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Progenitor species hold untapped diversity for potential
climate-responsive traits for use in wheat breeding and crop
improvement
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Climate change will have numerous impacts on crop production worldwide necessitating a broadening of the germplasm base
required to source and incorporate novel traits. Major variation exists in crop progenitor species for seasonal adaptation,
photosynthetic characteristics, and root system architecture. Wheat is crucial for securing future food and nutrition security and its
evolutionary history and progenitor diversity offer opportunities to mine favourable functional variation in the primary gene pool.
Here we provide a review of the status of characterisation of wheat progenitor variation and the potential to use this knowledge to
inform the use of variation in other cereal crops. Although significant knowledge of progenitor variation has been generated, we
make recommendations for further work required to systematically characterise underlying genetics and physiological mechanisms
and propose steps for effective use in breeding. This will enable targeted exploitation of useful variation, supported by the growing
portfolio of genomics and accelerated breeding approaches. The knowledge and approaches generated are also likely to be useful
across wider crop improvement.
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INTRODUCTION
Modern crop breeding involving targeted crossing and selection
has led to the development of elite, high yielding cultivars. The
genetic components of yield have been improved through constant
selection for desirable traits, initially in landraces and early varieties
and then through trait driven plant breeding (Fradgley et al. 2019).
In wheat, the positive impact of this is exemplified by the
introduction of semi-dwarfing genes contributing to large increases
in yield potential during the so-called Green Revolution (Borlaug
1968). In addition to genetic improvement, agronomic potential is
strongly influenced by the environment. Environmental adaptation,
through direct breeding and selection, allows for optimisation of
yield within the seasonal constraints of a given region (Worland and
Snape 2001), control of biotic stresses including pests and diseases
(either via crop management or the deployment of disease
resistance genes) and targeting of abiotic response, for example
to available water (Reynolds et al. 2007), applied fertiliser
(Swarbreck et al. 2019) and other production-limiting stresses. The
quest to optimise both genetic potential and environmental
response for a range of crop production regions around the world
is being enhanced by the array of genetic and bioinformatics tools
now available (Adamski et al. 2020).
Climate is the driver of environmental change with an impact

for crop production capacity (Rosenzweig et al. 2008). Global
climate change creates an urgency for the development of

cultivars with enhanced resilience to environmental changes in
order to secure future food security.

Expanding the wheat gene pool
Hexaploid wheat (Triticum aestivum) arose through a limited
number of hybridisation events between a domesticated form of
the tetraploid wild emmer wheat, Triticum turgidum ssp dicoc-
coides (AABB) and Aegilops tauschii (DD) around 10,000 years ago
(McFadden and Sears 1946; Cox 1997; Petersen et al. 2006). An
intermediate, hulled hexaploid is proposed by Kerber and
Rowland (1974) though this is not supported by the archae-
ological record (Feldman 2001). As bread wheat spread, the crop
became adapted to local conditions through selection and the
resulting distinct, locally adapted wheats are known as landraces
(Camacho Villa et al. 2005; Jones et al. 2012). Landraces of
hexaploid wheat have long been used for wheat improvement
and are a reservoir of readily available diversity that can be
introduced into breeding programmes with relative ease (Wingen
et al. 2014). Domestication and subsequent selection have created
bottlenecks, reducing genetic diversity in all cultivated wheat
species derived from wild emmer wheat including pasta or durum
wheat (T. turgidum ssp. durum) and bread wheat (Tanksley and
McCouch 1997; Lopes et al. 2015). Some of this diversity may be
reintroduced to bread wheat by interrogating progenitor species
for functional variation in target traits.
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Tetraploid (AABB) wild emmer wheat has a modern-day range
that spans the western Fertile Crescent, southeastern Turkey, and
the mountainous regions of eastern Iraq and western Iran.
Tetraploid wheats related to wild emmer include emmer wheat
(T. turgidum ssp. dicoccum), a domesticated tetraploid wheat that
was widely cultivated prior to the adoption of hexaploid wheat
(Salamini et al. 2002), and durum wheat which is widely cultivated,
predominantly within the Mediterranean Rim (Martínez-Moreno
et al. 2020). Tetraploid wheats are readily crossable with hexaploid
wheat and allelic diversity from tetraploid donors or ‘tetraploid
derived alleles’ can be introgressed via direct crossing and
backcrossing (Ullah et al. 2018).
The diploid progenitor species Ae. tauschii (DD) is part of the

large Aegilops genus (van Slageren 1994) that includes at least 10
diploid and 12 polyploid species (Matsuoka et al. 2015). Many (up
to 14; reviewed by Schneider et al. 2008) Aegilops species have
been used in wheat crossing programmes although most species
in the genus are challenging to introgress due to issues with
chromosome pairing. This limitation does not exist with Ae.
tauschii that is characterised as the specific wheat D-genome
donor (Kihara 1944, McFadden and Sears 1946) and it has been
frequently used for introgression into hexaploid wheat because
there is little inhibition of meiotic chromosome pairing between
D-genome chromosomes (Kishii 2019). The distribution of Ae.
tauschii centres on a region to the south of the Caspian Sea and
into Azerbaijan. The species range spreads eastward, to Pakistan
and western China, via the Kopet Dag Mountains of Turkmenistan,
and westward, to central Syria, via the valleys of southeastern
Turkey (van Slageren 1994). Although the genus and specific
species have a wide geographical range, the genetic diversity of
hexaploid wheat’s D-genome is severely limited because of the
small number of polyploidisation events that gave rise to it (Giles
and Brown 2006). Collections and populations of Ae. tauschii have
been used to identify useful genes for specific traits, many of
which are disease-related (recently reviewed by Kishii 2019)
including resistance genes for foliar pathogens and insect pests
(Gaurav et al. 2021).
Whilst direct hexaploid × Ae. tauschii crossing has been

documented, Ae. tauschii is predominantly captured via the
creation of synthetic allohexaploids made by chromosome
doubling of triploid hybrids from an inter-specific AABB × DD
cross (also called synthetic wheats or synthetic hexaploid wheats
(SHW); Dreisigacker et al. 2008; Mujeeb-Kazi et al. 2013). These can
be used to introduce diversity from either or both the tetraploid or
diploid donor. Synthetic wheats have been used for breeding to
increase diversity (Dreisigacker et al. 2008; Li et al. 2014a), for
adaption (Li et al. 2014a), disease resistance (Ogbonnaya et al.
2008) and yield improvement (Jafarzadeh et al. 2016). The creation
of octoploid (AABBDDDD) synthetics has also been reported
(Chèvre et al. 1989), as have synthetic amphiploids created using
introgressions with other wheat species such as Ae. crassa, Ae.
cylindrica and Ae. ventricosa (Mirzaghaderi et al. 2020). These
however have not typically been used for downstream breeding
applications due to the complexities of ploidy, recombination and
tracking introgression segments.
Ancestral wheat species such as Triticum urartu (the AA genome

donor of bread wheat) and members of the Aegilops tribe
including Ae. speltioides (a relative of the BB genome donor) offer a
wealth of diversity in agronomically important traits such as
disease resistance (Rowland and Kerber 1974). Many of these
species do not cross readily with bread wheat due to the presence
of Ph1 genes preventing recombination between chromosomes
(Sears 1977). Instead, a wheat line carrying a mutant allele of ph1
may be used to induce bread wheat and ancestor homoeologous
recombination (Rey et al. 2017). The resulting lines carry large
introgressions and development of high-throughput single-
nucleotide polymorphism (SNP)-based marker systems designed
to screen wild relative species has facilitated rapid validation and

tracking of these introgressions (Przewieslik-Allen et al. 2019; King
et al. 2017, 2019). Such marker systems are likely to facilitate
enhanced and targeted deployment of diversity from wild
relatives in breeding programmes in the future.
Climate change is predicted to increase the frequency and

intensity of abiotic stress events and their impacts on wheat
productivity (Lopes et al. 2015). Here we review the potential for
further detailed interrogation of adaptive and physiological
variation in wheat’s progenitor species. Work to date has focussed
primarily on biotic stresses but there is evidence to support the
usefulness of progenitor species for introducing targeted variation
for optimising responses to changing climates. Our review
demonstrates that there is a gap in the systematic characterisation
of progenitor variation specifically for responses to abiotic stress
including seasonal adaptation, physiological response, and root
system architecture (RSA). Further understanding the genetic and
physiological basis of these responses will support future targeted
use of progenitor variation for mobilisation into wheat breeding.

PROGENITOR SPECIES PROVIDE ADDITIONAL VARIATION FOR
FLOWERING TIME AND ADAPTIVE RESPONSE
If heat or drought stress occurs during grain filling, abortion of
tillers and/or lower kernel weight reduces wheat yield (reviewed
by Fleury et al. 2010 and Ni et al. 2018). The manipulation of
flowering time can shift grain production away from risk periods,
thereby providing an escape strategy. Research undertaken in
both Arabidopsis and agronomically important grasses (maize, rice
and wheat) over the past 20 years has revealed that floral
transition is controlled by complex overlapping genetic pathways
(reviewed by Cockram et al. 2007; Colasanti and Coneva 2009).
Wheat is a long-day species in which floral initiation is accelerated
by exposure to lengthening days. Although the underlying
genetics of flowering are complex (reviewed by Hyles et al.
2020), manipulation of the major vernalisation and photoperiod
response genes are widely used in wheat breeding programmes
to provide adaption to agroeconomic environments (Bentley et al.
2011).
Adaption in terms of phenology is a powerful tool, particularly

in marginal environments. Since the 1990s, 25% of reported global
wheat yield improvement has come from wheat grown in
marginal environments due to breeding for wide adaption
(Lantican et al. 2005). Marginal environments and the necessity
to mitigate climate-based yield impacts are likely to become more
prominent under a climate change scenario. Climate change is
also likely to have impacts on crop production in temperate and
cold regions of the world where flowering is a function of both
winter cold and spring heat (Yu et al. 2010). Temperate cereals
grow across a wide range of semi-arid environments but show
marked reductions in productivity (Reynolds et al. 2010) and yield
(Lobell and Field 2007) at high temperatures. Increased tempera-
tures in winter may delay fulfilment of vernalisation requirement
(a prolonged period of cold, non-freezing, temperatures required
for subsequent competence to flower) resulting in later flowering,
although increased spring temperatures could mask or offset this
(Yu et al. 2010). In areas of high latitude and altitude the effect
could be exacerbated, as plants in these regions are particularly
sensitive to temperature cues. Vernalisation in wheat is controlled
by the major Vrn-1 locus (Dubcovsky et al. 1998) with the
additional Vrn-2 and Vrn-3 loci also contributing to variation
(Yoshida et al. 2010). Hexaploid wheat has three homoeologous
Vrn-1 loci (denoted -A1, -B1 and -D1) located on group 5
chromosomes. Dominant alleles confer a spring growth habit
meaning that a cold period is not required for induction of
flowering.
Natural plant populations often have wide flowering time

variation (Grazzani et al. 2003) and therefore progenitor species
offer potential functional genetic variation for fine-tuning adaptive
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response. In hexaploid wheat, the photoperiod response Ppd-1
loci are a homoallelic series on group 2 chromosomes (Worland
and Snape 2001; Beales et al. 2007; Bentley et al. 2011). In
tetraploid (AABB) wheat Wilhelm et al. (2009) described two
mutations of the Ppd-A1 gene leading to photoperiod insensitivity
(PI) and early flowering. These effects have also been confirmed in
hexaploid and SHW (Bentley et al. 2011). However, screening of
ancestral tetraploids (T. dicoccoides (n= 122) and T. dicoccum (n=
276)) for these mutant Ppd-A1a alleles revealed no variation,
suggesting that these are photoperiod sensitive species, and that
insensitivity arose post-domestication, being first observed in T.
durum landrace accessions as well as in collections from southern
Europe (Italy, Spain, France), North Africa and North America
(Bentley et al. 2011).
Diversity in flowering time has been further characterised by

several studies in tetraploids wheats (Nishimura et al. 2018; Wright
et al. 2020; Würschum et al. 2019). Alleles of the Ppd-A1 associated
with early flowering (but distinct from the Ppd-A1a alleles
described by Wilhelm et al. 2009) were detected in emmer wheat
by Nishimura et al. (2018) who also identified an early heading
date QTL associated with Vrn-A3. This QTL was found to be a cis-
element GATA box in Vrn-A3 (located on chromosome 7AS), which
suppressed the late-flowering (photoperiod sensitive) Ppd-A1b
allele (Nishimura et al. 2018). A QTL controlling flowering time was
also reported on 7B linked to Vrn-B3 in an emmer mapping
population (Wright et al. 2020). Takenaka and Kawahara (2012)
identified novel loss of function alleles in tetraploid Ppd-A1 in
emmer wheat that do not confer PI but may induce small
variations in flowering time.
Compared with work in tetraploid progenitors, little is currently

known about the diversity of flowering time response in the
diploid wheat progenitor Ae. tauschii. Matsouka et al. (2008)
assessed natural flowering time variation in a collection of 200
accessions representing the latitudinal range (30°N–45°N) of the
species. Flowering time phenotypes could be divided into early-,
intermediate- and late-flowering groups that enabled detection of
geographical patterns: with early-flowering lines being dominant
in southern regions compared to late-flowering lines in northern
regions. However, the impacts of environmental differences varied
between the western and eastern parts of the species range
preventing a clear attribution of genetic effects (Matsouka et al.
2008).
Range expansion occurs when species adapt beyond native

habitats and has been documented for Ae. tauschii associated with
shifts in phenology and seed production ability (Matsuoka et al.
2015). Of the species within the Aegilops genus, Ae. tauschii is the
only diploid species to have expanded its range east and
Matsuoka et al. (2015) suggest that early flowering at least
partially explains range expansion into Asia. Further work by
Koyama et al. (2018) used a F2-based QTL mapping approach to
determine genetic differences between photoperiod sensitive and
insensitive lines. This allowed for mapping of a QTL locus on 5DL
for heading under short days, proximal to the Vrn-D1 locus, along
with three QTLs (one on 4D, two on 7D) for flowering under field
conditions. Quantitative variation for vernalisation was also
observed in Ae. tauschii accessions (Koyama et al. 2018).
Golovnina et al. (2010) identified spring variants of Ae. tauschii

including a recessive Vrn-D1 allele. Vernalisation-insensitive
accessions of the species have been previously described in
germplasm originating from Pakistan and Afghanistan (Tanaka
and Yamashita 1957; Tsunewaki 1966) but there is little evidence
for the use of derived alleles in breeding. Takumi et al. (2011) used
211 accessions collected across the Ae. tauschii habitat range to
assess flowering in the absence of vernalisation. Sequencing of
the Vrn-D1 locus and haplotype analysis revealed distinct variation
in Ae. tauschii, including a large deletion leading to a loss of
vernalisation requirement (Takumi et al. 2011). The authors
however conclude that this deletion is discreet from mutations

in Vrn-D1 dominant alleles in hexaploid wheat, indicating that the
loss of vernalisation requirement in the progenitor and domes-
ticated forms of wheat occurred separately, but followed a similar
mutational event (Takumi et al. 2011). Understanding the
vernalisation response and the interactions between Vrn-1 and
other genes (e.g., the floral repressors Vrn-2), particularly at high
temperatures will be important for future resilience breeding.
Dixon et al. (2019) demonstrate that diverse material can

provide variants of many of these genes and that understanding
their interactions can potentially facilitate their use for incorporat-
ing resilience to temperature fluctuations. Overall, although
significant variation has been reported for adaptive response in
wheat progenitor species, gaps exist in deployment into breeding.
We propose that this is due to two main factors: the lack of
resolution available for genetic trait dissection in wild progenitors
and the confounding effects of genotype × environment. Many of
the alleles or QTLs described from progenitor species to date have
not been genetically resolved and many co-locate in forward
genetic studies. The availability of sequenced progenitor collec-
tions (e.g., Gaurav et al. 2021) is likely to improve the resolution of
novel alleles from progenitors, thereby enabling their rapid
extraction and validation. This will also likely address the other
current limitation in separating the confounding effects of
environment and masking effects of interacting loci. Overlapping
flowering time pathways introduce functional redundancy,
particularly in hexaploid wheat, and they are influenced by
multiple environmental factors. Therefore, the priority require-
ment for extraction of useful functional adaptive trait variation
from progenitors is rapid and accurate assaying, extraction and
validation of variants to enable quantification of phenotypic
effects independent of genetic background and environmental
effects.

NOVEL PHYSIOLOGICAL TRAITS CAN POTENTIALLY BE MINED
FROM PROGENITOR SPECIES
Cultivars bred for high yield potential under optimal conditions
typically maintain performance in moderately stressful environ-
ments (Richards et al. 2002; Foulkes and Reynolds 2015; Voss-Fels
et al. 2019). The yield potential of a crop can be simplified to a
function of light interception (LI), harvest index (HI) and radiation
use efficiency (RUE, Reynolds et al. 2009). Progression in crop
breeding has brought HI and LI close to theoretical maximum
(Long et al. 2006) indicating that selection for improved RUE may
be the most rewarding opportunity for breeders to increase yield
potential. RUE is effectively the slope of correlation between dry
matter content at harvest and total intercepted radiation (Murchie
et al. 2009). Optimising RUE is key to utilising available resources
when breeding for variable or resource-limited environments.
Thus, enhancing crop canopy photosynthesis is an important
breeding target and progenitor species may offer novel physio-
logical variation that can be exploited in breeding.
Crop photosynthesis is a complex process, consisting of

dynamic networks from the molecular to canopy level (Fig. 1).
When considering CO2 assimilation expressed on a standardised
leaf area basis (A), there are numerous morphological and
biochemical traits underpinning performance. Past experiments
have highlighted that wheat progenitors harbour higher A than
hexaploid wheat cultivars (Evans and Dunstone 1970; Austin et al.
1982). Since domestication, due to selection programmes for
other agronomic traits, there has been limited historic selection
pressure from breeders on leaf photosynthetic capacity (Driever
et al. 2014). If progenitor diversity can be captured to target a
single aspect of the process of photosynthesis giving a moderate
increase in flag leaf A of modern wheat then, as the canopy
carbon fixation is an integrated process multiplied over the entire
growing season there could be consequential overall improve-
ments in RUE and yield (Parry et al. 2011). To harness diversity
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from wild relatives, components driving high A need to be
identified to facilitate their use in targeted genetic dissection,
direct use in pre-breeding and future application in wheat
breeding using marker- and phenotypic-based screening
methods.
The determinants of A (Fig. 1), and thus potential targets for

improvement, include components that govern the rate of
delivery of CO2 to the sites of carboxylation; the availability of
products from photochemical reactions; and downstream
enzyme-regulated mechanisms of the Calvin–Benson cycle. Within
these components, superior characteristics found in progenitors
can be targeted to improve either photosynthetic productivity or
tolerance under environmental stress in modern cultivars (e.g.,
Merchuk-Ovnat et al. 2016a, b).
The delivery of CO2 to the sites of carboxylation is governed by

several diffusive boundaries, particularly those imposed by the leaf
stomata. When stomata are closed, water loss is minimal, but the
closed pores act as the sole limitation to carbon fixation (Farquhar
et al. 1982). Therefore, there is a fundamental trade-off between
the flux of CO2 entering the leaf and flux of H2O exiting (Lawson
and Blatt 2014). The proportion of CO2 gained in relation to H2O
transpired is termed instantaneous water use efficiency (WUE)
(Farquhar and Richards 1984). Wheat progenitors have been
shown to maintain higher instantaneous WUE in drought-prone
conditions compared to hexaploid wheat (Li et al. 2017).
Furthermore, Merchuk-Ovnat et al. (2016a) found that introgres-
sions from T. dicocciodes into hexaploid wheat were linked to
greater grain yield under drought. Plants originating from drier
climates, such as wild relatives, would require increased hydraulic
supply to the leaves to maintain photosynthesis under increased
evaporative loss (Scoffoni et al. 2016). Austin et al. (1982) found
higher stomatal and vein densities in tetraploid wheat flag leaves
compared to hexaploid varieties, which could reflect a strategy for
maintaining A in drought-prone environments. An alternative
strategy could aim to reduce stomal density to minimise water
loss and improve drought tolerance (Hughes et al. 2017). As
variation in leaf stomatal density and size has been observed
across wheat ploidy levels (Dunstone et al. 1973; Khazaei et al.
2009), wild relatives could be a genetic reserve for optimising the
balance between CO2 and water loss depending on the targeted
breeding environment.
In rice, a distinct group of landraces known as aus-type rice

(McNally et al. 2009) evolved and were cultivated under

environmental stress conditions in India and Bangladesh. Aus-
type rice has been shown to be a valuable source of novel
diversity; varieties developed from this material have been shown
to be highly tolerant of drought (Henry et al. 2011) and heat stress
(Li et al. 2015). A range of physiologies underpins such adaptation
including increased rooting depth and lateral root formation
resulting in increased water uptake, thus reduced canopy
temperature prevented stomatal closure and prolonged photo-
synthetic activity in the drought-tolerant rice lines (Henry et al.
2011). In combination, heat and drought stress have a negative
additive effect on many aspects of wheat plant physiology
(reviewed by Tricker et al. 2018), and identifying a suite of
tolerance traits pertaining to a fine balance of gas exchange, WUE
and assimilation from wild relatives is a breeding target in order to
maintain yield under combined stresses.
Another diffusive boundary that acts as a limitation to A is the

diffusion of CO2 across the mesophyll (gm, Fig. 1). This boundary is
governed by mesophyll anatomical or biochemical features (Evans
et al. 2009; Flexas et al. 2012). There has been limited investigation
of how gm varies across wheat ploidy levels. The grasses are
generally considered to have comparatively high gm (Flexas et al.
2012), which may have decreased through the domestication
process, as negative correlations have been observed with gm and
potentially desirable traits such as leaf mass area (Gu et al. 2012).
Mesophyll cell size is thought to have increased across wheat
ploidy, with ancestral species possessing smaller cells (Dunstone
and Evans 1974; Wilson et al. 2021). Smaller mesophyll cells may
facilitate higher gm due to an increased surface area for gas
exchange (Lundgren and Fleming 2020). Further work is required
to establish if the comparatively high rates of A found within
progenitor species are driven by higher gm.
Improved photochemistry is another trait targeted for improve-

ment (Fig. 1). In a large wheat wild relative comparison using
41 species, McAusland et al. (2020) identified accessions that
outperformed modern varieties in traits linked to photochemistry,
including T. dicoccoides and lines from the Amblyopyrum and
Aegilops genera that demonstrated high Photosystem II (PSII)
operating efficiency or electron transport. They hypothesised that
high rates of maximum electron transport and carboxylation
resulted in high photosynthetic capacity in some wild relative
accessions. An introgression from wild emmer into bread wheat
has also been linked to improved electron transport rate during
booting (Merchuk-Ovnat et al. 2016b). Under high light intensity,

Fig. 1 A schematic showing key targets for photosynthetic improvement where diversity from wild relatives could be utilised to increase
productivity or stress tolerance in modern wheat. The flag leaf cross-section highlights important traits underpinning CO2 assimilation on a
standardised leaf area basis. When considering photosynthesis on a plant or canopy basis, other targets for improvement include organ size,
ear photosynthesis and CO2 assimilation across the whole canopy.
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not all captured energy is utilised in photochemistry and plants
have developed mechanisms for dissipating possibly detrimental
excess energy through photoprotection (Demmig-Adams and
Adams 1992). This protection process is termed nonphotochem-
ical quenching (NPQ). When the leaf is returned to lower light
intensities, the time required for the relaxation of NPQ is a limit to
crop productivity (Kromdijk et al. 2016). Improved RUE and
photosynthetic efficiency have been achieved through manipula-
tion of the NPQ process through genetic engineering (see:
Kromdijk et al. 2016; Hubbart et al. 2018). However, while there
has been promising diversity observed in NPQ kinetics in diverse
relatives of wheat (McAusland et al. 2020), the degree to which
natural variation could be exploited from wild ancestors still needs
to be determined.
The determinants, and limitations, imposed at the sites of

carboxylation relate to the enzyme-regulated mechanisms of the
Calvin–Benson cycle (Fig. 1). Johnson et al. (1987) concluded that a
higher capacity for mesophyll photosynthesis may be linked to
variation in CO2 assimilation across wheat ploidy. Demand for CO2

is restricted by the carboxylation and oxygenation activities of the
enzyme Rubisco (Farquhar et al. 1980), the capacity and efficiency
of this enzyme is a major bottleneck in raising wheat yields (Parry
et al. 2011). Prins et al. (2016) demonstrated the superior Rubisco
catalytic properties of several wheat genotypes (including
progenitors) compared to the modern wheat variety Cadenza
when assessed across different temperatures. Scafaro et al. (2012)
found a wild relative of rice maintained a higher activation state of
Rubisco under higher temperatures compared to domesticated
rice, which was linked to the high heat tolerance of the wild
relative. Progenitors of wheat, originating from warmer climates,
may also possess superior Rubisco kinetics, which could be utilised
in breeding for marginal environments; this requires further
systematic characterisation. Rubisco is also responsible for
catalysing the oxygenation of ribulose 1,5-bisphosphate. Photo-
respiration is the energetically expensive process of converting
the by-products of the oxygenation reaction and is a significant
constraint on wheat productivity (Long et al. 2006; Parry et al.
2011).
In tobacco, South et al. (2019) showed that genetic engineering

of pathways linked to photorespiration produced promising
improvements to biomass production and photosynthetic effi-
ciency. Yield penalties linked to photorespiration may lesson
under future predicted climates but will still remain important
(Walker et al. 2016). While the most promising gains in improving
photorespiration losses may be through genetic engineering
routes, targeting superior Rubisco characteristics from relatives
could hold promise, such as selection for the Rubisco specificity
factor that may be higher in plants from drier environments
(Galmés et al. 2005). Natural sources of variation in Rubisco
kinetics (e.g., Prins et al. 2016) may be a more readily available tool
for breeders to utilise in ongoing selection programmes compared
to genetic engineering routes.
Targeting photosynthetic improvement should also be con-

sidered on both a leaf and canopy basis (Fig. 1). When considering
CO2 capture on a per leaf basis, the total organ surface area and
thickness are key components. The smaller leaf area typical of
progenitor species (Evans and Dunstone 1970) may have more
concentrated photosynthetic capacity (Long et al. 2006). McAus-
land et al. (2020) found that the thicker and narrower leaves found
in wild relatives underpinned a higher maximum carboxylation
rate, which was also supported by the observed negative
relationship between specific leaf area and photosynthetic
capacity. Furthermore, leaf surface area and A are typically
negatively correlated (Evans and Dunstone 1970; Austin et al.
1982) and a major challenge in utilising photosynthetic diversity
from wild relatives will be transferring high A found in progenitor
lines into a larger flag leaf typical of modern wheat. This could be
addressed by using existing pre-breeding material (derived from

progenitors) to screen for genotypes that show a deviation from
the negative correlation between leaf area and A. As a first step,
segregating pre-breeding material could be used to extract
extreme individuals based on leaf area and used either for
reciprocal recurrent selection or for bulk segregant analysis to
move forwards the genetic understanding of the link between A
and leaf area.
Long et al. (2006) outlined that the efficiency of the canopy to

intercept light is controlled by canopy characteristics linked to
size, architecture, longevity, speed of development and closure.
Successful breeding efforts across recent decades have limited
opportunities for improvements in canopy LI efficiency (Zhu et al.
2010). Furthermore, canopy architecture has been optimised
through domestication (Li et al. 2014b), suggesting wild ancestors
may not be a useful source of variation. Canopy conditions are
very heterogeneous, particularly in terms of light distribution
(Horton 2000). A crop canopy that responds quickly to these
changes will be more efficient in maximising resource capture
(Taylor and Long 2017). Fast photosynthetic and photoprotection
induction has been observed in wild rice accessions (Acevedo‐
Siaca et al. 2021) and in wild wheat relatives (McAusland et al.
2020), respectively. Incorporating these faster light transition
responses into modern wheat could be an objective for improving
resource capture. Targeting earlier photosynthetic improvement
before canopy closure is another potential route for improvement,
as pre-anthesis photosynthesis is known to correlate with grain
yield (Gaju et al. 2016; Carmo-Silva et al. 2017). Gaju et al. (2016)
found at a pre-anthesis growth stage (during the onset of stem
extension) a synthetic-derived hexaploid genotype maintained
higher A than its recurrent hexaploid parent.
Taken together, there is good evidence to support the need for

further characterisation of the component traits underpinning
photosynthesis in wheat progenitors. Although much of the trait
variation described is likely to be quantitatively controlled, there is
an opportunity to identify specific progenitor accessions for direct
use as donors in physiological pre-breeding. In addition, the
development of protocols and tools for rapid screening of these
physiological traits will enhance future genetic dissection. At
present most methods require detailed experimentation and
specialist equipment so the development of predictive phenotyp-
ing tools also offers promise to enable accurate forward genetic
studies to discover trait-linked markers, and the selection of
favourable variants in marker-assisted breeding. This is likely to
yield significant benefits for breeding offering new potential to
transfer higher WUE for drought tolerance or increased A from
progenitor species.
Another strand of potential variation for further investigation

towards application is the photosynthetic potential of reproduc-
tive tissues in progenitor species (Fig. 1). Ear photosynthesis is
heritable, varies across different wheat genotypes and is an
important determinant of grain yield (Molero and Reynolds 2020),
highlighting the importance of ear photosynthesis as a breeding
target. Li et al. (2017) found that ears of T. dicoccoides maintained
higher CO2 assimilation during grain-filling when compared to
hexaploid wheat, along with higher WUE under drought stress.
Progenitor wheat species, particularly tetraploids, typically have a
larger awn surface area than hexaploid wheat (Blum 1985). As a
photosynthetic organ, awns have been reported to have high
instantaneous WUE (Blum 1985; Weyhrich et al. 1995) potentially
explaining why in a drought-prone environment, the presence of
awns is reported to be beneficial to grain yield (Evans et al. 1972).
Other components of the ear may also harbour useful stress
tolerance characteristics, Araus et al. (1993) found that WUE was
33% higher in the ear bracts compared to the leaf blade using
carbon isotope analysis, linking the higher efficiency to a lower gs
and the xeromorphic features of the ear bracts (glumes, paleas
and lemnas). Under heat stress, positive correlations have been
observed between grain yield and the contribution of ear
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photosynthesis to grain yield (Molero and Reynolds 2020).
Progenitors originating from drier and hotter environments may
possess strategies, such as high ear CO2 fixation linked to the
preservation of photosynthesis under unfavourable conditions
and these could become increasingly useful for adapting modern
wheat to more marginal environments.
Although little data exist on the quantitative differences in ear

photosynthesis in wheat progenitors, and their relative contribu-
tions under stress, further work is warranted. As breeders seek to
incorporate additional diversity into their programmes, the
selection of progenitor donors with high ear CO2 fixation could
be prioritised. Further evidence is required to confirm the
consistency of photosynthetic contributions from the presence
of awns. If consistently higher photosynthetic capacity can be
demonstrated without reducing photosynthetic activity in other
parts of the plant, then this trait can be readily incorporated as a
breeding target due to the additional benefit and ease of
phenotypic and genotypic selection. In many regions, awned
wheat varieties predominate making it likely this benefit is already
present and fixed, but it could also be applied where awned
varieties are not widespread, and/or to prioritise selections within
segregating pre-breeding material derived from progenitors.

PROGENITOR SPECIES ARE A SOURCE OF NEW ROOT SYSTEM
ARCHITECTURE IDEOTYPES
RSA plays a pivotal role in drought tolerance and nutrient
acquisition and enhancing root systems is a target for improving
climate resilience (recently reviewed by Ober et al. 2021). Deeper
roots can extract more water from subsoils, particularly during late
developmental stages and grain fill, thereby improving yield in
water limiting environments (Manschadi et al. 2010). However, the
characterisation of mature RSA in wheat can be time consuming
making it difficult to use as a selection target in breeding (Richard
et al. 2015). Techniques that use early rooting traits (seminal root
angle and seminal root number, e.g., the clear pot system
developed by Richard et al. 2015) or root crowns extracted from
the field at maturity (e.g., using the shovelomics method adapted
from maize (Trachsel et al. 2011)) can be used to infer wheat RSA
(Fradgley et al. 2020). A ‘pasta strainer’ technique described by El
Hassouni et al. (2018) allows characterisation of the mature root
system when grown within a perforated basket submerged in the
field. All these tools allow RSA of genotypes to be characterised
into wide or narrow/deep rooting types.
Wheat progenitor species may be used to augment the diversity

in RSA that exists in the bread wheat gene pool. Tetraploid wheats
have been shown to offer RSA diversity; using recombinant inbred
lines of durum × wild emmer, QTLs for drought resistance and
related traits were mapped (Peleg et al. 2009). Marker-assisted
selection (MAS) enabled the QTL regions to be introgressed into
both durum and hexaploid wheat (Merchuk-Ovnat et al. 2016a; b).
This produced one hexaploid wheat isogenic line with introgression
of a QTL from chromosome 7A of the wild emmer donor showing
greater productivity (biomass, flag leaf area and grain yield) and
photosynthetic capacity than the recurrent parent when grown
under water limiting conditions. RSA was found to differ in this line,
with greater development of deep roots and associated root tips
whilst under drought stress (Merchuk-Ovnat et al. 2016a). This RSA
enhanced the plant’s ability to access water at a greater soil depth
and conferred greater drought tolerance as subsoil water levels are
generally more stable than those in the upper layers of the soil.
Iannucci et al. (2017) identified 17 QTLs relating to root and

shoot morphology in a durum × emmer wheat population, three
of which were previously undescribed (two for the number of root
tips and one for rooting depth). Root morphology QTL co-
segregated with the height reducing Rht-B1 gene on chromosome
4B, indicating these alleles are involved in the control of both root
and shoot traits, with tall plants having longer and larger root

systems in this population. However, Christopher et al. (2013)
found no co-segregation of root traits with dwarfing genes and
most studies agree that root and shoot development are under
the control of different sets of loci (Iannucci et al. 2017). QTL
clusters for root morphology traits have also been reported to
coincide with those for thousand grain weight and yield
(Maccaferri et al. 2008; Iannucci et al. 2017) but further work is
required to resolve these interactions. El Hassouni et al. (2018)
found that in trials with low water availability, durum accessions
with deep roots achieved a 37–38% yield increase but suffered a
20–40% yield penalty in irrigated environments.
Previous work has shown yield and biomass increases in

synthetic-derived wheat lines can be attributed to a greater
proportion of deep roots (Reynolds et al. 2007). Becker et al. (2016)
also demonstrated that increased rooting depth and fine root
mass allowed for the maintenance of plant growth under drought
stress in two synthetic wheat lines, thus maintaining yields.
However, a third synthetic line lacked deep roots but tolerated
drought stress through increased stomatal density and reduced
stomatal aperture (Becker et al. 2016). Recently Liu et al. (2020)
detected eight QTL associated with drought tolerance in a SHW ×
commercial wheat F2 population with most of the positive alleles
attributable to the Ae. tauschii (four QTLs) or tetraploid (durum;
two QTLs) components of the synthetic. Ober et al. (2021)
reviewed the range of wheat trait variation reported in wheat as
well as summarised available evidence linking deeper roots to
access to soil moisture.
Understanding the RSA diversity available in the wheat gene

pool will allow the selection of targeted root types to suit
environmental conditions such as drought or waterlogging, and
nutrient availability. This remains a medium- to long-term
breeding objective as there is still relatively little known about
the heritability, environmental and management independence of
RSA in elite cultivars (Fradgley et al. 2020). As highlighted by Ober
et al. (2021) many upstream research questions remain including
the mechanisms by which architectural traits impact water and
nutrient acquisition. In addition, there remains a gap in under-
standing the linkage and direction of interactions between root
and agronomic/crop production traits, and their environmental
dependencies. Progenitor species typically have a wide eco-
geographical adaption range, and it is proposed that this is likely
to confer functional RSA variation. Whilst surveying large
collections of progenitors for RSA variation is possible, more rapid
progress is likely through the identification of pre-breeding
material (capturing progenitor variation) with contrasting root
types and comprehensive analysis of the linkages between trait
variation and root functions. As for photosynthetic traits, high-
throughput screening methods that can be scaled and applied for
forward genetic screens and MAS are likely to accelerate progress
in exploiting progenitor variation for RSA.

PROSPECTS FOR CLIMATE-RESPONSIVE BREEDING ACROSS
CROP SPECIES
Major and minor crops worldwide are likely to face both new
limitations and opportunities for maintaining and increasing
productivity due to changing climates. The identification of useful
variation as described for wheat progenitor species and the
successful application of approaches to mobilise it into cultivated
wheat can serve as an exemplar for other crops. In addition to
supporting productivity, this will also incentivise the search for
useful variation in their progenitors and wild relatives. Exploration of
progenitors or crop wild relatives has already begun in a variety of
crop species (e.g., legumes (Porch et al. 2013; Coyne et al. 2020)
apples (Volk et al. 2015) and numerous others (reviewed in (Hajjar
and Hodgkin 2007; Dempewolf et al. 2017)) to identify genomic
regions linked to phenotypes of interest for both biotic and abiotic
stresses. For major cereals such as rice and barley, there are already
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examples of the successful introgression of traits linked to climate
change adaptions such as drought tolerance (Talame et al. 2004;
Zhang et al. 2006) and flowering traits (Ishimaru et al. 2010;
Wiegmann et al. 2019). For minor cereal grain crops there are few
confirmed examples to date, e.g., sorghum (reviewed in (Ananda
et al. 2020)), pearl millet (reviewed in (Sharma et al. 2020)), finger
millet (blast resistance (Akech et al. 2016)), oats (reviewed in (Ociepa
2019)) and rye (plant height and yield (Falke et al. 2009)), indicating
that allocating resources to the exploration of diversity within
progenitors and wild relatives would reveal further useful adapta-
tions that could improve the resilience of these crops to changing
climates. Examples of monocot crops, their progenitor species and
breeding priorities linked to changing climates are shown in Table 1.
Opportunities also exist to transfer desirable characteristics from

minor to major cereal grain crops. An avenue that holds much
promise, along with numerous technical challenges, is the
incorporation of the C4 photosynthetic pathway, a characteristic of
a C4 crop (e.g., sorghum or millet), into a C3 crop (e.g., rice or wheat).
The C4 pathway utilises a carbon concentrating mechanism to
diminish photorespiration, a process that takes place at the sites of
carboxylation that limits productivity in C3 crops. The C4 pathway
evolved due to increased abiotic stress, including heat and drought,
which are conditions that can enhance photorespiration (Sage
2004). There is scope for breeding photosynthetic improvements
within C4 crop species (von Caemmerer and Furbank 2016).
However, major cereal crops are still cultivated in climates that
favour photorespiration, meaning the enhanced water and nitrogen
use efficiency characteristics of the C4 pathway is an attractive
breeding target for C3 crops (Mitchell and Sheehy 2006). Climate
change could exacerbate this need further, which has contributed to
a concerted effort to incorporate the C4 pathway into C3 crops, in
particular rice (e.g., www.c4rice.com). Challenges still need to be
overcome before these improvements are available to the breeding
community and C3 wild progenitors may provide a more accessible
source of improvement for major C3 crops.

OPPORTUNITIES EXIST TO USE GENOMICS TO ACCELERATE
THE USE OF PROGENITORS IN CROP BREEDING
Whilst traditional breeding approaches have been successfully
used to cross cultivated materials with their wild relatives to

introduce traits of interest, the success rate varies between species
and becomes increasingly difficult with more distantly related
species. There also remain barriers to using genomics-based
advances to accelerate the uptake of novel alleles. Linkage drag is
traditionally one of the major barriers to incorporating diversity
from progenitors. Here, unwanted genes are introgressed
simultaneously with a targeted region from a donor into the
desired background. Backcross breeding is typically used to
increase the recurrent parent (background) genotype and reduce
unwanted genes. This strategy can be complemented by MAS,
allowing the selection of a specific trait based on a linked genetic
marker. MAS can be employed to facilitate more accurate
introgression from a progenitor donor and reduce linkage drag
from a wild background (Tanksley et al. 1989). This has been used
successfully to make introgressions from several wild relatives into
domesticated wheat (Nevo and Chen 2010; Merchuk-Ovnat et al.
2016a; King et al. 2017). Beyond linkage drag, other factors can
pose issues to capturing wild diversity. The merging of genomes
across wheat species can lead to intergenomic gene suppression
(Feldman and Levy 2012). This phenomenon leads to the silencing
of homoeologous genes and is reported to be common in
hexaploid bread wheat (Bottley et al. 2006). This poses a potential
problem for utilising newly synthesised wheats in pre-breeding
programmes. However, the establishment of homoeologs does
not necessarily result in functional silencing or suppression
through dominance; phenotypes can be influenced by an additive
dosage effect or complex interactions linked to the homoeologs
(Borrill et al. 2015). Another potential roadblock is the genomic
instability and radical changes which can occur because of
allopolyploidization (Kraitshtein et al. 2010). However, there is
evidence to suggest the severity of these changes may be of little
consequence to the overall development of the plant (Zhao et al.
2011). Recent advancements in next-generation sequencing
provide an opportunity for increasing our understanding of the
functional genomics that underpin relationships across homo-
eologs (reviewed in Borrill et al. 2015). These tools could
contribute to providing an improved understanding of the
functional genetics of newly formed pre-breeding resources such
as synthetic wheats incorporating progenitor diversity.
Advancements in sequencing technologies have facilitated the

discovery of large numbers of DNA markers in crop species. In

Table 1. Monocot crops and their progenitor species or wild relatives that offer genetic diversity for targeted crop improvement.

Crop Progenitors Breeding priorities linked to
climate stresses

References

Maize (Zea mays) Teosinte (Z. mays ssp. parviglumis) Drought, heat, waterlogging Mano and Omori 2013; Challinor et al.
2016

Rice (Oryza sativa) O. rufipogon Drought, heat, flooding, salinity,
C4 photosynthesis

Zhang et al. 2006; Ishimaru et al. 2010;
Covshoff and Hibberd 2012; Singh et al.
2021

Wheat (Triticum
aestivum)

T. turgidum ssp dicoccoides and
Aegilops tauschii

Drought, heat, C4
photosynthesis

Covshoff and Hibberd 2012; Lopes et al.
2015

Barley (Hordeum
vulgare)

H. vulgare ssp. spontaneum Drought, heat, waterlogging, C4
photosynthesis

Setter and Waters 2003; Talame et al.
2004; Covshoff and Hibberd 2012;
Weigmann et al. 2019

Sorghum (Sorghum
bicolor)

S. bicolor subsp. verticilliflorum Cold, drought, heat Ananda et al. 2020

Pearl millet (Pennisetum
glaucum)

P. glaucum subsp. monodii Drought and heat Sharma et al. 2020

Oats (Avena sativa) A. ventricosa, A. longiglumis, A.
insularis, A. canariensis and A.
agadiriana

Cold, drought and heat, C4
photosynthesis

Covshoff and Hibberd 2012; Ociepa 2019

Rye (Secale cereale) S. cereale subsp. vavilovii Drought and heat, C4
photosynthesis

Covshoff and Hibberd 2012; Miedaner
and Laidig 2019

Finger millet (Eleusine
coracana)

E. coracana subsp. africana. Drought and salinity Mirza and Marla 2019
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wheat (Winfield et al. 2012), this has led to the development of
numerous genotyping platforms (Adamski et al. 2020) that have
aided the application of QTL mapping and have enhanced the
accessibility of diversity in progenitors and related species
(Winfield et al. 2016, 2018; Wingen et al. 2017). SNPs are very
effective markers in high-throughput genotyping due to their
abundance across the wheat genome (Rimbert et al. 2018).
Specific platforms have been developed to characterise wheat
progenitors and wild relatives, including the Axiom® HD Wheat
Genotyping Array (Winfield et al. 2016) and the Axiom® Wheat-
Relative Genotyping Array (Przewieslik-Allen et al. 2019) in
addition to arrays developed for elite varieties (e.g., Axiom®

Wheat Breeder’s Genotyping Array; Allen et al. 2017). The wheat-
relative array has been used to aid the introgression of the diploid
wheat-relative Ambylopyrum muticum into a hexaploid wheat
background through MAS (King et al. 2017). Furthermore, the
Wheat Breeders’ array has been used in several studies for
identifying QTLs in tetraploid wheat (Lucas et al. 2017; Wright et al.
2020). Low-cost genotyping platforms designed to demonstrate
potential genetic variability between progenitor species and elite
varieties are a tool of growing importance in exploring and
harnessing diversity and have been deployed in many crops such
as barley (Bayer et al. 2017), rice (Chen et al. 2013) and maize (Xu
et al. 2017).
The availability of sequenced genomes from crop species, for

example, the annotated reference genome assembly of the wheat
cultivar Chinese Spring (International Wheat Genome Sequencing
Consortium et al. 2018) augmented by the multiple genome
assembly of Walkowiak et al. (2020) improve our understanding of
the size and context of targeted introgressions through knowledge
of the physical chromosome location of markers used for selection.
In addition, the resources can improve our understanding of synteny
with ancestral genomes (Grewal et al. 2018). Introgression fragments
can be queried to identify the genes and any potentially favourable
alleles present (Cheng et al. 2019). Due to the reducing expense of
sequencing technologies (Jia et al. 2018), the number of cultivars
sequenced is increasing, including many important elite wheat
varieties (e.g., the 10+ genomes project: www.10wheatgenomes.
com; Montenegro et al. 2017; Walkowiak et al. 2020). Increasing the
number of modern wheat varieties sequenced, or genotyped
through high-density marker arrays, will help characterise the
haplotype diversity within the modern wheat gene pool. Haplotypes
present in low diversity may reflect regions that have been under
past selection (Fradgley et al. 2019) or where variation has been lost
due to the domestication bottleneck (Haudry et al. 2007). Regardless,
using this knowledge, targeted comparisons can then be made with
extended progenitor gene pools to capture novel haplotypes (Uauy
2017). This comparison is being accelerated in wheat by the
availability of increasing numbers of progenitors sequenced,
including Ae. tauschii (Luo et al. 2017), T. urartu (Ling et al. 2013),
T. dicoccoides (Avni et al. 2017) and T. durum (Maccaferri et al. 2019).
A recent study by Cheng et al. (2019) compared re-sequenced
genome data from a mixture of cultivated and progenitor wheat
accessions, flagging regions of past introgression and identifying
haplotype blocks that are nearly completely fixed in cultivated
varieties. These regions of low diversity highlight the potential for
identifying regions to target for improving genetic diversity from
progenitor species.
In addition to the characterisation of haplotype diversity,

enhanced sequencing resources will also support genetic map-
ping, cloning and functional characterisation from progenitor
species. Kishii (2019) summarised the progress in generating
genetic and physical mapping resources for Ae. tauschii docu-
menting the progression from the early use of restriction fragment
length polymorphism mapping in Ae. tauschii mapping popula-
tions (Gill et al. 1991) through to single sequence repeat
genotyping (Nishijima et al. 2018). This supported the production
of a 10 K Ae. tauschii Infinium SNP array by Luo et al. (2013) and

the draft sequence of Ae. tauschii (Luo et al. 2017). The availability
of reference genomes supports the use of data-driven approaches
to selections, including linking phenotype to gene expression as
demonstrated by Gálvez et al. (2019) for drought tolerance. This
highlights the potential impact of understanding gene networks
underpinning traits, and how genomics may identify novel
breeding targets (Gálvez et al. 2019).
Resources supporting reverse genetics have also been devel-

oped in progenitor species with Targeting Induced Local Lesions
in Genomes populations available in the wheat tetraploid (durum
wheat Kronos; Krasileva et al. 2017) and diploid species (Ae.
tauschii; Rawat et al. 2018), as well as being available for hexaploid
wheat (cultivar Cadenza; Krasileva et al. 2017). A wheat exome
capture was developed to focus sequencing efforts on exons,
thereby reducing sequencing costs (Winfield et al. 2012). Along
with genome sequences, these provide a useful resource for allele
mining and gene discovery and could be used in future to support
gene identification and cloning directly from the progenitor
species. Direct cloning of favourable genes from progenitor
species has been demonstrated using a combination of associa-
tion genetics and resistance gene enrichment and sequencing
(AgRenSeq; Arora et al. 2019). This method has been used to both
discover and clone functional stem rust resistance genes in a
panel of diverse Ae. tauschii accessions (Arora et al. 2019).
Molecular breeding technologies provide the potential to directly
introduce useful variation discovered in one crop into another,
either by the introduction of the gene via genetic transformation
or gene editing to introduce variation within homoeologous
genes. The efficiency of the approaches discussed in this review
remains to be seen for different genes and crops and can be
impacted by the genetic background of particular varieties, but
identifying a set of variants that already exist in nature and that
can be used to introduce variation within genes of interest is an
exciting prospect for the future.

SUMMARY
There is a wealth of variation present in crop progenitor species
for traits of relevance to plant breeding including flowering time,
physiological response and RSA. Although initial characterisation
demonstrates that functional variation exists, there remains a
significant opportunity to systematically characterise this variation
in order to make it accessible for use in breeding. In particular,
more work is required to fully understand the genetic and
physiological basis of progenitor trait variation in order to
accurately inform future breeding strategies. The growing
availability of sequencing and genomics tools offers great
potential for targeted and accelerated progress in the systematic
use of functional progenitor variation. The advances in use of
wheat progenitors and the techniques developed for the capture
of novel diversity may be applicable for the improvement of other
cereal crop species.
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