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Abstract

Artificial intelligence (AI) for breast imaging has rapidly moved from the experimental to 

implementation phase. As of this writing, Food and Drug Administration (FDA)-approved 

mammographic applications are available for triage, lesion detection and classification, and 

breast density assessment. For sonography and MRI, FDA-approved applications are available 

for lesion classification. Numerous other interpretive and noninterpretive AI applications are in the 

development phase. This article reviews AI applications for mammography, sonography, and MRI 

that are currently available for clinical use. In addition, clinical implementation and the future of 

AI for breast imaging are discussed.
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Introduction

Artificial intelligence (AI) for breast imaging has quickly moved from the research and 

development phase to the clinical implementation phase. This rapid growth has resulted 

from improved computer processing power, advanced algorithms, and the expansion of 

electronic health data1. AI includes the subfields of machine learning (ML) and deep 

learning (DL) (Figure 1)2. ML is defined as computers learning from images and other 

data without being programmed. DL is based on neural networks that obtain high-level 

features from data. The convolutional neural network is the most common network used for 

the analysis of images3.

As of this writing, there are twenty AI applications that are approved by the Food and Drug 

Administration (FDA) for mammography, breast sonography, and breast MRI (Table 1)4. For 

mammography, the applications are intended for triage, lesion detection and classification, 

and density assessment. For sonography and MRI, the applications are intended for lesion 

classification. The data that led to FDA approval, particularly for the lesion detection and 

classification applications, are mostly based on multireader studies; however, the results 

of these types of studies may not directly translate to clinical practice, and thus post-
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implementation studies in the clinical environment are essential to understand the real-world 

impact of AI applications on radiologists’ performance and workflows5.

In addition to the approved applications described above, numerous other interpretive and 

noninterpretive AI applications for breast imaging are in the development phase. The 

success of these applications will depend on their real-world performance in the clinical 

environment and their integration into existing clinical workflows. This article reviews 

FDA-approved AI applications for mammography, sonography, and MRI and the evidence 

supporting their use. In addition, clinical implementation and the future of AI for breast 

imaging are discussed.

Mammography

FDA-Approved Applications for Mammography

Mammography is the only modality for breast cancer screening shown to decrease breast 

cancer-related deaths, but there is wide variability in performance metrics and potential for 

improvement of its sensitivity and specificity6–8. Also, more time is needed to interpret 

digital breast tomosynthesis (DBT) examinations compared to digital 2D mammography 

(DM) examinations9. AI is a promising tool to address these limitations. As of this writing, 

and per the American College of Radiology (ACR) website, there are more than 15 FDA-

approved mammographic applications for triage, lesion detection and classification, and 

breast density assessment (Table 1)4,10–27. These are intended for DM, synthetic DM, and/or 

DBT. Examples of these FDA-approved applications and the data supporting their use are 

discussed below.

One of the FDA-approved applications for triage, Saige-Q, can be applied to screening DM 

and DBT examinations18. Saige-Q provides a code for each mammogram, which indicates 

the algorithm’s suspicion that the mammogram has at least one concerning finding. These 

assigned codes are available on the picture archiving and communication system (PACS) 

workstation and can be used to prioritize or triage examinations. According to the FDA 

documentation for Saige-Q, the area under the receiver operating characteristic curve (AUC) 

was found to be 0.97 for DM and 0.99 for DBT in studies done across multiple clinical sites 

in two states. Performance by patient age, breast density, lesion type, and lesion size were 

similar across sub-categories.

One of the FDA-approved applications for lesion detection and classification, Transpara, 

detects suspicious mammographic lesions and assigns a probability of malignancy score 

from 1–100 to each one14,28. An examination score from 1 to 10 is also provided, 

which indicates likelihood of malignancy. In a multi-reader multi-case study validating 

this application, 18 radiologists each read 240 DBT examinations, aided and unaided by 

the AI system28. The mean reader AUC improved from 0.83 without AI support to 0.86 

with AI support (p=0.0025). Sixteen of 18 radiologists achieved a better AUC with AI 

support (Figure 2). Mean sensitivity increased from 75% to 79% (p=0.016), while specificity 

remained unchanged. Given that the standalone AI system performance did not differ from 

that of the radiologist readers, the authors suggested that this system could be used in 

place of the second reader or could even be used for standalone interpretation, particularly 
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to triage out negative screening mammograms. Of note, reading time per examination 

decreased from 41 seconds to 36 seconds with AI support (p<0.001) (Figure 3). This 

reduction in interpretation time was largely due to the examination scores, suggesting that 

readers felt comfortable spending less time on examinations categorized as likely normal.

There are nearly ten FDA-approved applications for breast density assessment, which is 

of heightened interest in the setting of density notification legislation and the recognition 

that dense tissue not only masks breast cancers but is also an independent breast cancer 

risk factor4,19–27,29. Densitas offers both an ML-based density application, DM-Density, 

and a DL-based density application, densityai21,23. In a study comparing densityai output 

to consensus assessment of four expert radiologists’ independent breast density readings, 

accuracies for four-class prediction were 78% for almost entirely fatty breasts, 76% for 

scattered fibroglandular densities, 83% for heterogeneously dense breasts, and 89% for 

extremely dense breasts, and accuracies for two-class prediction were 88% for non-dense 

breasts and 96% for dense breasts23. AI-based breast density is also being used in 

conjunction with clinical risk factors and conventional risk prediction models to generate 

estimates of breast cancer risk30,31.

Other commercial applications for mammography, which are marketed as clinical decision 

support and thus do not require FDA approval, are also available for clinical use. For 

example, risk prediction models based on DM and DBT images offer one-year and two-

year estimates of risk32. In addition, AI applications for image quality control, currently 

available for clinical use, offer immediate feedback to technologists about the adequacy 

of compression and various patient positioning parameters33,34. Such applications have the 

potential to decrease technical recalls and can automatically generate image quality reports 

at the individual or practice level.

Future of AI for Mammography

Research is in progress for other AI applications for mammography, including long-term 

breast cancer risk assessment. Accurate assessment of risk is necessary to inform decisions 

about genetic testing, chemoprevention, and supplemental screening with MRI, and several 

studies have demonstrated that DL models based on mammographic images can provide 

accurate long-term risk estimates35,36. For example, a deep learning model based on 

mammography to estimate risk at several timepoints achieved five-year AUCs of 0.78 and 

0.79, respectively, in two external cohorts36. Furthermore, the mammography-based model 

identified 42% of women who would develop cancer in five years as high risk, whereas 

the Tyrer-Cuzick model (a model based on traditional risk factors) identified only 23% of 

women who would develop cancer in five years (p<0.001). The imaging-based model could 

potentially be improved if prior mammograms (and not just the current one) were also used.

Future research involves the development of mammography-specific deep learning 

architectures that take advantage of the unique attributes of high-resolution mammographic 

imaging37. In addition, as there are fewer DBT than DM datasets available for algorithm 

training, techniques such as transfer learning – in which a pre-trained DM model is modified 

with a smaller DBT dataset – can be utilized38. AI algorithms must be validated not only 

across diverse patient populations but also across different mammography machines from 
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different vendors; and, to facilitate clinical adoption and acceptance, the rationale behind 

the decision-making process of algorithms must be understandable to radiologists and other 

clinicians37–39.

Breast Ultrasound

FDA-Approved Applications for Breast Ultrasound

In the setting of breast density notification legislation and supplemental screening options 

for dense-breasted women, ultrasound is an increasingly utilized modality for screening 

purposes; however, its specificity is reported to be relatively low40,41. As of this writing 

and per the ACR website, there are two FDA-approved applications for breast ultrasound, 

both of which are intended for lesion classification and therefore could assist radiologists 

in distinguishing between benign and malignant lesions (Table 1)4,42,43. One of the 

applications, Koios DS, provides a probability of cancer for a reader-selected region-of-

interest containing a breast lesion44,45. In a study validating this application, nine breast 

imaging radiologists interpreted 319 breast lesions on ultrasound aided and unaided by the 

AI system45. With the AI system set to its original mode, the mean reader AUC was 0.82 

with and without AI support (p=0.92). When the AI system was set to a high-sensitivity 

mode or high-specificity mode, the mean reader AUC improved from 0.83 to 0.88 (p<0.001) 

and from 0.82 to 0.89 (p<0.001), respectively. Readers reacted more frequently to prompts 

in the high-specificity mode, which provided fewer false-positive cues, suggesting that 

radiologists are more likely to trust the recommendations provided by more specific AI-

based systems46.

In a second evaluation of this AI system, Koios DS, 15 physicians, including 11 radiologists, 

interpreted 900 breast lesions on ultrasound, aided and unaided by this AI system44. The 

mean reader AUC increased with use of the AI system from 0.83 to 0.87 (p<0.0001). 

Fourteen of 15 readers achieved a better AUC with AI support. The authors noted that the 

impact of the AI system on each reader’s performance depended on that reader’s initial 

operating point; that is, readers that were more sensitive but not specific demonstrated 

improvements in specificity. Use of the AI algorithm was also found to decrease inter-reader 

and intra-reader variability. Limitations of this study include that its results may not directly 

translate to clinical practice (as it was a reader study) and that Breast Imaging and Reporting 

Data System (BI-RADS) assessments were given by readers solely based on two orthogonal 

static ultrasound images (without any other imaging or clinical data).

Future of AI for Breast Ultrasound

AI applications for breast ultrasound largely focus on lesion classification (that is, 

distinguishing between cancerous and noncancerous lesions), as discussed above. AI could 

also be used to detect and segment lesions on ultrasound, triage examinations, and predict 

Tumor Node Metastasis (TNM) classification and response to treatment47–49. For example, 

in a feasibility study that applied DL-based models to ultrasound images in women with 

breast cancer and clinically negative axillary lymph nodes, the best-performing model 

attained an AUC of 0.90 in predicting axillary lymph node metastasis and outperformed 

three experienced radiologists50. To better understand the predictions made by the AI 
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system, the authors used “class activation mapping” to indicate the parts of the ultrasound 

image most predictive of metastasis.

DL-based models have also been applied to ultrasound images to predict neoadjuvant 

chemotherapy response. For example, in a study of 168 women with breast cancer, 

ultrasound examinations were obtained before neoadjuvant chemotherapy, after the second 

round of therapy, and after the fourth round of therapy51. The models to predict treatment 

response after the second round achieved an AUC of 0.81 and after the fourth round 0.94. 

One of the models accurately identified 19 of 21 non-responsive patients, suggesting that 

this AI system could inform necessary adjustments early during treatment and thus help 

personalize treatment approaches.

The data supporting the aforementioned lesion classification applications are based on 

reader studies and, as with other applications for breast imaging, will require thorough 

validation in the clinical environment. Radiologists, clinicians, and patients are more likely 

to trust AI systems that offer clear and transparent rationale for their predictions, and thus 

methods to explain AI output (such as the class activation maps described above) will 

continue to be critical for successful clinical adoption and acceptance of AI algorithms50,52. 

In addition, the diagnostic accuracy of DL-based applications for ultrasound, which are 

currently trained with 2D images, could potentially be improved if 3D imaging, Doppler 

imaging data, shear wave elastography, and/or cine clips were also used for training 

purposes47,53.

Breast MRI

FDA-Approved Applications for Breast MRI

MRI is the most sensitive of the breast imaging modalities but has variable specificity, 

though false-positive rates have been found to decrease after the first examination, with 

increasing radiologist experience, and with higher spatial and temporal resolution of 

MRI54,55. QuantX, an FDA-approved algorithm for breast MRI, addresses the specificity 

metric by assisting radiologists in differentiating between noncancerous and cancerous 

lesions (Table 1)56,57. To use QuantX, the reader first identifies and localizes the lesion. 

The AI system, which offers both image registration and lesion segmentation, then generates 

a list of key features, such as the time to peak enhancement and washout rate. It also 

synthesizes multiple features into a the QuantX score, which reflects cancer likelihood.

In a multireader study, 19 radiologists with breast imaging fellowship training or a minimum 

of two years of breast imaging experience interpreted 111 breast MRI examinations, with 

and without the use of QuantX57. In distinguishing noncancerous and cancerous lesions, 

the standalone performance of the AI system based on user-identified seed points had a 

mean AUC of 0.71. For radiologists, the mean AUC increased from 0.71 without use of 

the AI system to 0.76 with use of the AI system (p=0.04) (Figure 4). Of note, radiologists 

without fellowship training in breast imaging had a higher increase in AUC than those who 

were fellowship-trained. The sensitivity of radiologists improved with use of the AI system 

when BI-RADS category 3 was used as the cut point, but no differences in specificity were 

observed. This particular AI system could help radiologists reduce classification errors (i.e., 
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benign versus malignant) but not detection errors, as lesions must first be identified by 

the radiologist to make use of the AI system. An additional drawback of this study is that 

radiologists’ behavior in a reader study may not reflect their behavior in clinical practice5.

Future of AI for Breast MRI

Currently per the ACR website, the only FDA-approved application for breast MRI is 

QuantX, which is intended for lesion classification, as discussed above4. Other potential 

applications of AI for breast MRI include lesion detection; prediction of neoadjuvant 

chemotherapy response, tumor markers, lymph node status, and recurrence risk; breast 

cancer risk assessment; and image processing (i.e., tissue and lesion segmentation and image 

quality improvement)58–60. For example, with regard to prognostic imaging, a DL-based 

model was applied to an MRI dataset in order to predict the Oncotype Dx Recurrence Score, 

which is a validated genomic assay used in women with invasive cancer61. For three-class 

prediction (Recurrence Score <18, 18–30, and >30), the algorithm attained an AUC of 0.92, 

sensitivity of 60%, and specificity of 90%. The authors concluded that an AI algorithm 

could be used to predict the Oncotype Dx Recurrence Score, which is an invasive and 

expensive test, but further validation and correlation with clinical outcomes are needed.

One study applied a DL-based model to MRI examinations of 141 women with breast cancer 

who were given neoadjuvant chemotherapy and subsequently underwent surgery62. Women 

were categorized into three groups based on their neoadjuvant chemotherapy response: 

complete response, partial response, and no response. A DL-based model was applied to the 

MRI examinations obtained before the initiation of chemotherapy and attained an accuracy 

of 88% in the three-group prediction. While current prediction models are based on interval 

imaging after the start of treatment, this AI model uses a baseline breast MRI to predict 

response and could thus help guide the upfront use of novel therapies in women who are 

unlikely to respond to conventional agents and also reduce toxicities from treatments that are 

unlikely to be effective.

An active area of research is segmentation and quantification of background parenchymal 

enhancement on MRI, which is a known marker of breast cancer risk. For example, in a 

study of 137 patients, a DL-based algorithm was shown to give reliable segmentation and 

classification results for background parenchymal enhancement, with an accuracy of 83% 

and correlation with manual segmentation and quantification of 0.9663. One other study 

of 133 high-risk women, 46 of whom developed breast cancer, showed that quantitative 

background parenchymal enhancement features extracted from MR imaging are in fact 

related to breast cancer risk64. Of note, the predictive performance of these background 

parenchymal enhancement features outperformed that of radiologists’ subjective background 

parenchymal enhancement assessments.

Of the emerging AI applications for breast MRI, lesion segmentation and classification are 

thought to be the most mature at this time, but the potential of AI to extract rich biological 

and prognostic data from MR imaging data has yet to be realized65. In terms of challenges, 

available training datasets for MRI are relatively small, as compared to those available 

for digital 2D mammography, and there exists a lack of standardization for segmentation, 

feature extraction, and feature selection for MRI59,65. Future directions in this domain 
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include enhancing personalized risk assessment with background parenchymal enhancement 

analysis, developing the role of noncontrast MRI, and applying AI to MRI acquisition and 

reconstruction techniques in order to decrease scan time59.

Implementation of AI

As the number of commercial AI algorithms for breast imaging continues to increase, and 

radiologists seek to determine which models to implement in practice, recent publications 

have addressed key questions to consider before purchasing an AI tool66,67. For example, 

the ÉCLAIR guidelines set forth a series of issues to consider when evaluating a commercial 

model: (1) relevance (i.e., intended use, indications of use, benefits, and risks), (2) 

performance and validation (i.e., how algorithm was trained and how performance has been 

evaluated), (3) usability and integration (i.e., impact of AI tool on workflow, information 

technology infrastructure that is required), (4) regulatory and legal aspects (i.e., compliance 

of AI tool with local and data protection regulations), and (5) financial and support services 

(i.e., licensing model and maintenance of product)67.

After selecting a candidate AI tool, a breast imaging practice may choose to validate the tool 

using its own data66,68. Models that were trained with large, diverse patient populations may 

perform well across many or all practices, but certain models will require fine-tuning with 

local data to achieve an acceptable level of performance69. A plan for ongoing monitoring 

to ensure that the tool maintains an acceptable level of performance over time could also be 

needed66,68–70. Even an AI tool with high performance will likely fail if not well-integrated 

into existing clinical workflows, which requires close collaboration with AI vendors and 

local information technology groups. The algorithm may be integrated into practice via a 

platform through which other AI vendors could also deploy their tools or integrated into 

practice as a standalone application, which offers maximum flexibility but is less scalable66.

With regard to financial considerations, purchase of an AI tool may require a one-time 

fee, pay-per-use, or an ongoing subscription66,67. Additional fees may be incurred for 

installation, maintenance, future updates, and training of new users. Some vendors may offer 

a trial period, as discussed above, before purchasing decisions are made. In addition, or 

alternatively, the contract between the AI vendor and practice may include contingencies if 

agreed-upon performance metrics are not attained66. Currently there are no separate billing 

codes to generate additional revenue from the use of AI tools, but payment structures may 

evolve over time66.

Conclusions

AI for breast imaging has rapidly progressed from the research and development phase 

to clinical implementation. FDA-approved mammographic applications are available 

for triage, lesion detection and classification, and breast density assessment. FDA-

approved sonographic and MRI applications are available for lesion classification. Post-

implementation studies in the clinical environment are essential to understand the real-world 

impact of these AI applications on radiologists’ performance and workflows. A multitude 

of other applications, including noninterpretive applications (such as for breast cancer risk 
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assessment), are in development. The future of AI for breast imaging is bright, with its 

success depending on validation in real-world clinical settings, demonstrated improvements 

in patient outcomes and clinical efficiency, and seamless integration into existing clinical 

workflows.

Abbreviations:

AUC Area under the receiver operating characteristic curve

AI Artificial intelligence

DL Deep learning

DM Digital 2D mammography

DBT Digital breast tomosynthesis

FDA Food and Drug Administration

ML Machine learning
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Figure 1. 
Artificial intelligence and its subfields.
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Figure 2. Differences in the area under the receiver operating characteristic curve (AUC) with 
and without artificial intelligence (AI) support from a mammographic lesion detection and 
classification algorithm.
Sixteen of 18 readers achieved a better AUC with AI support. (With permission and adapted 

from reference 28.)
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Figure 3. Differences in reading time with and without artificial intelligence (AI) support from a 
mammographic lesion detection and classification algorithm.
Reading time per examination decreased from 41 seconds to 36 seconds with AI support 

(p<0.001). (With permission and adapted from reference 28.)
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Figure 4. Average receiver operating characteristic curves (AUC) with and without artificial 
intelligence (AI) support from an MRI lesion classification algorithm.
The standalone performance of the AI tool had a mean AUC of 0.71. For radiologists, the 

mean AUC increased from 0.71 without use of the AI tool (1st read) to 0.76 with use of the 

AI tool (2nd read) (p=0.04). (With permission and adapted from reference 57.)
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Table 1.

Food and Drug Administration (FDA)-approved applications for breast imaging*.

Tool (Company) Modality Application Date of Approval

MammoScreen (Therapixel)10 Mammography Lesion detection and classification 3/25/2020

Genius AI Detection (Hologic)11 Mammography Lesion detection and classification 11/18/2020

ProFound AI Software V3.0 (iCAD)12,13 Mammography Lesion detection and classification 3/12/2021

Transpara 1.7.0 (ScreenPoint Medical B.V.)14 Mammography Lesion detection and classification 6/2/2021

Lunit INSIGHT MMG (Lunit)15 Mammography Lesion detection and classification 11/17/2021

cmTriage (CureMetrix)16 Mammography Triage 3/8/2019

HealthMammo (Zebra Medical Vision)17 Mammography Triage 7/16/2020

Saige-Q (DeepHealth)18 Mammography Triage 4/16/2021

Quantra 2.1/2.2 (Hologic)19 Mammography Density assessment 10/20/2017

Insight BD (Siemens Healthineers)20 Mammography Density assessment 2/6/2018

DM-Density (Densitas)21 Mammography Density assessment 2/23/2018

DenSeeMammo (Statlife)22 Mammography Density assessment 6/26/2018

densityai (Densitas)23 Mammography Density assessment 2/19/2020

WRDensity (Whiterabbit.ai)24 Mammography Density assessment 10/30/2020

Visage Breast Density (Visage Imaging GmbH)25 Mammography Density assessment 1/29/2021

Powerlook Density Assessment V2.1/V4.0 (iCAD)26 Mammography Density assessment 7/12/2021

Volpara Imaging Software (Volpara Health Technologies 
Limited)27 Mammography Density assessment 7/27/2021

ClearView cCAD (ClearView Diagnostics)42 Ultrasound Lesion classification 12/28/2016

Koios DS (Koios Medical)43 Ultrasound Lesion classification 7/3/2019

QuantX (Qlarity Imaging)56 MRI Lesion classification 5/17/2017

*
Based on FDA documents and the American College of Radiology website4.
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