, was
comparable between the two age groups, showing an increase in
errors as a function of practice (i.e., number of trials) and a trend of
higher errors for transitions into the more challenging anti-phase
mode. Additional support for comparable transition performance in
both age groups comes from the results of the thumb reaction task
(results in Supplementary Note 2, Supplementary Table 10), which
neither show an effect of group nor interactions with transition
mode or time across the experiment. However, it is necessary to

Fig. 3 Predictors for the behavioral outcome. a Error rate. Boxplots and distributions for overall error rate given separately for transition modes (in-phase,
anti-phase) and age groups (blue: older, yellow: young). b Transition Latency. Color coding as in (a). c Effect of practice, i.e., number of trials (depicted as
centered variable), are given for failed transitions, fully correct transitions, and cumulative error rate (from left to right), and transition latency (failed
transitions excluded). Brown indicates transitions into in-phase mode, light pink depicting transitions into anti-phase. Frames around graphs indicate
relevant modulation of the outcome over the number of trials, i.e., for failed transitions, cumulative error rate, and transition latency. Only in the case of
failed transitions, older showed a significantly different modulation over time for transitions into anti-phase compared to the young with initially higher rate
of trials with 100% error rate. Cumulative error rate showed a comparable increase across trials while transition latency decreased comparably in the two
age groups and for both transition modes. d For both groups and transitions modes (into in-phase, into anti-phase), the relationship between speed and
precision of transitions (excluding failed transitions) is non-linear as shown by locally weighted smoothing fitted over subgroups. Boxplots show lower/
upper whiskers represent smallest/largest observation greater than or equal to lower hinge ± 1.5 * inter-quartile range (IQR), lower/upper hinge reflects
25%/75% quantile, the lower edge of notch = median − 1.58 * IQR/ sqrt(n), middle of notch reflects group median. Behavioral data analysis included
N= 22 older and N= 21 young participants.
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acknowledge that the thumb reaction time task poses additional
cognitive load throughout the experiment and may, therefore, have
interfered with the performance in mode transitions, particularly
in the older participants. While we cannot rule out that this
interference effect was present and that it has potentially affected
the two age groups differently, we took a two-layered strategy to
reduce this interference effect as much as possible (see “Methods
section—Behavioral paradigm”).

Finally, estimating the association between transition latency
and error rate revealed a non-linear association of these two
parameters for both age groups and transition modes (Fig. 3d).
For both groups and transition modes, the speed-precision
association may roughly be approximated with an inverted-U-
shaped curve, potentially reflecting several underlying mechan-
isms beyond a linear speed-accuracy trade-off. Therefore, we
argue that reducing the dimensionality of these two performance
characteristics into one single measure appears not feasible. For
subsequent analysis steps, trials of fully correct transitions and
cumulative error rate were recombined into error rate, i.e., failed
transitions were not considered for further analysis.

Task-related modulation of phase-based connectivity (ISPC).
Phase-related connectivity (inter-site phase clustering, ISPC)
between motor-cortical source signals was analyzed in N= 20
young and N= 22 older participants (see Methods for details
about participant inclusion).

Response-locked analysis of task- and group-related connectivity
(ISPC) modulation. No significant clusters were found for the
interaction of group and transition mode. Subsequently, separate
contrast analyses were performed to evaluate the effects of age group
[YOUNG–OLDER] and transition mode [in-phase –anti-phase].

Group contrast [YOUNG–OLDER]. A cluster showing a sig-
nificant relative decrease of connectivity between the homologue
S/M1 sources was evident for the mu to high beta frequency
ranges (12–38 Hz) starting from −160ms and lasting until 220ms
relative to the transition (Fig. 4a). This effect was driven by a
strong reduction in connectivity in the young while the older
showed increased connectivity overall but also when divided into
separate time × frequency sub-clusters, reflecting pre-/post tran-
sition time zones and conventional frequency sub-bands. The sub-
clusters spanned the ranges pre-transition high beta (−160–0ms,
>25 Hz), peri-transition low beta (−140–220ms,15–25 Hz), and
post-transition mu frequency range (>120ms, 12–15 Hz, Fig. 4a,
clusters A–C).

Transition mode contrast [into in-phase–into anti-phase]. A single
cluster was visible, extending mostly in the pre-transition time
window in the mu to high beta range (Fig. 4b). Between −200
and 0 ms, a relative decrease in the full beta range (20–35 Hz) was
evident (cluster A). This effect was driven by a decoupling before
transitions into in-phase, while transitions into anti-phase were
rather associated with an increase in left-right S/M1 connectivity
before the actual transition was accomplished. Around the time of
the transition, −50–60 ms, a relative increase in connectivity
expanded over mu to beta range (cluster B), which was caused by
an increased coupling for transitions into in-phase compared to
transitions into anti-phase.

Taking the results of both contrasts together, interhemispheric
motor-cortical connectivity showed clear age group differences in
its spectral features during transitions. Furthermore, a modulation
by transition mode (into in-phase versus into anti-phase) was also
visible but we did not find evidence for altered connectivity in the
older participants that was specific for transitions into one of the

two transition modes but rather a general change in connectivity
pattern in the older adults.

Single-trial phase angle difference—behavior association. Our
next interest was to further investigate the association between
interhemispheric interactions and behavior. Because inter-site
phase clustering (ISPC) is calculated across trials, no inference
can be made about the intra-individual variations of the inter-site
phase relationship and its association with variations in behavior.
Linking inter-site interactions and behavior on a trial-by-trial
basis allows interpreting the signature of this association and
drawing conclusions about the behavioral relevance of the neural
mechanisms. Therefore, frequency-specific phase angle differ-
ences between left and right S/M1 were extracted for each trial at
the respective trial-based time of transition for the low
(15–22 Hz) and high beta (25–30 Hz) frequency ranges identified
in the respective time × frequency clusters during the previous
analysis step (Fig. 4).

The distribution of phase angle differences between left and
right S/M1 sources confirmed non-uniformity, i.e., significant
clustering of phase angle differences around 0˚ for the young in
the low beta range (15–22 Hz: z= 70.43, pFDR= 1.76e−30) and
for both age groups in the high beta range around 0˚ for young
and around 180˚ for the older (YOUNG: z= 4.69, pFDR= 0.03,
OLDER: z= 7.26, pFDR= 0.003) when pooled over transition
conditions (Supplementary Fig. 1).

To explore the role of the endogenous GABA+ concentration on
this relationship, we dichotomized GABA+ concentration into
below and above within group median concentration. Two-way
ANOVA results showed that the factor group was a major source of
variance for the average angle and that this was modulated by
GABA+ level for both frequency ranges (15–22Hz: GROUP
X2(2)= 99.22, p < 0.0001, GABA+X2(2)= 4.14, p= 0.13,
GROUP × GABA+X2(1)= 4.10, p= 0.04; 25–30Hz: GROUP
X2(2)= 19.86, p= 4.9e−05, GABA+X2(2)= 8.75, p= 0.013,
GROUP × GABA+X2(1)= 9.99, p= 0.0016 (see Fig. 5, additional
results are given in Supplementary Note 3, Supplementary Table 11).
Whereas, transition mode alone did not account for the variance in
the data (15–22Hz: TRANSITION MODE X2(2)= 0.57, p= 0.8,
GABA+X2(2)= 4.14, p= 0.13, TRANSITION MODE × GABA+
X2(1)= 5.38, p= 0.02; 25–30Hz: TRANSITION MODE
X2(2)= 4.16, p= 0.13, GABA+X2(2)= 8.75, p= 0.013, TRANSI-
TION MODE × GABA+X2(1)= 2.85, p= 0.09). For both
frequency ranges, circular-linear correlation revealed a significant
association between phase-angle differences and quality of perfor-
mance (i.e., error rate) following the transition. This association
pattern was distinct for the two age groups in dependence of the
relative (lower versus higher) GABA+ concentration. Specifically,
when pooled over transition modes, phase angle differences were
significantly associated with subsequent performance in the
older adults in the low GABA+ subgroup. In the young, in
contrast, a significant association was found for the high
GABA+ subgroup (15–22Hz: OLDERhigh GABA+ rho= 0.03,
pFDR= 0.5, YOUNGhigh GABA+ rho= 0.08, pFDR= 5.45e−10; OLD-
ERlow GABA+ rho= 0.07, pFDR= 5.45e−10, YOUNGlow GABA+
rho= 0.02, pFDR= 0.7; 25–30Hz: OLDERhigh GABA+ rho= 0.03,
pFDR= 0.9, YOUNGhigh GABA+ rho= 0.07, pFDR= 0.0005; OLD-
ERlow GABA+ rho= 0.06, pFDR= 0.007, YOUNGlow GABA+ rho=
0.04, pFDR= 0.2). Plotting error rate as a function of phase angle
differences shows a variation in the trend of this association along
the range from −360˚ to +360˚ phase lag, i.e., explaining the overall
small correlation coefficient (Fig. 5c, d). Specifically, for both
subgroups (older with lower GABA+, young with higher GABA+),
a behavioral advantage for phase angle differences around 0˚ and
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higher subsequent error rate with phase angle differences of −180˚
and 180˚ were found.

To validate the specificity of the effects in terms of task-context
and topography, the same analysis steps were run for two control
conditions, namely the LEFT S/M1-RIGHT S/M1 phase lag at a
random time point during baseline [start cue −300ms], i.e., during
between-trial pauses (Fig. 1b), and for phase angle differences for
the OCC-L/RIGHT S/M1 connectivity at the time of transition. The
analyses of the two control conditions revealed a significant
GROUP x GABA+ modulation of the mean direction of phase
angle differences between left and right motor cortical sources
during the within-trial baseline [start cue −300ms]. Furthermore, it
showed a significant association between baseline phase lag and
performance in the subsequent trial. Importantly, this association
broadly resembled the pattern during transition described above
although it was less specific for the within-age group GABA level in
the low beta range (descriptive and inferential statistics in
Supplementary Tables 12–14, Supplementary Fig. 2).

While we also found a significant GROUP x GABA+
modulation of the mean direction of the phase angle differences
between the occipital source and both motor cortical sources at the
time of transition for both frequency ranges, the pattern of the
mean direction clustering was clearly different from that of the
interhemispheric motor-cortical interaction in that it was not
involving the clustering around 0˚ and 180˚. Finally, no association
between occipital–sensorimotor phase lag and behavioral perfor-
mance was found (OCC-LEFT S/M1 and OCC-RIGHT S/M1 all
pFDR > 0.1, descriptive and inferential statistics in Supplementary
Tables 15–18, Supplementary Fig. 3).

In summary, single-trial phase angle differences at the time of
transition showed to be different between the age groups, and this
effect was modulated differently with the level of motor-cortical

GABA+ concentration. While in the young, the association
between phase angle difference at time of transition and
subsequent performance error was stronger under the relatively
higher GABA+ concentration subgroup, the older showed a
stronger association in the relatively lower GABA+ concentration
subgroup. In both cases, 0˚ phase lag represented a behaviorally
more advantageous state whereas a 180˚ phase lag was associated
with more subsequent errors. This association was specific for the
interaction between left and right sensorimotor sources and for
the time of transition.

Association between behavior and connectivity through GABA+.
To test the impact of baseline GABA+ levels on the relationship
between interhemispheric motor-cortical connectivity and behavior
in addition to the effect of age on the associations among all three
variables (see Methods for details, schematic model structure given
in Fig. 1a on the right), we employed a Bayesian moderated med-
iation analysis (including data from N= 22 older and N= 20
younger participants). For this purpose, we modeled the ISPC
values extracted from the significant time × frequency sub-clusters
of the response-locked analysis (independent variable), the median
transition latency or error rate (dependent variable), the respective
GABA+(mediator), and age (moderator) and estimated their
associations in separate models for each of the individual con-
nectivity pairs. The decision criterion for further investigation and
discussion was a significant indirect (mediation) given the mod-
erator age. Because all input variables were centered prior to
modeling, it is necessary to keep in mind that conditional effects
consequently need to be interpreted relative to the respective age
group mean. As shown in the results below, for all significant
models (see Fig. 6a for an overview), age was a relevant effect
moderator of all model paths in the case of error rate and transition

Fig. 4 Statistical results of ISPC between left and right S/M1 source. a For group contrast time-locked to the individual mean transition time. Cluster-
corrected z maps for the test of GROUP contrast [YOUNG–OLDER, t-test against 0, p < 0.05, 2-tailed]. Color coding in the time-frequency resolved zISPC
plot indicates t-values. Dashed vertical lines at 0ms on the time axis indicate the individual median latency, i.e., the time of transition. b Statistical results
for transition mode contrast time-locked to the individual mean transition time. Inlays show bar plots, which represent group averages (±SEM) of zISPC for
respective cluster ranges indicated by capital letters for (a) group and (b) transition mode contrasts. Scatter plots depict individual participants’ data for
the group (yellow—young, blue—older) and transition mode (brown—in-phase, light rosé—anti-phase), respectively. Cluster-corrected z maps for the test
of TRANSITION MODE contrasts [into in-phase–into anti-phase, t-test against 0, p < 0.05 2-tailed]. Bar plots show transition mode averages (±SEM) for
respective cluster ranges. Phase-related connectivity (ISPC) data was analyzed in N= 22 older and N= 20 young participants.
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latency (Fig. 6b, c). Hence in the subsequent step, mediation results
are shown conditional on the moderator age, highlighting pre-
dominantly opposing trends in the two age groups (regression
coefficients for separate model paths given for all Bayesian mod-
erated mediation models in Supplementary Table 19).

Connectivity significantly predicts behavior in a time and
frequency-specific manner and this relationship is moderated by
age. The main results for the models estimating the association
between connectivity and behavior are graphically summarized in
Fig. 6a for cumulative error rate and transition latency. Generally,
models including right-hemispheric GABA+ levels yielded
stronger evidence for mediation effects than those including left-
hemispheric GABA+ for both age groups. Overall, the young
group showed stronger evidence for mediation effects than the
older. Stronger connectivity makes the young - but not the
older - adults perform better. Simulating the total effect, i.e., the
association between connectivity and behavior, conditional on
moderator age reveals the opposing effects within the two
groups (age group comparison depicted for one example model
in Fig. 7a). For all three time-by-frequency clusters, the young
participants show strong evidence that relatively stronger
connectivity is associated with better performance, i.e., lower
(i.e., relatively faster) transition time (pd= 100%) and lower
error rate (pd= 100%, except pre-transition beta). In contrast,
within the older adults, relatively stronger connectivity is
associated with a relative slowing in transition latency (pd

100%) but also with a trend for lower error rate (pd > 89%,
except post-transition mu).

Older adults benefit in precision (i.e., lower error rate) from higher
non-dominant GABA+ levels. For the association between con-
nectivity in the peri-transition low beta band and error rate, both
young (pd > 95%) and older (pd > 98%) show a negative indirect
effect of right S/M1 GABA+ levels. This negative mediating effect
has diverging consequences for behavior with respect to the two
age groups (Fig. 7a). In the young, who showed better perfor-
mance (i.e., lower error rate) with relatively stronger coupling,
this direction of the connectivity-behavior association was more
pronounced in the presence of lower non-dominant GABA+
concentration. In the older, who showed the opposite direction of
the connectivity-behavior association (i.e., relatively higher error
rates with stronger coupling), lower GABA+ concentration
pronounced this direction. Higher right S/M1 GABA+ con-
centration, in contrast, ameliorated the association between
stronger coupling and worse performance (i.e., higher error rate)
in the older.

Young adults are faster (i.e., shorter transition latency) with higher
connectivity in the presence of lower non-dominant GABA+.
Simulating the mediation effect conditional on the moderator age,
revealed a negative indirect effect of right hemispheric GABA+
(pd > 98–100%) on the association between connectivity on both
behavioral outcomes, transition latency and, to a weaker extent

Fig. 5 Association between cortico-cortical phase angle differences at the time of transition and subsequent performance error. a Single-trial data
shown for low beta [15–22 Hz] range. b Single-trial data shown for high beta range [25–30 Hz]. Data points represent single-trial data for transitions into
in-phase (brown) and into anti-phase (light pink) mode, solid line indicates average phase angle difference—behavior association during transitions into in-
phase mode, dashed line indicates average phase angle difference—behavior association for transitions into anti-phase mode. c Mean phase angle
differences in the low beta frequency band were significantly modulated by factors age group and relatively higher versus lower GABA+ concentration
when binarized into above group median (dark purple, solid lines represents subsample mean) versus below group median (yellow shading, dashed lines
for subsample mean). dMean phase angle differences in the high beta frequency band show a comparable pattern as in the low beta band. Rose plots show
the histogram of binned phase angle differences with mean direction (red line) and 95% CI (black circumference) for significant non-uniformity of
distribution. Phase angle differences for the low and high beta band were significantly associated with subsequent performance error in the young with
relatively higher and in the older with relatively lower motor-cortical GABA+ concentration. In these subgroups, close to 0˚ phase lag was behaviorally
beneficial (lower errors), while close to 180˚ phase lag was associated with higher performance errors. The analysis of single-trial phase-angle differences
and performance error included data from N= 22 older and N= 20 young participants.
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(pd > 89–95%), on error rate in the young. Specifically, in the
presence of lower right S/M1 GABA+ levels, the negative asso-
ciation between peri-transition low beta and transition latency
was steeper in the young, i.e., in the presence of low GABA+
levels, stronger connectivity was associated with generally faster
transitions while this effect was less pronounced in the presence
of high GABA+ levels (Fig. 7b). This effect was comparable for
connectivity in the high post-transition mu range and transition
latency (Fig. 7c). The mediation effect between connectivity and
transition latency was absent in the older for all time by frequency
clusters (Fig. 7b, c). This absence of an indirect effect in the older
can be explained by a weak association between the post-
transition mu connectivity and GABA+ (path α) and in parti-
cular the absence of an association between right-hemispheric
GABA+ and transition latency (path β) in both models.

In summary, the multimodal data fusion analysis revealed four
main findings with respect to the potential mediating role of
baseline GABA+ on the association between connectivity and
behavior. First, baseline GABA+ levels exert an indirect effect on
the link between interhemispheric motor-cortical connectivity in
the low beta and high mu frequency band, time-locked to the
behavioral event, and behavior. Second, variations in non-
dominant hemispheric (right S/M1) GABA+ concentration was
more likely to exert an indirect effect as compared to dominant

hemispheric sensorimotor GABA+ concentration. Third, indivi-
dual variations in baseline GABA+ were found to exert an
indirect effect in the young for models with speed and error rate,
whereas an indirect effect for the older was only found in the
model with error rate. Fourth, although the mediating effect of
individual variations in baseline GABA+ is of the same direction
in both age groups, it has diverging implications for the
connectivity–behavior association in young and older adults.
Importantly, the latter two points underline the overall expected
finding of age being a strong effect moderator for mostly all
bimodal relationships investigated here.

Discussion
Flexibly adjusting ongoing behavior and switching between dif-
ferent modes of action is an essential ability in the human
behavioral repertoire. Unfortunately, this flexibility declines
across cognitive domains with increasing age1. Therefore, we
tested dynamic motor-state transitions as a prototypical beha-
vioral paradigm to investigate the effect of age on the interplay
between endogenous GABA and the brain’s responsiveness dur-
ing flexible behavior. Based on this multimodal approach, we
provide converging evidence for age-related differences in the
preferred state of endogenous GABA+ concentration that is

Fig. 6 Results of Bayesian moderated mediation models. a Overview over posterior directions (pd) for indirect (mediation) effects on error rate and
transition latency conditional on upper/lower quintiles of moderator age (depicted as YOUNG and OLDER) for the models estimated with the independent
variable (IV) based on the three time × frequency clusters derived in the response locked ISPC analysis. Models were run separately for left and right S/M1
GABA+ as mediator. The pd can be interpreted as the maximum probability of the effect accounting for the evidence derived from the data. Color coding of pd
represents likelihood (in %) and direction of effect, i.e., red shading for positive effects and blue shading for negative effects. A pd of 95, 97.5, 99.5, and 99.95%
corresponds to the frequentist two-sided p-value at the thresholds 0.1˚, 0.05*, 0.01**, 0.001*** respectively. See respective Methods section for further
information about effect descriptors and measures of uncertainty used in Bayesian statistics. b Probability density plots for effects of parameters in the outcome
and the mediator models input to the mediation analysis. Depicted are the three models with significant mediation shown in (a). The outcome model is shown
for error rate and peri transition low beta ISPC. cOutcome models are shown for dependent variable transition latency and peri-transition low beta ISPC (left) as
well as post-transition mu ISPC (right). For all three models shown in (b) and (c), the mediator model is related to right S/M1 GABA+. Highlighted in yellow are
the significant effects of moderator age in all three models indicated by the posterior distributions of respective parameters falling with >99.5% on one side of
the red dashed vertical line. Linewidth of black horizontal bars indicates 50, 89, and 95% highest density interval [HDI] of the parameters’ effect. The Bayesian
moderated mediation analysis was run based on data from N= 22 older and N= 20 younger participants.
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optimal for interregional neural communication and that benefits
flexible behavior. In conclusion, we tentatively suggest that the
nature of the neural and neurochemical findings represents
indicators for age-related compensatory mechanisms which serve
to alleviate deterioration.

While the unimodal results highlighted the specific sensitivity of
GABA+ concentration and phase-based interhemispheric motor-
cortical connectivity to aging-related alterations, even in the absence
of fundamental performance differences between the age groups,
the evolving question became how the age-related changes may be
expressed and reflect the underlying mechanisms of behavior.

Our unimodal results confirmed previous findings of the
relevance of interhemispheric motor-cortical connectivity within
the mu to beta frequency ranges for flexible behavior which
underlies relevant age-effects28. Based on the observation that
interhemispheric beta band decoupling was modulated by task
complexity (i.e., more pronounced in the more complex transi-
tion mode), it may be interpreted as an indicator of inhibitory
mechanisms necessary for the coordination of less congruent
bimanual movements, as suggested by previous work28–30.

Consequently, we linked inter-site interactions in the beta
frequency range, detected in the unimodal analysis of con-
nectivity at the time of transition, and behavior on a trial-by-trial
basis. This analysis revealed an age-group-specific modulation of

the interhemispheric phase lag between sensorimotor sources at
the time of transition in addition to its association with the
subsequent performance error. In an exploratory data-driven
analysis, we found a first indication that phase lag at the time of
transition and its association with subsequent behavior varied in
dependence on the GABAergic state. Specifically, while in the
young adults, relatively lower (than median GABA in the young)
motor-cortical GABA+ concentration generally co-occurred with
better performance irrespective of phase lag, relatively higher
(than median GABA in the older) motor-cortical GABA+ con-
centration co-occurred with overall better performance in the
older. In the respective less advantageous GABAergic state (i.e.,
relatively higher GABA+ in the young and relatively lower
GABA+ in the older), 0˚ phase lag at the time of transition was
followed by better performance, whereas a 180˚ phase lag was
associated with more subsequent errors. These findings suggest a
behavioral advantage through synchronization of interhemi-
spheric sensorimotor sources with a phase lag of around 0˚. Even
though we may not rule out effects of volume conduction and
source leakage on the inter-site phase relationship31, we were able
to confirm our results’ temporal and regional specificity by
comparing the interhemispheric motor-cortical phase lag during
the transition with that at baseline and with the occipital-motor
interaction. Previous work has suggested zero-phase lag for long-

Fig. 7 Results of Bayesian moderated mediation models. From left to right, total effect (pathτ) conditional on moderator age, association between
connectivity and GABA+ (path α), association between GABA+ and transition latency (path β), simulation of the mediation effect on the connectivity—
behavior association (direct effect, path τ’) for varying levels of GABA+ (low—yellow, medium—red, high—dark purple), and probability density ploy for
the mediation effect conditional on age including the difference of young versus older [Y-O] mediation effects. In all three models, right hemispheric GABA
+ concentration is modeled as mediator. a Model for peri-transition low beta connectivity—error rate association. As visible in the total effect, the young
behaviorally benefit from stronger S/M1-S/M1 connectivity in the low beta range, while the older show higher errors with stronger connectivity. The
association between connectivity and GABA+ (path α) shows opposing trends in the two age groups, a negative association in the young and a positive
association in the older. The association between GABA+ and transition latency (path β) is positive in the young and negative in the older. Simulations for
the full moderated mediation model show that for the young the positive behavioral effect of stronger connectivity is more pronounced in the presence of
relatively lower GABA+, while for the older the negative effect of increased connectivity is ameliorated in the presence of higher GABA+. Probability
density plots of the mediation effect conditional on age for this model show a negative indirect effect for both age groups, and no difference between the
age groups. Gray shading of probability of direction (pd) indicates limits of 50, 89, and 98% CI. b Model for peri-transition low beta connectivity—
transition latency association. cModel for post-transition high mu connectivity—transition latency association. The Bayesian moderated mediation analysis
was run based on data from N= 22 older and N= 20 younger participants.
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distance connectivity in the beta frequency range between sensors
covering left and right motor cortices during resting-state, as
studied with magnetoencephalography32. Additional support for
our findings’ cogency comes from recent work that has proven
the omnipresence of broadband zero-lag (i.e., 0˚ and 180˚ phase
difference) functional connectivity, specifically for the homotopic
brain regions based on intracranial recordings during varying
vigilance levels in humans33. Although both studies have inves-
tigated spontaneous oscillations during resting-state, the authors
speculated that functional connectivity around 0˚ phase lag might
serve as a fundamental mechanism for the instantaneous inte-
gration of information from across brain regions allowing for
predictive coding of expected events. Precisely, through long-
distance synchronized oscillatory activity, the motor system
might facilitate the anticipation of intrinsic or extrinsic cues
allowing it to act with higher temporal precision. While our data
support this hypothesis by showing a behavioral advantage of 0˚
phase lag at the time of transition, we also found an association
between 0˚ phase lag during the within-trial baseline with per-
formance of the subsequent trial, though less frequency-specific.
During the within-trial baseline, the participants were required to
remain attentive to the fixation cross and await the ‘start cue’.
Therefore, this observation suggests that the interhemispheric
zero-lag synchronization might represent a more global state to
potentially support the preparedness of the motor system. A
mechanism to better anticipate the required behavioral action
may have been specifically relevant in a less-well tuned system,
i.e., less beneficial GABAergic state, and may represent a com-
pensatory mechanism to uphold behavior.

To further investigate the indirect effect of GABA+ concentra-
tion on the relationship between phase-based connectivity and
behavior, we used a Bayesian moderated mediation analysis inte-
grating all three modalities. This analysis step confirmed on the one
hand a steep age gradient for all bimodal interactions, i.e., all paths
within the model, rendering the mediation analysis conditional on
the moderator age highly meaningful. On the other hand, it
revealed a hemispheric asymmetry of the mediator GABA+. Spe-
cifically, modeling the right hemispheric GABA+ concentration
yielded higher evidence for an indirect effect on the connectivity-
behavior relationship as compared to the GABA+ concentration of
the left hemisphere. Given the non-directedness of the connectivity
measure and the bimanual nature of the behavioral outcomes used
here, the only variable differentiating hemispheric laterality is the
mediator, i.e., GABA+ concentration. While we did not find a
hemispheric difference in sensorimotor GABA+ concentration in
either group in the unimodal analysis, the Bayesian model was
sensitive to the actual variance. Previous MRS data from our own
group support a hemispheric asymmetry in sensorimotor GABA+
concentration with lower concentration in the non-dominant
hemisphere34,35. Electrophysiological data evidences an imbalance
of phasic and tonic GABAergic inhibitory mechanisms within the
motor system, also reflecting reduced fine-tuning of the non-
dominant hemisphere across various age groups (e.g.36–38).
Therefore, it is conceivable that the less well-tuned non-dominant
hemisphere is more susceptible to excitation-inhibition variations
and hence has a more pronounced effect on time-sensitive neural
communication relevant for behavior, as suggested by our media-
tion results, irrespective of age. In addition to these two general
findings, the mediation analysis delivered converging evidence for
the two diverging states of beneficial GABA concentration in the
two age groups as already suggested by the single-trial analysis of
the phase angle differences.

We found an indirect effect of non-dominant GABA+ con-
centration on the connectivity–behavior association for both
speed and precision in the young subgroup. In the presence of
lower GABA+ levels, relatively stronger peri-transition beta band

and post-transition mu band coupling (i.e., less decoupling) was
associated with better performance. This association weakened in
the presence of higher GABA+ concentration in the young.
Notably, the young showed overall higher GABA+ levels than the
older for both motor cortex voxels. Hence, when interpreting the
relative GABA+ concentration in the young, even lower levels are
still comparably higher than the average seen in the older.

Computational modeling supports that extra-cellular GABA
levels, most likely primarily detected with MRS39,40, are critically
influencing the variability in cortical neural activity and thereby
define adequate information processing and integration41. Pre-
vious in vitro and in vivo work from animal models suggests that
low extracellular GABA+ concentration represents the fine-tuned
physiological environment with the optimal inhibitory tone for
efficient and timely precise up- and downregulation of phasic
synaptic inhibition (reviewed in ref. 42). In support of these
findings, experimental elevation of GABA+ concentration has
shown to cause disturbances of neural processing, perception, and
behavior in young healthy volunteers. Hereof, pharmacologically
increasing endogenous GABA beyond physiological levels has
shown to lead to exaggerated amplitudes of early evoked
responses in somatosensory cortical areas43 and decreased
amplitudes of medium-latency evoked responses in the visual
cortex44. Previous findings of elevated GABA concentration
affecting both phasic and tonic inhibitory signaling of pyramidal
and inter-neuronal cell populations in superficial and deep cor-
tical layers may serve as a potential explanation45–47. While it is
worth noting that lowering GABAergic concentration below
physiological levels also has been shown to cause acute dis-
turbance of spontaneous neural activity and perceptual proces-
sing in the primary visual cortex in young macaque monkeys48,49,
additional evidence for the detrimental functional effects of ele-
vated GABA levels is available for sensorimotor processing.
Strengthened movement-related desynchronization in the beta-
frequency range detected over the primary motor cortex has been
specifically linked to pharmacologically increased GABAergic
drive50. In this former work, local desynchronization in sensor-
imotor beta-band oscillations, instead of peri-movement gamma-
band or post-movement beta-band synchronization, was critically
susceptible to pharmacological manipulation with benzodiaze-
pines. In the present work, we found the indirect effect of GABA
to be frequency-specific for response-locked modulation of long-
distance synchronization in the mu and beta frequency range and
its association with performance.

We therefore argue that the relatively lower endogenous GABA
levels in the young reflects their neural system’s preferred inhi-
bitory state for effective neural communication, which assures the
required responsiveness to modulate inhibition in the presence of
dynamic task requirements.

In older adults, evidence for an indirect effect of GABA+ was
restricted to the association between peri-transition beta-band
connectivity and error rate. While the indirect effect of baseline
GABA+ was negative as in the young, the implications for the
connectivity-behavior association were the opposite as compared
to the young. The detrimental effect of higher beta band con-
nectivity on performance error in the older was ameliorated in
the presence of higher GABA+ levels. In contrast to the young,
relatively higher endogenous GABA appeared to represent the
behaviorally more beneficial state in the older adults. This finding
is, at first sight, intriguing, and the question is why the older do
not benefit from the relatively lower GABA+ levels in the same
way the younger adults do? However, retaining relatively higher
GABA+ levels, i.e., closer to the concentration found in the
young, probably reflects less age-related decline and subsequently
lower impact on time-sensitive modulation of neural commu-
nication. Along these lines, higher GABA+ concentration has
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been suggested to promote lower errors through optimal tuning
of neural activity (reduced variability), promoting a better signal-
to-noise ratio in the older. One effect of higher signal-to-noise is a
more efficient perceptual filtering function from lower to higher
level processing stages. A growing body of results from animal
models (e.g.48,49), computational modeling41,51, as well as results
from aging human volunteers (e.g.10) supports this hypothesis.
From this perspective, the mediating effect of GABA levels on the
association between peri-transition beta-band connectivity and
performance precision but not performance speed in older adults,
as seen here, appears conceivable.

Previous work has shown reduced endogenous GABA+ levels
to be linked to decreased resting-state network segregation, i.e.,
increased connectivity, and lower sensorimotor performance in
older adults17. Although controversial findings exist, an increased
interregional coupling has frequently been observed across ima-
ging methods in older populations during task-free52,53 and task-
related conditions54,55. We observed a relative decoupling
throughout the motor-state transitions for the interhemispheric
mu to beta band connectivity in the young. In the older adults, in
contrast, we found interhemispheric connectivity to be modulated
on level of increased coupling during transitions. This finding of
overall increased interhemispheric coupling provides support for
the hypothesis of age-related dedifferentiation (e.g.8,56). Following
the dedifferentiation hypothesis, it may be argued that the
increased coupling reflects reduced processing efficiency in the
older, which is potentially amplified by deficient inhibitory
mechanisms as indicated by reduced GABA concentration.

The question as to whether alterations in GABAergic transmis-
sion reflect the cause or the ‘cure’ (i.e., compensation) for age-
related neuronal functional decline reflected in behavioral perfor-
mance deficits remains yet to be fully answered. For a complete
picture it would be necessary to understand the task-specific
modulation of inhibitory mechanisms, which requires the repeated
or continuous evaluation of GABA+ concentration. A single
resting-state measurement as in the present study offers only a
limited insight into the functionality of GABAergic inhibition. In
view of the limitations of the present work, it is necessary to point
out that strictly speaking, a mediation implies the assumption of
direct causality, which was not upheld in the present cross-sectional
study. We, therefore, emphasize that our results do not allow to
draw conclusions about causal mechanisms. Considering the colli-
sion or confound of many other factors modifying age-related
changes of the brain-behavior interaction neglected here, our
findings highlight the importance to investigate the nature of the
interactions as a function of age. However, future work is needed to
verify the generalizability of our findings for other aspects of flexible
behavior in the motor and cognitive domain and other correlates of
interregional communication. Finally, our Bayesian moderated
mediation analysis, though hypothesis-driven, followed an
exploratory approach and we acknowledge the lack of a cross-
validation. Nonetheless, based on the converging evidence from our
multimodal analyses, we conclude by proposing the increased
interhemispheric connectivity to represent a compensatory
mechanism, which is brought about by rhythmic entrainment of
neural populations in homotopic motor cortices. Through this
increased (potentially zero-lag) synchronization, the motor system
is in a better state to anticipate and dynamically control motor
action. This mechanism appears to be readily available in the young
and healthy brain but seems to be most relevant in the presence of a
less optimal tuning of the inhibitory tone to uphold the required
dynamics of behavioral action as seen here in the older.

Methods
Ethics statement. The protocol and all procedures of this study complied with the
ethical requirements in accordance with the Declaration of Helsinki in its revised

version from 2008, as approved by the Medical Ethical Committee of the KU
Leuven (local protocol number S-58811, Belgian registration number
B322201628182). All participants gave written informed consent to all of the
study’s experimental procedures and were reimbursed with 15 € per hour.

Participants. Forty-four volunteers (older group N= 22, age-range 62–82 years of
age; young group N= 22, age-range 21 –27 years of age) were recruited through
local advertisements and were screened for in- and exclusion criteria. No statistical
method was performed for an a priori sample size calculation; rather, we based
reasoning for the selected sample size on numbers chosen in previous multimodal
work (e.g.17). One young participant dropped out after the MRI data acquisition for
personal reasons unrelated to the study. MRI, EEG, and behavioral data were thus
collected in 21 young (10 women) and 22 older (11 women) participants. Due to
technical problems, the EEG of one young participant had to be excluded, yielding
different numbers of data sets included into the analysis for GABA, behavioral, and
EEG analysis. All participants were right-handed, as evaluated with the Edinburgh
Handedness Inventory57 (laterality quotient: older 92.50 ± 0.20, young 85.00 ± 0.15,
median ± 95% CI). All participants were free from neurological impairments and
musculoskeletal diseases affecting the unconstrained movement of the fingers, did
not take neuroactive drugs, and had normal or corrected-to-normal vision as
evaluated with an in-house standardized questionnaire.

Magnetic resonance imaging (MRI) and Magnetic resonance spectroscopy
(MRS) acquisition. MRS data acquisition and reporting was done following the
Magnetic Resonance Spectroscopy quality assessment tool (MRS-Q)58. A 3D high-
resolution T1-weighted structural image (repetition time= 9.5ms; echo time= 4.6ms;
voxel size= 0.98 × 0.98 × 1.2 mm3; field of view= 250 × 250 × 222mm3; 185 coronal
slices) was acquired for each participant using a Philips Achieva 3.0 T MRI system and a
32-channel head coil. The 30 × 30 × 30mm3 MRS voxels were positioned based on the
T1-weighted image. For the left and right sensorimotor voxels, this was centered above
the hand knob area59 and rotated in the coronal and sagittal planes to align with the
cortical surface of the brain. The occipital voxel was medially centered over the inter-
hemispheric fissure, with the inferior boundary of the voxel aligned in parallel to the
Tentorium cerebelli to cover left and right occipital lobes symmetrically60.

Data were acquired using the Mescher–Garwood point resolved spectroscopy
(MEGA-PRESS) sequence61, with parameters resembling those of previous
work21–23; 14 ms sinc-Gaussian editing pulses applied at an offset of 1.9 ppm in the
ON experiment and 7.46 ppm in the OFF experiment, TR= 2000 ms, TE= 68 ms,
2000 Hz spectral bandwidth, MOIST water suppression, 320 averages, scan
duration of 11 min, 12 s]. Sixteen water-unsuppressed averages were acquired from
the same voxel. These scan parameters were identical for all three voxels.

MRS data were analyzed with the Gannet software 3.0 toolkit62. Individual
frequency domain spectra were frequency- and phase-corrected using spectral
registration63 and filtered with a 3 Hz exponential line broadening. Individual ON
and OFF spectra were averaged and subtracted, yielding an edited difference
spectrum, which was modeled at 3ppm with a single Gaussian peak and a
5-parameter Gaussian model. The unsuppressed water signal serving as the
reference compound64, was fit with a Gaussian-Lorentzian model. The integrals of
the modeled data were then used to quantify the uncorrected GABA levels. As
discussed extensively, this method edits GABA as well as macromolecules at 3
ppm65,66, therefore GABA levels reported are referred to as GABA+ (i.e., GABA+
macromolecules). To adjust GABA+ levels for heterogeneity in voxel tissue
composition, MRS voxels co-registered to the high-resolution anatomical image
were segmented into three different tissue classes, namely gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF), with SPM 12 (http://www.fil.ion.ucl.
ac.uk/spm/software/spm12/). The resulting voxel compositions were used to
extract tissue-corrected GABA+ following the assumptions that GABA+ levels are
negligible in CSF and twice as high in GM relative to WM67, accounting for tissue-
specific relaxation and water visibility values67. GABA+ levels were normalized
to the average voxel composition within each age group after outlier removal67.
Quality of the MRS data was assessed using the quantitative metrics GABA and
the N-acetylaspartate signal-to-noise ratio (GABA SNR, NAA SNR), fit error
of the GABA peak (GABA Fit Error), the drift (Drift) and the standard deviation
of the water frequency offset (Frequency Offset), as well as linewidth, quantified
as the full-width half-maximum of the modeled and N-acetylaspartate (NAA
FWHM) signal.

Behavioral paradigm. The behavioral task involved two transition modes repre-
senting the two motor states, i.e., a mirror-symmetric synchronous tapping of
homologue fingers (in-phase, the more stable motor state) and synchronous tap-
ping of the index and middle finger of opposite hands (anti-phase, the less stable
motor state). Since the anti-phase transition mode has been shown to represent the
coordinatively more challenging pattern18,20,24, tapping frequency was individually
adjusted to 80% of the frequency with which the anti-phase pattern was comfor-
tably performed without involuntary spontaneous transitions into the in-phase
transition mode. This individual tapping frequency was auditory paced throughout
the complete experiment. During the EEG session, the auditory pacing stimulus
was provided through insert etymotic earphones with flat frequency response
(Cortech Solutions, Wilmington, NC, USA). Tapping was performed on a
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custom-made keyboard with six input keys (1000 Hz sampling rate). Visual target
cues were presented on a standard 19” computer screen (refresh rate 60 Hz) and
indicated which movement pattern to perform. Visual and auditory stimuli of the
behavioral paradigm were programmed in LabVIEW 2016 (National Instruments,
Austin/TX, USA). One complete trial consisted of a start cue subsequently followed
by a cue to either continue with the same transition mode (‘continuation’) or
transition into the respective other pattern (‘switching’ from in-phase to anti-
phase, or vice versa, Fig. 1a). In this study, we focused on the switching transitions
and thus the ratio of occurrence of continuation versus switching transitions was
set to approximately 1:5 to yield enough trials for further analysis and keep par-
ticipants from automatically switching. Trials were interleaved with pauses, which
were always of the same length (3000 ms); the other events had a jittered inter-
stimulus interval (5000–8000 ms). To preserve attention at a high level throughout
the experiment, an additional thumb reaction time task (tRT) was included, which
could occur instead of any other event type with a chance of 5%. The instruction
was to respond as fast as possible upon cue occurrence (a magenta circle on left or
right side of fixation cross) indicating either the left or right thumb to press the
respective key. The tRT task was always followed by a pause with a latency of
1000 ms to avoid interference with transition performance. We followed a three-
layered strategy to minimize the risk of interference of the tRT with the perfor-
mance in the main task: First, we implemented a pause that directly followed each
thumb reaction time task. This strategy was intended to reduce the effect on
subsequent trials but does, of course, not preclude overall interference by the
additional task. Second, we aimed at reducing the cognitive load of the tRT by
increasing the salience of the imperative cues of the tRT (large magenta circles as
imperative cues) and by employing different effectors than the main task (i.e., the
thumbs instead of index and middle fingers). Finally, by implementing the
stimulus-response matching through spatial congruency (i.e., left cue—left thumb,
right cue—right thumb), we aimed at further reducing the cognitive load (e.g.68).

To minimize eye movements, participants were instructed to fixate a small cross
in the center of the screen, which was visible at all times, during and in-between all
cue presentations. For the within-trial pauses (described above) the instruction was
to further attend to the fixation cross with minimal movement of the fingers or
other body parts because these phases served as baseline for the EEG data analysis.
Stimulus-response mapping was acquired during a training session held one day
prior to the experiment. In this training session, a general familiarization with the
keyboard was followed by the standardized frequency adjustment procedure.
Subsequently, the visual cues were introduced with a visual presentation after
which on average 44 ± 21 min (young: 36 ± 16 min., older: 51 ± 23 min.) of training
were performed in the individual tapping frequency until the participants were able
to successfully perform one block of 14 trials. In the main experiment, the
individual tapping frequency was re-adjusted, and the participants performed in
total 12 blocks of on average 14 trials each. Each block had a duration of
approximately 4 min. Participants were given short breaks of individual length
between each block to rest the eyes and make small movements.

EEG recording and pre-processing. Continuous EEG was recorded from 127
cephalic active surface electrodes (actiCAP, BrainProducts GmbH, Gilching/Ger-
many) arranged according to the extended international. 10–20 system and
referenced to the FCz electrode (implicit reference). Scalp-electrode impedance was
kept below 20 kΩ. Data were acquired with a sampling rate of 1 kHz (BrainVision
Recorder, version 1.21.0004, BrainProducts GmbH, Gilching/Germany).

Electrooculogram (EOG) was recorded using bipolar channels. For the EOG,
silver/silver-chloride cup electrodes were placed on the left and right zygomatic
processes (horizontal EOG) and on the left supraorbital process as well as on the
sphenoid bone below the eye (vertical EOG).

All EEG data (pre-) processing and analyses were performed using functions
from the EEGLAB toolbox version 2019.069, the Fieldtrip toolbox version
2019041970, and customized Matlab functions (Matlab 2018b, MathWorks, Natick,
MA, USA).

Off-line, data from EEG channels were high-pass filtered with a 1 Hz cut-off
to remove baseline drift and down-sampled to 250 Hz. Line noise at 50 and
100 Hz was removed based on a frequency-domain (multi-taper) regression with
the pop_cleanline function of EEGLAB. Subsequently, continuous data were
segmented into epochs of 5 s length, ±2.5 s around the start cue (baseline) and
the transition cue (time of interest) events to limit the effect of edge artifacts
(Fig. 1b).

Thereafter, a rigorous artefact removal pipeline was employed to minimize
the effect of high muscle-related artefact while ensuring sufficient data for
subsequent analyses. This procedure included a combination of semi-automatic
and visual inspection steps. First, bad channels were identified and removed
(EEGLAB trimOutlier plugin with 2 µV as lower and 100 µV as higher cut-off for
identification of bad channels). Then canonical correlation analysis
(implemented in the EEGLAB AAR plugin)71 was used to identify and remove
excessive EMG activity present in the data due to the motor task (288 s window
length and shift between correlative analysis windows, 106 eigenratio, 15 Hz,
ratio of 10, based on the welch algorithm). Thereafter, independent component
analysis (runica/Infomax algorithm as implemented in EEGLAB) and SASICA
was used as a semi-automatic procedure to inform removal of eye-movement
-related and residual muscle artefacts72. For the identification of ICs

representing relevant artifacts, MARA, FASTER, and ADJUST algorithms were
used, and components were rejected if they contributed ≥4% of the total data
variance. Epochs with remaining muscle artefacts were removed based on trial-
by-trial visual inspection. On average 50 trials per condition/participant went
into further analysis. As a final step, available EEG channels were re-referenced
to a common average reference.

Localization of neuronal sources. For the forward solution, an individual head
model was created for each participant based on the same high-resolution
structural MR image as used for the MRS analysis and 3D locations of the
electrodes, registered with an optical infrared-camera based (NDI, Ontario,
Canada) neuronavigation system (xensor™, ANT Neuro, Enschede, Nether-
lands). For the individual geometrical description of the head (mesh), the ana-
tomical image was segmented into 12 tissue classes (skin, eyes, muscle, fat,
spongy bone, compact bone, cortical gray matter, cerebellar gray matter, cortical
white matter, cerebellar white matter, cerebrospinal fluid, brain stem), based on
the MIDA model73 using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/
spm12/)74–76. The EEG electrode positions were rigidly co-registered to the
individual head surface (skin contour) by projecting the electrode coordinates in
the native space through a rigid-body transformation, based on: (i) the esti-
mation of anatomical landmarks (nasion, left/right peri-auricular points), (ii) the
alignment of the electrode positions on the head surface through Iterative-
Closest Point registration, and (iii) the projection of the electrodes onto the
surface choosing the smallest Euclidean distance77. We chose conductivity values
for each tissue class [in mS/m: cortical gray matter 333.3, cerebellar gray matter
256.4, cortical white matter 142.9, cerebellar white matter 109.9, brainstem
153.8, cerebrospinal fluid 1538.5, spongy bone 40.0, compact bone 6.30, muscle
100.0, fat 40.0, eyes: 500.0, skin 434.80] based on previous findings78,79. Dipole
sources were constrained by a regularly spaced 6 mm three-dimensional grid
spanning both the cortical/subcortical and the cerebellar gray matter. The
volume conductor model was constructed based on a whole-head finite element
model80 using the SimBio toolbox (https://www.mrt.uni-jena.de/simbio)
implemented in FieldTrip. To solve the inverse problem of describing the source
activity, we made use of exact low-resolution brain electromagnetic tomography
(eLoreta) algorithm81, using a regularization factor λ= 0.05.

Source-space time-series were reconstructed using the pre-computed filter for
three regions of interest, left and right sensorimotor, and occipital cortex.
Coordinates for these regions of interest were extracted from the group (OLDER
vs. YOUNG) averages of the individual centroid coordinates of the MRS voxels in
MNI space and transformed into native space. We used a sphere with a 6 mm
radius around the coordinates as a search grid to retrieve the gray matter grid voxel
with the shortest distance to the coordinates of interest. Subsequently, singular
value decomposition was used to reduce the dimensionality of the source activity
time series in the target voxel from the x-, y- and z-components of the equivalent
current dipole source to the projection that carried the maximal signal variance,
i.e., the largest (temporal) eigenvector.

Cortico-cortical connectivity. To study the connectivity between cortical sources
as a function of time, wavelet-based inter-site phase clustering, ISPC82 was used.
This phase-based connectivity measure depends on the distribution of the phase
angle differences of two signals in polar space. The underlying assumption is that
two neural sources are functionally coupled when their oscillations show temporal
synchronization evidenced by angular differences. ISPC is a non-directional
measure and has been shown to be less sensitive to time lags, non-stationarity of
frequencies, and varying levels of noise83.

To extract the phase angles, spectral decomposition was computed by
convolving the ROI source signal with a set of complex Morlet wavelets, defined as
complex sine waves tapered by a Gaussian84. The frequencies of the wavelets were
chosen from 2 to 40 Hz in 50 logarithmically spaced steps to retrieve the full theta
to the beta frequency range. The full-width half-maximum (FWHM) ranged from
400 to 104 ms with increasing wavelet peak frequency, corresponding to a spectral
FWHM varying between 1.5 and 12 Hz85. Subsequently, ISPC was computed for 35
frequency steps from 5:40 Hz.

The phase angle differences were computed between ROI source signals over
time and averaged over transition modes82,86 on the down-sampled data (50 Hz)
following

ISPCf ¼ n�1∑n
t¼1e

i ϕxt�ϕyt

� �����

���� ð1Þ

where n is the number of time points, and ϕx and ϕyare phase angles from signals x
and y at frequency f . Temporal modulation of ISPC change was evaluated in the
time of interest (0 to +2000 post-cue, Fig. 1b) relative to the baseline period (−500
to −200ms) computed by subtracting the baseline ISPC values from the ISPC
values in the time of interest.

In addition, instantaneous power was calculated by squaring the complex
convolution results. Power spectra were normalized by converting the values to dB
change relative to the fused within-trial baseline period, which was generated by
averaging the time window between −500 and −200 ms before the cue over all
start trials87.
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Statistics and reproducibility. The statistical analysis involved in a first step the
analysis of the individual outcome modalities (MRS, behavior, and EEG) and in a
second step the joined analysis of all three outcome modalities.

Generally, for all generalized linear mixed-effects models (GLMM) described
hereafter, the goodness of fit was visually inspected based on the distribution of
residuals. Models were fitted with a random intercept on subject level after
validating that this improved model fit compared to the fixed-effects model. Model
comparison was performed based on Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC). Parameter estimates for fixed effects and
their interactions as well as 95% Confidence Intervals (CIs) and p-values were
computed using Wald approximation. Parameter estimates for logistic models are
reported as logits, i.e., log-odds, as well as odds ratios. In the case of the beta model
with logit link, parameter estimates are reported as proportions and changes in rate
of proportion. Standardized parameters were obtained by fitting the model on a
standardized version of the dataset. Relevant interactions were followed up with
contrasts for model estimated marginal means of parameter levels and reported as
standardized differences (ΔEMM± standard error, 95% CI, z-value, p-value
adjusted for multiple comparisons with Holm’s method). Effect sizes are reported
for the models’ total explanatory power with conditional R2 and for the fixed-
effects part alone with marginal R2 88,89. Forest plots are used to give an overview of
the models’ parameter estimates with CI, direction, and significance of their effects.
Distribution and boxplots are used to represent summary statistics of group data.
Computed variables for boxplots: lower/upper whiskers represent smallest/largest
observation greater than or equal to lower hinge ± 1.5 * inter-quartile range (IQR),
lower/upper hinge reflects 25%/75% quantile, the lower edge of notch = median −
1.58 * IQR/ sqrt(n), middle of notch reflects group median.

Analysis of the MRS data. GABA+ data were best estimated with a GLMM
showing optimized fit modeling a gamma distribution and identity link function.
Factors GROUP, VOXEL, and their interaction were modeled as fixed effects based
on the study design variables. Random intercepts were fit on subject level. To
identify the influence of the quality metrics and raw gray matter fraction (GM
fraction) and their potential interaction with group or voxel, a stepwise backward
selection approach was taken starting from a beyond optimal model with all
covariates and their interaction with voxel or group. Based on the significance of
parameters in the analysis of deviance (Type II Wald statistics), non-significant
interactions were eliminated.

Analysis of the behavioral data—error rate. To analyze the occurrence of errors
within the behavioral task, we chose to code and analyze three different aspects of
the error information in the data to account for the skewed distribution of per-
centage data and the inherently zero-inflated data.

First, the data was transformed into a binary outcome, coding failed transitions,
i.e., trials with an error rate of 100%. Binarization of the data was achieved by
coding fully erroneous trials as “1” and all other trials as “0”. This step was done
based on the full set of available trials. A GLMM was used as a hurdle model and fit
to the data with a Poisson distribution and logit link. Of note, trials with failed
transitions were excluded from all subsequent analysis steps because our main
interest was to investigate neural mechanisms underlying successful flexible
transition behavior. Furthermore, the experimental paradigm yielded very low odds
of completely failed trials, which did not allow to investigate mechanisms
underlying failures in transition maneuvers.

Second, after removing the fully erroneous trials, the remaining data was
transformed in a binary outcome coding fully correct transitions, i.e., an error rate
of 0 coded as 1, versus erroneous trials, i.e., and error rate >0 coded as 0. As
described in the first step, a GLMM was used as a hurdle model and fit to the data
with a Poisson distribution and logit link.

Third, cumulative error rate in the trials not considered fully correct or fully
erroneous, i.e., non-zero-inflated trials, were transformed into the range of the beta
distribution [0 < error rate/100 < 1] and modeled as such using a GLMM with a
logit link function. For all three error-rate-based outcomes, factors GROUP (old,
young), TRANSITION MODE (into in-phase, into anti-phase), and covariate
nTRIALc (trial number, centered) were entered into the model as fixed effects
including all possible interactions. To account for intra-individual variability,
random intercepts were modeled on subject level.

Transition latency did not follow a normal distribution and was therefore
analyzed with a GLMM showing optimized fit assuming a gamma distribution and
log link function. In analogy to the models for error rate, factors GROUP (old,
young), TRANSITION MODE (into in-phase, into anti-phase), and covariate
nTRIALc (trial number, centered) were modeled as fixed effects including all
possible interactions. Random intercepts were modeled on subject level.

The association between transition latency and error rate (excluding failed
transitions) was estimated for transition modes within age groups separately using
a non-linear locally weighted smoothing fitted over subgroups.

Thumb reaction time task (tRT). Thumb reaction time was computed as the
response time latency (in ms) between the visual cue occurrence and the respective
correct button press for the simple reaction time task. Thumb RTs were trimmed
with a lower cut-off at 100 ms based on the assumption that a RT < 100 ms could
unlikely be a true reaction to the visual cue and a high cut-off at within group mean

+3 SD. This conservative approach was chosen to retain as much data as possible
without a priori assumptions regarding outlier features. Thumb reaction time was
optimally fit with a gamma distribution and therefore a GLMM (Gamma family
with identity link) was fitted to predict tRT with GROUP, SIDE, and nTRIALSc.
Factors GROUP (older, young), SIDE (left, right), and covariate nTRIALSc (trial
number, centered) were entered as fixed effects. Random intercepts were fit on
subject level. Results of the thumb reaction time task are reported in Supple-
mentary Note 2 and Supplementary Table 10.

Analysis of the EEG data. EEG data were analyzed with the focus on phase-related
connectivity (ISPC) between motor-cortical sources. The statistical analysis of the
task-related modulation of the spectral signature followed the pipeline described
for ISPC and is outlined at the end of this paragraph. Additional results are
presented in Supplementary Fig. 4 to allow the interpretation of the association/
independence of ISPC and spectral power changes.

The effect of transition mode and age group on the frequency-band specific
modulation of connectivity (inter-site phase clustering, ISPC) was analyzed in three
steps. First, ISPC change from baseline was analyzed within-subject using a cluster
corrected permutation (1000 permutations, two-tailed t-test, p < 0.05) to extract the
effect size of change from baseline irrespective of transition mode. This step was
used to extract the z-transformed ISPC changes (zISPC) per condition within-
subject. In this and the subsequent steps, clusters were corrected for multiple
comparisons and considered significant if they contained more time × frequency
data points than expected under the null hypothesis at p < 0.0590.

Second, group-level cluster-based permutation analysis (1000 permutations,
two-tailed t-test, p < 0.05) of change in baseline-subtracted zISPC pooled over
transition modes (stimulus-locked analysis) was used to confirm the relevance of
connectivity modulation within the selected time and frequency windows. The
results of this second step containing the stimulus-locked analysis of connectivity
modulation are presented in Supplementary Fig. 5.

Third, in order to test the effect transition mode and its modulation by age
group, differences of the z matrices were calculated for the transition mode contrast
(in-phase – anti-phase) for the age groups separately and subsequently subtracted
from each other ([in-phase – anti-phase]YOUNG – [in-phase – anti-phase]OLDER). A
two-sided t-test (p < 0.05) was then run with permuting the age group allocation
(1000 permutations).

The third step was performed relative to the response, i.e., ±260 ms around the
individual median transition latency specific for in-phase and anti-phase
transitions, respectively (response-locked analysis). As task-related connectivity
was not modulated by an interaction of condition and age group; therefore, both
factors were tested subsequently in separate t-tests permuting the respective factor
level allocation (1000 permutations, p < 0.05).

Statistical analysis of task-related spectral power changes. First, task-related power
change, dB, from baseline were analyzed using a cluster corrected permutation
(1000 permutations, two-tailed t-test, p < 0.05) within-subject to extract effect size
of change from baseline irrespective of transition mode. This step was used to
extract the z-transformed power changes per condition within-subject. Second,
group-level cluster-based permutation analysis (1000 permutations, two-tailed t-
test, p < 0.05) of change in power from baseline pooled over transition modes
(stimulus-locked analysis) was used to confirm the relevance of spectral modula-
tion within the selected time and frequency window. Third, in order to test the
effect transition mode and its modulation by age group, differences of the z
matrices were calculated for the transition mode contrast (in-phase – anti-phase)
for the age groups separately and subsequently subtracted from each other ([in-
phase - anti-phase]YOUNG – [in-phase - anti-phase]OLDER). A two-sided t-test
(p < 0.05) was then run with permuting the age group allocation (1000 permuta-
tions). The third step was performed relative to the response, i.e., ±260 ms around
the individual median transition latency specific for transitions into in-phase and
anti-phase, respectively (response-locked analysis). In all three steps, clusters were
corrected for multiple comparisons and considered significant if they contained
more time × frequency data points than expected under the null hypothesis at
p < 0.05.

Analysis of the association between phase-angle differences and behavior.
Frequency-specific phase angle differences between left and right S/M1 were
extracted for each trial at the respective trial-based time of transition for the low
(15–22 Hz) and high beta (25–30 Hz) frequency ranges identified in the respective
time × frequency clusters during the previous analysis step. To rule out random-
ness of phase angle differences, non-uniformity of their distribution was tested
using the Rayleigh test. A two-way ANOVA for circular data was used to test
between-group differences and their interaction with GABA+ concentration. For
this analysis step, artificial dichotomization of GABA+ concentration (into below
and above within-group median concentration) was necessary91. Phase angle dif-
ferences were then correlated with the single-trial error rate following the transition
using circular-linear correlation. To validate the specificity of the effects in terms of
task-context and topography, the same analyses steps were run for two control
conditions, namely the LEFT S/M1-RIGHT S/M1 phase lag at a random time point
during baseline [start cue −300 ms], i.e., during between trial pauses (Fig. 1b), and
for phase angle differences for the OCC-L/RIGHT S/M1 connectivity at the time of
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transition. All circular statistics and visual representations were performed with
CircStat92 and CircHist (https://github.com/zifredder/CircHist) Toolboxes imple-
mented for Matlab 2018b and R package circular (version 0.4–93)93. All results are
reported with FDR-corrected94 p-values (pFDR) to account for multiple compar-
isons across all subgroups.

Analysis of the association between connectivity and behavior through GABA+. The
next goal was to get further insight into the relationship between EEG-derived
connectivity metrics and behavior and the potential impact of endogenous GABA+
levels on this relationship in the presence of the effect of age. Therefore, we made
use of Bayesian moderated mediation analysis modeling GABA+ as mediator and
age as moderator variable and their impact on the relationship between cortico-
cortical connectivity and behavior, i.e., transition latency and error rate (including
cumulative error rate and fully correct transitions but excluding failed transition as
described in the statistical analysis of the behavioral parameter error rate). This
approach allowed us to further dissect the connectivity–behavior relationship given
the individual variations of background GABA+ levels in the context of assumed
aging-related changes of the associations between all variables. The Bayesian
approach permits accounting for the non-gaussian data structure of the present
sample and its size95. Conceptually, a moderated mediation model is built based on
two regression models, in this case two generalized linear models, one that esti-
mates the effect of the independent variables and relevant covariates (here the
moderator) on the dependent variable (the outcome model, Eq. 2), and the second,
which estimates the effect of the independent variable and relevant covariates on
the mediator (the mediator model, Eq. 3):

Y ¼ i1 þ c1X þ c2W þ c3XW þ b1M þ b2MW þ e1 ð2Þ

M ¼ i2 þ a1X þ a2W þ a3XW þ e2: ð3Þ
In these models, i1and i2 are intercepts, Y is the dependent variable, X is the

independent variable, M is the mediator, and W is the moderator W interacting
with each variable. In the outcome model (Eq. 2), c1 is the coefficient relating the
independent variable and the dependent variable, b1 is the coefficient relating the
moderator to the dependent variable,c2 identifies the coefficient relating moderator
and independent variable, the coefficients for the interactions with the moderator
are c3 and b2. In the mediator model (E. 3.), a1 is the coefficient relating the
independent variable with the mediator, a2 is the coefficient relating the moderator
with the mediator, and a3 is the coefficient for the interaction of the independent
variable and the moderator. The residuals are identified by e1 and e2. These two
models are combined within one multilevel model and estimated simultaneously
for the moderated mediation analysis.

Here, a series of individual moderated mediation models was run for left S/M1-
right S/M1 connectivity, using the respective zISPC pooled over the significant time
× frequency clusters in addition to the GABA+ values of the corresponding voxel
(e.g., model 1: predictor variable left S/M1 – right S/M1 zISPC, outcome variable
transition latency, mediator variable left S/M1 GABA+, model 2: predictor variable
left S/M1 – right S/M1 zISPC, outcome variable transition latency, mediator
variable right S/M1 GABA+). Coordination pattern (in-phase – anti-phase) was
included in the outcome model to account for its significant impact on both
behavior and connectivity. Within each moderated mediation model, different
associations (model paths) moderated by age were jointly estimated: (i) the
association between independent and dependent variable in the absence of
mediation (path τ, total effect); (ii) the association between independent variable
and mediator (path α); (iii) the association between mediator and dependent
variable (path β); (iii) the mediation effect (α*β, indirect effect); and (iv) the
association between independent and dependent variable after adjusting for
mediation (path τ’, direct effect)95. A schematic of the moderated mediation model
framework is given in the inlay in Fig. 1a on the top right.

All input variables were centered prior to fitting the GLMMs for outcome and
mediator models using an exgaussian distribution, identity link functions (for mu,
sigma, and beta), and uniform priors. Posterior distributions for multivariate
models were obtained using Hamiltonian Monte-Carlo algorithm using Stan96

implemented for R with brms97,98 and rstanarm99 packages. Four random walk
chains each with 10.000 iterations discarding the first 1000 iterations (burn-in)
were used for inference. Model convergence was examined using pareto-k
diagnostics, approximate leave-one-out criterium (LOO), R-hat, and effective
sample size (bulk-/tail-ESS); Bayesian R2 served as an indicator for the quality of
model fit. Median estimates and non-equi-tailed 89% credible intervals, i.e.,
Highest Density Intervals (89% HDI), are used to describe centrality and quantify
uncertainties of the regression coefficients for the individual model paths
accounting for their assumed skewness. To disentangle the influence of the
mediator depending on variations of the moderator, a conditional process analysis
was employed. Specifically, conditional estimates were simulated based on
posterior draws for lowest versus highest sample quintiles of mediator and
moderator. To allow for inferences about the relevance of the effects, probability of
direction is reported (pd) for posterior probabilities, which can be interpreted as
the probability (expressed in percentage) that a parameter (described by its
posterior distribution) is strictly positive or negative when accounting for the
evidence obtained from the actual data. The pd can take values between 50 (one
half on each side) and 100 (fully on either side) and is approximated to a

frequentist two-sided p-value with the formula p-value = 2*(1-pd/100)100,101.
Hence, a pd of 95, 97.5, 99.5, and 99.95% corresponds to p-value at the thresholds
0.1, 0.05, 0.01, 0.001.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw data are not publicly available due to European legal restrictions compromising the
research participants’ privacy and consent. All source data to reproduce Figs. 2–7 and
related results are provided under https://doi.org/10.6084/m9.figshare.14256314.

Code availability
Code to reproduce the figure, results and mediation models is provided together with the
source data under https://doi.org/10.6084/m9.figshare.14256314. Code to reproduce the
experimental set-up is available from the corresponding author [K.F.H.].
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