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Alcohol Use Disorder (AUD) is a major contributor to global mortality and morbidity. Postmortem human brain tissue enables the
investigation of molecular mechanisms of AUD in the neurocircuitry of addiction. We aimed to identify differentially expressed (DE) genes
in the ventral and dorsal striatum between individuals with AUD and controls, and to integrate the results with findings from genome- and
epigenome-wide association studies (GWAS/EWAS) to identify functionally relevant molecular mechanisms of AUD. DNA-methylation and
gene expression (RNA-seq) data was generated from postmortem brain samples of 48 individuals with AUD and 51 controls from the
ventral striatum (VS) and the dorsal striatal regions caudate nucleus (CN) and putamen (PUT). We identified DE genes using DESeq2,
performed gene-set enrichment analysis (GSEA), and tested enrichment of DE genes in results of GWASs using MAGMA. Weighted
correlation network analysis (WGCNA) was performed for DNA-methylation and gene expression data and gene overlap was tested.
Differential gene expression was observed in the dorsal (FDR < 0.05), but not the ventral striatum of AUD cases. In the VS, DE genes at FDR
< 0.25 were overrepresented in a recent GWAS of problematic alcohol use. The ARHGEF15 gene was upregulated in all three brain regions.
GSEA in CN and VS pointed towards cell-structure associated GO-terms and in PUT towards immune pathways. The WGCNA modules
most strongly associated with AUD showed strong enrichment for immune response and inflammation pathways. Our integrated analysis
of multi-omics data sets provides further evidence for the importance of immune- and inflammation-related processes in AUD.
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INTRODUCTION
Alcohol Use Disorder (AUD) is a major contributor to the global
disease burden, with a prevalence of ~17% among 12-month alcohol
users in the US [1, 2] and an estimated heritability of 49% [3].
Knowledge about the molecular mechanisms can foster under-
standing of causes and promote prevention. Recent genome-wide
association studies (GWASs) have identified 29 genetic loci associated
with Problematic Alcohol Use (PAU), a proxy of AUD [4]. While GWASs
identify increasing numbers of disease-associated loci, the functional
interpretation of many of these findings remains inconclusive.
Analyzing the transcriptome can extend the understanding of the
molecular mechanisms underlying AUD, by identifying associated
gene expression patterns. Findings can in turn be integrated with
results from GWASs and epigenome-wide association studies (EWASs)
to identify the pathomechanisms underlying disease.
Processes in the central nervous system are considered to play a

major role in the etiology of addiction, and the transition from
chronic alcohol consumption to AUD [5]. Therefore, it is of particular
interest to examine molecular changes associated with addiction in
brain tissue. So far, only few studies have been conducted in

postmortem human brain tissue to identify transcriptional changes
associated with AUD [6–8]. These studies mainly focused on the
prefrontal cortex (PFC) one important part of the neurocircuitry of
addiction [9, 10]. The first transcriptome-wide study in the PFC found
DE genes implicated in neuronal processes, such as myelination,
neurogenesis, and neural diseases, as well as cellular processes, such
as cell adhesion and apoptosis [11]. In Brodmann Area 9 down-
regulation of calcium signaling pathways has been observed in
individuals with AUD compared to controls [12]. In the same study, a
weighted gene co-expression analysis (WGCNA) pointed towards
modules associated with AUD case/control status, which were
enriched for nicotine and opioid signaling, as well as immune
processes. Another study in the PFC (Brodmann Area 8) showed that
co-expression networks associated with lifetime alcohol consump-
tion were enriched for GWAS signals of alcohol dependence [6].
Despite the importance of striatal regions in addiction

processes, genome-wide human omics studies of these brain
regions are still missing. The striatum is divided into the ventral
striatum (VS), consisting of the nucleus accumbens and olfactory
tubercle; and the dorsal striatum, comprising the caudate nucleus
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(CN) and putamen (PUT) [13]. The nucleus accumbens is involved
in mediating motivational processes such as aversion and reward,
which play a significant role in the development and maintenance
of substance use disorders (SUD) [13]. In addition to regulating
motor function, the CN and PUT are involved in cognitive
processes relevant for addiction, such as executive functioning
and cognitive control, reinforcement learning and habit formation
[14]. Analyses of omics data from striatal regions could comple-
ment the knowledge on global molecular changes in the
neurocircuitry of addiction in AUD.
In a recent EWAS of AUD in postmortem brain tissue, we

identified differentially methylated CpG-sites and regions in the
ventral and dorsal striatum [15]. Previous studies have shown the
utility of integrating epigenetic and transcriptomic data in
postmortem brain tissue of SUDs using weighted correlation
network analysis (WGCNA) [16]. WGCNA clusters genes or CpG-
sites into co-expressed or co-methylated modules based on
correlation matrices. By relating modules to each other, WGCNA
can be used for data integration, providing more insights than
descriptive overlap. For example, whereas a descriptive comparison
of histone H3 lysine 4 trimethylation (H3K4me3) and mRNA
expression in individuals with AUD and cocaine use disorder
revealed no consistent overlap between H3K4me3 trimethylation
and gene expression [17], a network analysis identified overlapping
modules pointing towards co-expressed genes associated with
H3K4me3 trimethylation [6]. Modules associated with AUD were
enriched for CNS functions, such as synaptic transmission and
regulation of neurogenesis [6]. WGCNA has also been used for
integrating epigenetic and transcriptomic data and investigating
their association with opioid use disorder (OUD) in postmortem
human brain, identifying immune-related transcriptional regulation
to be enriched in co-expressed and co-methylated modules [18].
The aim of the present study was to investigate differential gene

expression associated with AUD status in the ventral and dorsal
striatum, relate these to GWAS findings, and to integrate the findings
with DNA-methylation data using a network approach (WGCNA) in
order to identify functionally relevant molecular mechanisms in AUD.

MATERIALS AND METHODS
Samples
Postmortem human brain tissue from CN, PUT and VS of a total of 48
individuals with AUD and 51 control individuals (68% male) was obtained
from the New South Wales Tissue Resource Centre at the University of

Sydney. The Ethics Committee II of the University of Heidelberg approved
the study (reference number 2021–681). After quality control (QC), the total
sample sizes for each brain region were NCN= 71, NPUT= 77 and NVS= 63.
Phenotypic information was assessed by next-of-kin interviews. Inclusion
criteria for this study were: age > 18 years, Western European Ancestry, no
history of severe psychiatric or neurodevelopmental disorders, or SUDs
other than AUD and nicotine use disorder or smoking. AUD was defined as
meeting DSM-IV criteria for alcohol dependence and consuming 80 g of
alcohol a day or more (control group: <20 g/day). Descriptive information
can be found in Table 1 and Supplementary Table S1.

RNA extraction and -sequencing
RNA was extracted from frozen tissue according to the manufacturer´s
protocol using the Qiagen RNeasy microKit (Qiagen, Hilden, Germany). The
RNA Integrity Number (RIN) of all samples was determined using a
TapeStation 4200 (Agilent, Santa Clara, CA). RIN values of 273 samples were
larger than 5.5, for which libraries were prepared using the TruSeq
Stranded Total RNA Library Prep Kit (Illumina, San Diego, CA). RNA
sequencing was performed on the NovaSeq 6000 (Illumina) at the Life &
Brain Center in Bonn, Germany with read lengths of 2 × 100 bp and a
sequencing depth of 62.5 M read pairs per sample on average. Technical
replicates were sequenced for all but four samples.

DNA extraction and methylation profiling
DNA extraction, methylation profiling, and QC was performed as described
in Zillich et al. [15]. In brief, DNA was extracted using the DNeasy extraction
kit (Qiagen, Hilden, Germany); the Illumina HumanMethylation EPIC
BeadChip and the Illumina HiScan array scanning system (Illumina, San
Diego, CA) were used to determine DNA-methylation levels. We used an
updated and customized version of the CPACOR pipeline to extract beta
values from raw intensities [19]. Criteria for the removal of samples and
probes can be found in Zillich et al. [15]. In the present analyses, DNA
methylation data were included from all subjects from whom gene
expression data were available after QC.

Statistical analyses
All analyses apart from QC and read mapping were performed using R
version 3.6.1 [20]. An overview of the analysis workflow can be found in
Fig. 1. The Benjamini–Hochberg (FDR) [21] procedure was used to correct
for multiple testing. Differentially expressed genes were considered
statistically significant at FDR < 0.05. All downstream analyses were
performed using genes significantly differentially expressed at FDR < 0.25.

Mapping and quantification
Sequencing quality was determined using FastQC [22] and 24 samples (11
cases and 13 controls) were excluded due to insufficient sequencing
quality (e.g., strong overrepresentation of sequences, GC distribution). Raw
reads were mapped to the human genome (hg38) using HISAT2 (v.2.1.0)
[23]. Quantification was performed with the featureCounts function of the
Rsubread package (v.2.0.1) [24], with hg38 annotation.

Differential gene expression analysis
Differential gene expression was determined using DESeq2 (v.1.26.0) [25].
Minimal pre-filtering was applied, removing genes with normalized counts
<10 for more than two samples. Technical replicates were merged prior to
differential expression analysis using the collapseReplicates function as
implemented in DESeq2. For the differential gene expression analysis, we
included age, sex, RIN, pH-value of the brain, and postmortem interval
(PMI) as covariates, because of their known influence on gene expression
[26–28]. To assess residual bias after adjustment for covariates, we
generated Q-Q plots and calculated genomic inflation factors (Supple-
mentary Fig. 1). We further conducted a variance partition analysis using
the variancePartition() function of the corresponding R package [29], which
confirmed the covariates. Results of this analysis can be found in
Supplementary Fig. 2. Results were filtered for differentially expressed
(DE) genes with an absolute log2 fold change larger than 0.02. Volcano
plots displaying up- and downregulation of genes for each brain region are
shown in Supplementary Fig. 3.

Gene-set enrichment analysis
Gene-set enrichment analysis was performed using the R package fgsea
(v.1.12.0) [30], for which DE genes were ranked according to p-value.

Table 1. Descriptive statistics of demographic data.

Characteristic Cases Controls p

N 48 51

Age, years 55.58 (10.62) 57 (10.64) 0.51

Sex (M/F) 31/17 37/14

pH-value 6.53 (0.26) 6.65 (0.25) 0.026*

PMI (hours) 37.07 (15.79) 30.7 (15.57) 0.047*

Blood alcohol level (N) 7 0

Blood alcohol level (g/
100ml)

0.21 (0.21)

Smoking (yes/%) 32 (66.7%) 12 (23.5%) <0.001*

Samples per brain region

Caudate nucleus 36 37

Putamen 35 42

Ventral striatum 31 32

Data are presented as count (n/n; n (%)) or mean (±SD).
PMI post-mortem interval, pH pH-value of the brain, p p-value of t-Test/Chi-
squared test comparing cases and controls.
*Significant difference between cases and controls.
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Enrichment analysis was performed for Gene-Ontology (GO) terms [31] and
Hallmark gene sets [32] and the results were adjusted using FDR
correction.

Cell-type enrichment analysis
To identify cell-type-specific expression signatures, we performed cell-type
enrichment analysis using DE genes (FDR < 0.25) from the three brain
regions. As a reference gene set for brain cell types, we used the “top
ranked cell-type-enriched genes based on human data” as provided by
McKenzie et al. [33]. These contain the 1000 most enriched genes in a cell
type and cover astrocytes, endothelial cells, microglia, neurons, and
oligodendrocytes. Using the R package GeneOverlap (v.1.22.0) [34], we
assessed the overlap of AUD-status associated DE genes with markers from
the different cell populations. Results were adjusted for multiple testing
using the Benjamini–Hochberg method as implemented in GeneOverlap.

Differential methylation analysis
Effect sizes and p values for CpG sites were used from the EWAS results as
presented in the original publication [15]. In brief, the EWAS model was
based on methylation M-values as the dependent variable and AUD status
as the predictor. As covariates, sex, age, postmortem interval (PMI), pH-
value, estimated smoking, standardized neuronal cell count, and the first
ten principal components of the EPIC array internal control probes were
included.

WGCNA
Weighted correlation network analyses (WGCNA, v.1.70-3) [16] were
performed to identify modules of co-expressed genes and co-
methylated CpG-sites. We assessed the relationship of these modules
with AUD case/control status and tested the overlap between associated
modules. WGCNA clusters the input matrix according to a dynamic tree-
cutting algorithm, using a soft power threshold that approximates the
criterion of scale-free topology (Rsigned

2 > 0.80). Resulting soft power
thresholds for expression networks were 6 for CN, 5 for PUT, and 14 for VS;
for methylation networks, all power thresholds were 2.
To identify methylation networks associated with gene expression, beta

values from normalized intensities of all samples from which gene
expression data were available were filtered for promoter-associated CpG-
sites based on the manufacturer’s manifest (Illumina, San Diego, CA). The
resulting 105,796 CpG-sites were used as input.
For the RNA-seq data, count matrices were normalized using the DESeq2

function normalizeCounts and variance stability transformation was
applied.
Networks were constructed using following settings: minimum module

size= 30, mergeCutHeight= 0.25, maxBlockSize= 36,000. In WGCNA,
modules are labeled using colors. In the “Results” section modules are
labeled according to type of data, brain region, and color assigned in the
analysis, e.g., “e-VS-pink” for module “pink” from the WGCNA analysis of
gene expression data in the ventral striatum. For each module, its
eigengene was calculated and correlated with AUD status. Association of
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Fig. 1 Analysis Workflow. Analysis workflow of the present study.
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modules with AUD status and covariates is shown in Supplementary Fig. 4.
For modules associated with AUD status, we performed enrichment
analysis using the GOenrichmentAnalysis function implemented in the
WGCNA package for expression data and the R package missMethyl
(v.1.20.4) [35] for methylation modules. Further, we extracted hub genes of
AUD-associated WGCNA expression modules by calculating the product of
module membership and gene significance for each gene of a module.
Based on this score, the 10% of highest-ranking genes were defined as
module hub genes. To investigate the biological relevance of hub genes,
protein-protein interaction networks were generated using the Search Tool
for the Retrieval of Interacting Genes/Proteins (STRING, v.11.5) [36]. Graphical
representation of gene networks was restricted to high confidence
interactions (interaction score threshold 0.7).

Expression and methylation data integration
To identify genes both DE and differentially methylated, we analyzed the
overlap of DE genes (FDR < 0.25) with the results of an EWAS (p < 0.001) in
the same sample [15]. We prioritized CpG-sites based on their functional
relevance in gene expression regulation. Thus, promoter-associated CpG-
sites were used in the analysis.
At the module level, gene-set overlap tests were performed using the R

package GeneOverlap (v.1.22.0) [34]. Here, Fisher’s exact test is used to
identify significant overlap. For each brain region, the overlap of the AUD-
associated co-expression and co-methylation modules was tested.

GWAS enrichment analysis
We analyzed enrichment of DE genes with an FDR < 0.25, and genes in
AUD-associated WGCNA modules in GWAS summary statistics using Multi-
marker Analysis of GenoMic Annotation (MAGMA, v.1.08b) [37]. We
performed GWAS enrichment analysis for several SUDs, such as alcohol
use disorder and problematic alcohol use [4], cannabis use disorder [38],
and a recent GWAS comparing individuals with opioid use disorder with
unexposed controls [39]. Bonferroni correction (n= 4 tests per gene set) of
p values was applied to adjust for multiple testing.

RESULTS
Differential gene expression
Gene expression analysis of postmortem brain tissue from AUD
cases and controls revealed DE genes at FDR < 0.05 in both dorsal
striatal regions. In the caudate nucleus, 49 DE genes were
identified at FDR < 0.05 (39 up- and 10 downregulated). Tubulin

Tyrosine Ligase Like 4 (TTLL4, log2FC= 0.11, p= 2.3 × 10−8) and
GATA Binding Protein 2 (GATA2, log2FC=−0.27, p= 8.6 × 10−7)
were the most significantly upregulated and downregulated
genes, respectively. Top up- and downregulated genes in the
putamen were found to be Transcription Elongation Factor A Like
2 (TCEAL2, log2FC= 0.09, p= 5.8 × 10−5) and Desmin (DES, log2FC
=−0.86, p= 2.6 × 10−6), the latter being the only significant gene
after correction for multiple testing. Nine genes were down-
regulated in both dorsal striatal regions, with HLA-DOB having the
highest log2FC in both regions. In the ventral striatum, no DE
genes were detected at FDR < 0.05. The most significant
differential gene expression in the ventral striatum was observed
for Ankyrin Repeat And Ubiquitin Domain Containing 1 (ANKUB1)
which was upregulated in AUD cases (log2FC= 1.35, p= 5.8 ×
10−5). In the VS of AUD cases, Caseinolytic Mitochondrial Matrix
Peptidase Chaperone Subunit B (CLPB, log2FC=−0.11, p= 5.2 ×
10−6) was the most significantly downregulated gene.
None of the DE genes at FDR < 0.05 overlapped between

multiple brain regions. Therefore, the less conservative signifi-
cance threshold of FDR < 0.25, which was also used for down-
stream analyses, was applied to compare the overlap of DE genes.
At FDR < 0.25 the cardiomyopathy associated 5 (CMYA5) gene
showed an upregulation in both caudate nucleus and putamen.
ARHGEF15 (Rho Guanine Nucleotide Exchange Factor 15) was
upregulated in all three brain regions at FDR < 0.25. The Top 5 DE
genes from each brain region are listed in Table 2; complete
summary statistics are listed in Supplementary Table S2 (CN), S3
(PUT), and S4 (VS). Overlap between DE genes in the different
brain regions is shown in Fig. 2A.

Gene-set enrichment analysis
Pathway analysis using a pre-ranked enrichment analysis revealed
significant enrichment of dorsal striatum DE genes for several GO
terms and Hallmark gene-sets. Genes in the CN were found to be
related to cilia- and microtubule-associated GO-terms, while none
of the Hallmark gene-sets was significantly enriched. GO-term and
Hallmark gene-set analysis in PUT samples showed enrichment for
immune processes, such as “acute inflammatory response to
antigenic stimuli” (pFDR= 0.006) and “adaptive immune response”
(pFDR= 0.006). In the VS the most significantly enriched GO-terms

Table 2. Top 5 differentially expressed genes in caudate nucleus, putamen, and ventral striatum.

Entrez Gene ID Gene name baseMean log2(FC) lfcSE Stat P-Value FDR

Caudate nucleus

9654 TTLL4 1125.89 0.11 0.02 5.59 2.33 × 10−8 0.0005

2624 GATA2 51.17 −0.27 0.05 −4.92 8.58 × 10−7 0.0091

25904 CNOT10 695.68 0.06 0.01 4.84 1.27 × 10−6 0.0091

222256 CDHR3 1483.68 0.19 0.04 4.75 1.99 × 10−6 0.0106

375611 SLC26A5 63.80 0.28 0.06 4.62 3.81 × 10−6 0.0163

Putamen

1674 DES 22.06 −0.86 0.18 −4.70 2.64 × 10−6 0.0486

2050 EPHB4 118.04 −0.19 0.05 −4.19 2.78 × 10−5 0.0939

9144 SYNGR2 499.84 −0.20 0.05 −4.19 2.76 × 10−5 0.0939

55741 EDEM2 348.56 −0.07 0.02 −4.23 2.30 × 10−5 0.0939

84245 MRI1 662.19 −0.13 0.03 −4.13 3.57 × 10−5 0.0939

Ventral striatum

81570 CLPB 1188.85 −0.11 0.02 −4.56 5.16 × 10−6 0.0653

22899 ARHGEF15 54.23 −0.26 0.06 −4.49 7.04 × 10−6 0.0653

55584 CHRNA9 5.58 −1.17 0.26 −4.44 9.14 × 10−6 0.0653

100463488 MTRNR2L10 4.91 −2.07 0.50 −4.16 3.23 × 10−5 0.1730

389161 ANKUB1 30.26 1.35 0.34 4.02 5.79 × 10−5 0.2480
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were also related to cilia and microtubules, as well as antigen
processing. All GO-terms and Hallmark gene-set with FDR < 0.10
are listed in Supplementary Tables S5 (CN), S6 (PUT), and S7 (VS).

Cell-type enrichment analysis
In the CN, upregulated DE genes were significantly enriched for
astrocytic markers (pFDR= 7 × 10−6), whereas an enrichment for
endothelial cell marker genes was detected among downregu-
lated genes (pFDR= 2 × 10−7). No significant cell-type enrichment
of DE genes was found in the putamen and the ventral striatum.
GeneOverlap heatmap visualizations for the three brain regions
are displayed in Supplementary Fig. 5.

WGCNA
Expression. In the CN, 21 modules with a median size of 352
genes (range: 64–7259) were identified. Module “e-CN-magenta”,
consisting of 328 genes, showed the strongest positive association
with AUD status (r= 0.42, p= 2.89 × 10−4). In the PUT, of the 25
modules (median size 249 genes, range: 33–5381) identified,
module “e-PUT-black” was most strongly correlated with AUD with
a positive direction of effect (r= 0.41, p= 2.31 × 10−4). For
expression data from the ventral striatum, 16 modules with a
median size of 429 genes (range: 35–9 708) were identified;
module “e-VS-pink” had the strongest positive association with
AUD (r= 0.41, p= 0.009). Interestingly, in a GO-term analysis the
three AUD-associated modules were all enriched for immune
processes, such as “defense response” and “inflammation
response”. Gene network representation of hub genes in modules
“e-CN-magenta”, “e-VS-pink”, and “e-PUT-black” revealed the
signal transducer and activator of transcription 3 (STAT3) gene
as a conserved hub node in all three brain regions (Fig. 2D–F).
There was also a wide overlap of the genes in the three modules:
174 (22.54%) were partially shared between all three modules

corresponding to the three brain regions, while another 21.76%
were shared between at least two modules (Fig. 2B). A gene
network analysis of the 174 shared genes between regions
identified STAT3, TP53, ICAM1, MYC, and NFKBIA as the top 5 hub
nodes of the network. A visualization of the network is depicted in
Fig. 3.

Methylation. In the CN, WGCNA resulted in 36 modules with a
median size of 346 CpG-sites (range: 66–41,423). Module “m-CN-
red”, consisting of 2117 CpG-sites, showed the strongest associa-
tion with AUD case control status (r=−0.27, p= 0.021). This
module was most highly enriched for the biological processes “cell
activation” (p= 1.52 × 10−5) and “leukocyte activation” (p= 2.09 ×
10−5). In PUT 177 modules were identified (median size= 57 CpG-
sites, range: 30–42,248). Module “m-PUT-plum” consisted of 70
CpG-sites and was significantly associated with AUD case/control
status (r=−0.29, p= 0.023) and enriched for the biological
processes “positive regulation of I-κB kinase/NF-κB signaling”
(p= 0.002) and “regulation of I-κB kinase/NF-κB signaling”
(p= 0.005). WGCNA in the VS methylation data resulted in 85
modules (median size= 178 CpG-sites, range: 35–30,370). The
module with the strongest association with AUD was “m-VS-
lavender” (r=−0.29, p= 0.023), which consisted of 117 CpG-sites
and was enriched for the molecular function “natural killer cell
lectin-like receptor binding” (p= 3.43 × 10−4) and the biological
process “susceptibility to natural killer cell mediated cytotoxicity”
(p= 3.65 × 10−4). The top 10 enriched GO-terms for all AUD-
associated modules can be found in Supplementary Tables S8–
S10.

Expression and methylation data integration. In the CN, 12 genes
showed both differential methylation and differential gene
expression. DE statistics, EWAS summary statistics and functional

A B
CN VS

PUT

e-CN-magenta e-VS-pink

e-PUT-black

e-CN-magenta m-CN-red

m-CN-midnightblue

C

D E F

e-CN-magenta e-VS-pinke-PUT-black

Fig. 2 Venn Diagrams of Gene Overlap and Network Plots of WGCNA Module Hub Genes. Venn Diagrams of gene overlap of A DE genes at
FDR < 0.25 in caudate nucleus (CN), putamen (PUT), and ventral striatum (VS), B genes forming WGCNA expression-modules showing the
strongest association with AUD status for CN, PUT, and VS, C genes forming WGCNA expression-module “e-CN-magenta” and those forming
the methylation-modules “m-CN-red” and “m-CN-midnightblue”. Network plots depicting the WGCNA gene expression module hub genes
showing the strongest association with AUD: D module magenta from caudate nucleus, E module black from putamen, and F module pink
from ventral striatum.
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annotation for these genes are provided in Supplementary Table
S11. No overlap was observed in the VS and PUT. At the module-
level, co-expression module “e-CN-magenta” showed significant
overlap with the methylation modules “m-CN-red”
(p= 0.003) and “m-CN-midnightblue” (p= 0.014) (Fig. 2C), while
expression module “e-CN-purple” did not show significant overlap
with the methylation modules in CN. Of the 3 AUD-associated
expression modules in the VS, only “e-VS-salmon” showed
significant overlap with the methylation module “m-VS-turquoise”
(p= 0.003), but not “m-VS-lavender”. No overlap was observed for
gene expression and DNA-methylation in PUT.

GWAS enrichment analysis of DE genes and WGCNA modules. In
the VS, but not in the dorsal striatum, we observed enrichment of
DE genes in the GWAS signal of PAU (p= 0.045). In the putamen
DE genes were enriched for GWAS signal from a study comparing
individuals with OUD to unexposed controls (p= 0.025). None of
the DE genes in any of the brain regions showed enrichment for
signals from a GWAS of Cannabis Use Disorder or AUD.
From the WGCNA modules showing the strongest association

with AUD, only module e-VS-pink showed significant enrichment
for GWAS signals of CUD (p= 0.043). None of the findings
remained statistically significant after multiple testing correction.
Results from the respective analyses are depicted in

Supplementary Fig. 6 and enrichment p values as well as the
number of overlapping genes are displayed in Supplementary
Table S12.

DISCUSSION
In the present study, we identified DE genes, co-expression
networks, and pathways associated with AUD in the dorsal and
ventral striatum. The results were integrated with DNA-
methylation data and results from GWASs of SUDs.
We discovered that one gene (ARHGEF15) was consistently

upregulated in all investigated brain regions of AUD cases
compared to controls. ARHGEF15 encodes a specific guanine
nucleotide exchange factor for the activation of Ras homolog
family member A (RhoA), a GTPase, which has been linked to
higher blood pressure and hypertension over the Rho/ROCK
signaling cascade [40]. It is postulated that the Rho Guanine
Nucleotide Exchange Factor 15 negatively regulates excitatory
synapse development by suppressing the synapse-promoting
activity of EPHB2 [41]. EPHB2 deficiency has been linked to
depression-like behaviors and memory impairments in animal
studies [42]. In line with this, genetic variation within ARHGEF15
has been associated with hematocrit, red blood cell count, and
hemoglobin concentration [43], but also with psychiatric traits,

Fig. 3 Network Plot of Co-Expressed Genes in AUD-associated Modules. Network plot of genes, co-expressed between the WGCNA
modules e-CN-magenta, e-PUT-black and e-VS-pink.
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such as neuroticism and worries [44] as well as bipolar disorder
[45].
Among the genes that were downregulated in both dorsal

striatal regions, HLA-DOB displayed the highest fold change. HLAs
of the Major Histocompatibility Class II are an essential part of the
acquired immune system presenting antigens to T-lymphocytes
(for review: Howell, Carter [46]). The most significantly down-
regulated gene in the VS is CLPB, a mitochondrial chaperone,
which has been associated with progressive brain atrophy [47]
and with the cellular response to alcohol-induced stress [48]. In a
recent GWAS, CLPB was associated with the amount of alcohol
consumed on a typical day (p= 9.67 × 10−5, N= 116,163) [49].
DE genes in the ventral striatum were enriched for GWAS

signals of PAU, but not AUD. This could be a result of the larger
sample size of the PAU GWAS, but also point towards differences
in genetic variation as responsible for differential expression.
Our results from the pathway and network analyses further

underline immune-related effects of chronic alcohol exposure; the
pathway and network modules most strongly associated with AUD
case-control status were also enriched for immune system and
inflammation processes. This was observed for all three brain
regions, and both in expression and methylation data, providing
further evidence for the important role of immune processes
in AUD.
Gene networks derived from WGCNA hub genes similarly

revealed genes related to inflammatory processes as strongly
connected network nodes. Here, STAT3 represents a conserved
network hub node in all three brain regions. STAT3 is a member of
the JAK/STAT pathway and acts as a transcription factor upon
activation by cytokines, hormones and growth factors [50].
Interestingly, a recent study assessing expression signatures of
alcohol withdrawal in rats discovered a very similar gene network
in the hippocampus with STAT3 as a hub node surrounded by a
network of downstream targets [51]. The authors also discovered
increased levels of STAT3 and its neuroinflammation-related target
genes in postmortem brain tissue of subjects with AUD. Activation
of the STAT3 gene network was found to be primarily restricted to
astrocytes. This supports the results of the cell type enrichment
analyses, where enrichment of astrocytic expression signatures
was detected for upregulated DE genes in the CN.
These results strongly reflect the well-described effect of chronic

alcohol exposure on different aspects of the innate and acquired
immune systems [52]. Chronic alcohol exposure accelerates the
inflammatory response and reduces anti-inflammatory cytokines
[52]. An activated immune response in response to chronic alcohol
exposure has been shown on the cell level [53], as well as on the
transcription [53], and protein levels [54, 55]. In a previous EWAS,
we found strong enrichment of immune processes in differentially
methylated CpG-sites associated with alcohol withdrawal [56].
Neuroinflammation has been repeatedly associated with AUD and
both the glutamate excitotoxicity and the production of acetalde-
hyde, key processes in AUD metabolism, have been suggested to
produce an inflammatory response in the brain [57]. On a
phenotypic level, there is also widespread overlap between
symptoms of inflammation and of SUDs, such as anhedonia,
depression, and decreased cognitive functioning [58]. In addition, in
candidate gene studies in postmortem human PFC, hippocampus,
and orbitofrontal cortex, increased mRNA levels of HMGB1, which
encodes a proinflammatory cytokine and toll-like receptor genes
have been associated with alcohol consumption in AUD cases,
providing evidence for chronic neuroinflammation in response to
alcohol [59–61]. Notably, there is an overlap of findings not only on
the single-gene level but also on the level of pathways and
networks/modules. This overlap underlines that alcohol consump-
tion has common biological effects in different brain regions, i.e.,
most prominently, effects on immune and inflammation processes.
Several limitations apply to our study. First, we cannot

distinguish between effects being a consequence of chronic

alcohol consumption or addiction. Second, although we corrected
for PMI, which can influence tissue quality as a confounding factor,
it cannot be ruled out that other characteristics not easily
accounted for, such as cause of death, or blood alcohol level for
which the majority of individuals have missing data, influenced
gene expression. Third, although the sample size is comparatively
large for postmortem brain studies in the addiction field, the small
number of differentially expressed genes is likely attributable to
limited power. Lastly, analyzing bulk tissue does not adequately
reflect the diversity of cell types across different brain regions and
future studies on the single-cell level are needed to investigate
cell-type-specific transcriptional changes associated with AUD.
It has to be noted that besides DNA methylation, epigenetic

mechanisms such as histone and chromatin modifications, or
microRNA expression profiles can influence gene expression and
are especially important in addiction research [62]. Future studies
should therefore expand the epigenetic profiling of AUD to
include these mechanisms.
In summary, the present study provides further evidence from

multi-omics data sets for the importance of immune- and
inflammation-related processes in AUD. Notably, drugs that
reduce neuroinflammation to reduce drinking, such as phospho-
diesterases, may be promising approaches for novel treatment
options for AUD. Recently published randomized controlled trials
suggest that a phosphodiesterase inhibitor reduces heavy
drinking whereas an antibiotic compound was not effective
[63, 64]. A deeper understanding of the underlying mechanisms
will enhance the discovery of drug targets and drive forward the
development of precision medicine within this field.
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