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Biological aging is a proposed mechanism through which social determinants drive health disparities.
We conducted proof-of-concept testing of 8 DNA-methylation (DNAm) and blood-chemistry quantifications of
biological aging as mediators of disparities in healthspan between Black and White participants in the 2016
wave of the Health and Retirement Study (n = 9,005). We quantified biological aging from 4 DNAm “clocks”
(Horvath, Hannum, PhenoAge, and GrimAge clock), a DNAm pace-of-aging measure (DunedinPoAm), and 3
blood-chemistry measures (PhenoAge, Klemera-Doubal method biological age, and homeostatic dysregulation).
We quantified Black-White disparities in healthspan from cross-sectional and longitudinal data on physical
performance tests, self-reported limitations in activities of daily living, and physician-diagnosed chronic diseases,
self-rated health, and survival. DNAm and blood-chemistry quantifications of biological aging were moderately
correlated (Pearson’s r = 0.1–0.4). The GrimAge clock, DunedinPoAm, and all 3 blood-chemistry measures were
associated with healthspan characteristics (e.g., mortality effect-size hazard ratios were 1.71–2.32 per standard
deviation of biological aging) and showed evidence of more advanced/faster biological aging in Black participants
than in White participants (Cohen’s d = 0.4–0.5). These measures accounted for 13%–95% of Black-White
differences in healthspan-related characteristics. Findings suggest that reducing disparities in biological aging
can contribute to building health equity.

aging; aging clocks; biological aging; healthy aging; pace of aging; racial disparities

Abbreviations: ADLs, activities of daily living; CI, confidence interval; DNAm, DNA methylation; HR, hazard ratio; HRS, Health
and Retirement Study; IRR, incidence rate ratio; KDM, Klemera-Doubal method; SD, standard deviation; VBS, Venous Blood
Study.

Black Americans experience excess morbidity and prema-
ture mortality relative to White Americans (1). This health
disparity is mediated by multiple chronic diseases affecting
different organ systems throughout the body and reflects an
etiology extending from the earliest stages of life across
adulthood, encompassing social, economic, and environ-
mental factors (2–4). Differences in health between Black
and White Americans vary between geographic locations
and have changed over time, indicating that these disparities
are socially determined and that they are modifiable (5–7).
A range of policies and programs have been proposed to
mitigate health disparities (8–11). However, rigorous evalu-
ation of impact is challenging (12). Interventions to address

health disparities delivered to older adults may come too
late to prevent chronic disease (4, 13), while interventions
delivered to younger people require long follow-up intervals
to establish impact (14). Methods are needed to monitor the
effectiveness of interventions over timescales of years rather
than decades.

Measures that quantify processes of biological aging may
provide near-term measurements of long-term impacts. Bio-
logical aging is the gradual and progressive decline in sys-
tem integrity with advancing chronological age (15). This
process is now being studied as a modifiable root cause of
many different chronic diseases (16–18). One hypothesis
advanced to explain Black-White health disparities across a
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Figure 1. Conceptual overview of a study designed to test 8 measures of biological aging as mediators of Black-White healthspan disparities,
Health and Retirement Study (HRS), 1992–2018. We analyzed data from 9,005 older adult participants in the HRS who provided blood-chemistry
and/or DNA-methylation data during the 2016 measurement wave. We quantified biological aging from blood-chemistry and DNA-methylation
data using published algorithms: the PhenoAge (55), Klemera-Doubal method biological age (56), and homeostatic dysregulation (57) methods
for blood-chemistry data; the DNA-methylation “clocks” proposed by Horvath (36), Hannum et al. (58), Levine et al. (55), and Lu et al. (47); and
the DunedinPoAm DNA methylation pace of aging (37). We analyzed Black-White disparities in healthspan from cross-sectional and longitudinal
data on physical performance tests, self-reported activities of daily living limitations and physician-diagnosed chronic conditions, self-rated health,
and survival. The analysis tested mediation of Black-White disparities in healthspan phenotypes by measures of biological aging.

range of diseases is that social and material stresses expe-
rienced by Black Americans act to accelerate biological
aging, referred to as “weathering” (19, 20). In epidemiologic
studies, Black Americans show more advanced biological
aging than White Americans of the same chronological age
(21–23). If advanced biological aging is a mediator of health
disparities, then quantifications of biological aging could be
used to monitor intervention impacts.

Many methods are proposed for quantifying biological
aging from several biological levels of analysis (24, 25).
Agreement between measures is often poor; there is
no gold standard (26–28). Measures based on analysis
of blood-chemistry and DNA-methylation (DNAm) data
have received the most attention to date. We conducted
proof-of-concept testing of 8 blood-chemistry and DNAm
methods for quantifying biological aging as mediators of
Black-White disparities in healthy aging. We analyzed
deficits in physical functioning, limitations in activities
of daily living (ADLs), chronic disease morbidity, and
mortality in a national sample of US older adults in the
Health and Retirement Study (HRS). Previous studies have
documented Black-White differences in several of the
measures of aging we analyzed (21, 22, 29–31). However,
few studies have tested whether these differences could
account for Black-White health disparities (21, 23), and
none (to our knowledge) have specifically considered
disparities in healthspan characteristics. Our analysis builds
on an initial report of differences in DNAm measures
of biological aging between Black and White adults in
the HRS (30) in 3 ways. First, we analyze measures of
biological aging derived from DNAm data together with

measures derived from blood-chemistry data. Second, we
compare the different measures of biological aging by
testing associations with healthspan-related characteristics
and mortality. Third, we quantify the fractions of Black-
White differences in healthspan-related characteristics
and mortality that are accounted for by biological-aging
measures. Figure 1 provides a conceptual overview of our
analysis.

METHODS

Sample

The HRS is a nationally representative longitudinal survey
of US residents aged ≥50 years and their spouses that has
been fielded every 2 years since 1992. A new cohort of 51-
to 56-year-olds and their spouses is enrolled every 6 years
to maintain representativeness of the US population over 50
years of age. Response rates over all waves of the HRS range
from 81% to 91% (32). As of the most recent data release
(February 2021), the HRS included data collected from
42,515 individuals in 26,600 households (33). We linked
HRS data curated by the RAND Corporation (Santa Monica,
California) with new data collected as part of the HRS’s
2016 Venous Blood Study (VBS) (33, 34). Analysis included
participants aged 50–90 years at the time of the blood draw
for whom data were also collected on prevalent chronic
disease, ADLs, and/or physical functioning (n = 9,005).
A comparison of our analysis sample with the full HRS
sample is provided in Web Table 1 (available at https://doi.
org/10.1093/aje/kwab281).
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Measures

Biological aging. There is no gold-standard measure of
biological aging (24). Many methods based on different
biological levels of analysis have been proposed. Current

state-of-the-art methods use machine learning to sift
large numbers of candidate markers and parameterize
algorithms that predict aging-related parameters, including
chronological age, mortality risk, and rate of decline in
system integrity. Algorithms are developed in reference data

Table 1. Measures of Biological Aging Included in an Analysis of Black-White Disparities in Biological Aging, Health and Retirement Study,
1992–2018

Measure of
Biological Aging

First Author, Year
(Reference No.)

Criterion Used to
Develop Measure

Interpretation of
Measure’s Values

Blood-Chemistry Measuresa

PhenoAge Levine, 2018 (55) Mortality Age at which average mortality risk in NHANES
III matches the mortality risk predicted by the
blood-chemistry + chronological age
algorithm

KDM biological age Klemera, 2006 (56) Chronological age Age at which average physiology in NHANES III
matches the physiology of the participant

Homeostatic dysregulation Cohen, 2013 (57) Deviation from healthy
youth

Log biomarker Mahalanobis distance of
participant from young, healthy NHANES III
participants

DNA-Methylation Measuresb

First-generation
DNA-methylation clocks

Horvath clock Horvath, 2013 (36) Chronological age Age predicted by DNA methylation

Hannum clock Hannum, 2013 (58) Chronological age Age predicted by DNA methylation

Second-generation
DNA-methylation clocks

PhenoAge clock Levine, 2018 (55) Blood-chemistry
PhenoAge

Age at which average mortality risk in NHANES
III matches the mortality risk predicted by the
PhenoAge algorithm

GrimAge clock Lu, 2019 (47) Mortality Age at which average mortality risk in the
Framingham Heart Study offspring cohort
matches predicted mortality risk

Pace of aging

DunedinPoAm pace of
aging

Belsky, 2020 (37) Change in 18
system-integrity
biomarkers over 12
years of follow-up

Years of physiological decline experienced per 1
year of calendar time over the recent past.
The expected value of DunedinPoAm in
midlife adults is 1. Values greater than 1
indicate accelerated aging; values less than
1 indicate slowed aging.

Abbreviations: KDM, Klemera-Doubal method; InCHIANTI, Invecchiare in Chianti; NHANES III, Third National Health and Nutrition
Examination Survey.

a All algorithms were parameterized using data from NHANES III and included the following blood-chemistry measurements: albumin, alkaline
phosphatase, creatinine, C-reactive protein (log), glucose, white blood cell count, lymphocyte percentage, mean corpuscular volume, and red
cell distribution width. The PhenoAge and KDM biological-age algorithms additionally included chronological age. The NHANES III training
sample is majority White but includes an oversample of Black Americans. Blood-chemistry measures were calculated using code available
on GitHub (60) according to published methods. For analysis, PhenoAge and KDM biological age were differenced from chronological age to
calculate biological-age advancement values.

b DNA-methylation measures were developed from analysis of genomewide DNA methylation measured on Illumina Infinium HumanMethy-
lation 27K and 450K BeadChip arrays (Illumina, Inc., San Diego, California) in a range of different data sets. The Horvath clock was developed
from analysis of 82 different data sets. The Hannum clock was developed from analysis of research volunteers at the University of California,
San Diego (La Jolla, California), the University of Southern California (Los Angeles, California), and West China Hospital (Chengdu, China).
The PhenoAge clock was developed from analysis of NHANES III data and the InCHIANTI Study (Tuscany region, Italy). The GrimAge clock
was developed from analysis of the Framingham Heart Study (Framingham, Massachusetts) offspring cohort. The DunedinPoAm pace-of-
aging measure was developed from analysis of the Dunedin Study (Dunedin, New Zealand). The InCHIANTI, Framingham, and Dunedin Study
cohorts are mostly or entirely White European. DNA-methylation measures were calculated by the Health and Retirement Study investigators.
For analysis, DNA-methylation clocks were residualized on chronological age to calculate biological-age advancement values.
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sets and applied in new data sets to test hypotheses. We
analyzed several different methods because each method
uses different assumptions to develop a measure of the
latent construct of biological aging. As we and others have
shown, the different methods do not all measure the same
aspects of the aging process (26, 28). Comparative analysis
is therefore essential to interpretation. We focused on
algorithms developed for blood-chemistry analytes routinely
measured in clinical settings and DNAm marks included
in commercial arrays, and algorithms which have received
substantial attention in the research literature. Measures are
described and their source publications are cited in Table 1.
Detailed descriptions of the measures are provided in Web
Appendix 1.

We computed blood-chemistry measures using the R
package (R Foundation for Statistical Computing, Vienna,
Austria) BioAge (35). We obtained data on DNAm measures
of biological aging from the HRS (30). Clock measures
can also be computed with the software hosted by the
Horvath Lab (Dr. Steve Horvath, University of California,
Los Angeles) (36). Dunedin Pace of Aging methylation
(DunedinPoAm) can be computed using the GitHub code
published by Belsky et al. (37).

For analysis, we converted measures of biological age
(blood-chemistry PhenoAge, Klemera-Doubal biological
age, homeostatic dysregulation, PhenoAge clock, Horvath
clock, Hannum clock, GrimAge clock, and DunedinPoAm
pace of aging) to measures of biological-age advancement
by fitting regressions of biological-age measures on chrono-
logical age and computing residual values. The literature
commonly refers to these residuals as “age acceleration.” We
instead use “age advancement” to distinguish measurements
like the clocks—which compute a difference between
biological age and chronological age at a single point in
time—from pace-of-aging measurements that quantify how
fast a person is aging. No residualization was applied to ho-
meostatic dysregulation and DunedinPoAm, as these mea-
sures already quantify deviation from the expected sample
norm.

Healthspan-related characteristics. Healthspan is the portion
of life lived free of disease and disability. We measured
healthspan-related characteristics from performance-test
measurements of functional impairment administered by
trained interviewers, participant reports about ADL limita-
tions, self-rated health, physician-diagnosed chronic condi-
tions, and HRS follow-up for mortality status through 2019.
Measures are described in detail in Table 2 and Web Table 2.

Analysis

Our primary analysis tested associations of biological-
aging measures with healthspan-related characteristics. We
conducted analysis of prevalent functional impairments,
ADL limitations, chronic conditions, and current self-rated
health based on data collected in the 2016 wave of the
HRS. We conducted longitudinal analysis of incident ADL
limitations, incident chronic conditions, and changes in self-
rated health using data from the 2016 and 2018 waves. (We
did not conduct longitudinal analysis of performance-test

measures because these data are collected from participants
at every other wave, so no follow-up was available.) Analysis
of mortality was based on the most recent ascertainment of
mortality status by the HRS.

We used Poisson regression to estimate incidence rate
ratios (IRRs) for associations of biological aging with counts
of functional impairments, ADL limitations, and chronic
conditions. We used linear regression to estimate standard-
ized effect sizes (Pearson’s r) for continuous measures of
self-rated health. We used Cox proportional hazards regres-
sion to estimate mortality hazard ratios (HRs). Effect sizes
for biological-aging measures were denominated in standard
deviation (SD) units.

For analysis of the full HRS VBS sample and the VBS
DNAm subsample (VBS DNAm), which were designed to
represent the US population aged 50 years or more, we
applied probability sampling weights to generate estimates
for this population. For analyses of subsamples of Black and
White older adults, we included covariate adjustment for
chronological age, sex, and region of residence.

We tested mediation of Black-White disparities in biolog-
ical aging using a regression-based approach as described
by Valeri and VanderWeele (38). We used the R package
CMAverse (39) to estimate direct and indirect effects and
proportions mediated. We calculated 95% confidence inter-
vals (CIs) using bootstrapping to obtain standard error
estimates. We tested the robustness of mediation results
to potential exposure-mediator interactions following the
approaches outlined by Valeri and VanderWeele (38, 40).
Details of this analysis are provided in Web Appendices 2
and 3 and Web Figure 1.

RESULTS

We conducted analysis using 2 sets of biological-aging
measures. We analyzed blood-chemistry measures of bi-
ological aging in 9,005 HRS participants included in the
VBS (41% male; 74% White and 18% Black; age range,
50–90 years; mean age = 69 (SD, 9) years). We analyzed
DNAm measures of aging in 3,928 VBS participants who
were included in the VBS DNAm subsample (42% male;
75% White and 17% Black; age range, 50–90 years; mean
age = 70 (SD, 9) years). We first tested associations of
biological-aging measures with healthspan-related charac-
teristics. Next, we tested Black-White disparities in biolog-
ical aging. Finally, we conducted mediation analysis for
measures demonstrating 1) associations of more advanced/
faster biological aging with healthspan-related characteris-
tics and 2) more advanced/faster biological aging in Black
participants as compared with White participants (41).

Comparison of blood-chemistry and DNAm measures
of aging

Participants’ biological-age values were correlated with
their chronological ages (blood-chemistry PhenoAge: r =
0.76; Klemera-Doubal method (KDM) biological age: r =
0.30; DNAm clocks: r = 0.72–0.83). Participants’ homeostat-
ic dysregulation values indicated greater dysregulation relative
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Table 2. Measurement of Healthspan-Related Characteristics and Mortality, Health and Retirement Study, 1992–2018

Outcome Measure

No. of Participants

Description
VBS

Sample
VBS DNAm

Sample

Functional impairment 3,621 1,596 Functional impairments were measured from tests of lung function (peak
expiratory f low), grip strength, gait speed, and balance. The tests are
described in detail in Web Table 1. We classified test scores at the 30th
percentile of the HRS distribution or lower as indicating functional
impairment. Percentiles for grip strength were calculated separately for
men and women. We calculated numbers of functional impairments for
participants providing data on at least 3 of the 4 tests. Counts were
winsorized at a value of 3 (HRS VBS sample: mean = 1.13 (SD, 1.08);
VBS DNAm sample: mean = 1.17 (SD, 1.09)).

No. of ADL limitations 8,198 3,598 Participants were asked whether they had difficulty performing 6 ADLs:
dressing, eating (such as cutting up one’s food), bathing and
showering, getting into and out of bed, using the toilet, and walking
across a room. We summed the number of activities for which
participants reported having difficulty and coded the resulting ADL
score as 0, 1, 2, or ≥3 ADL limitations (VBS sample: mean = 0.30 (SD,
0.75); VBS DNAm sample: mean = 0.31 (SD, 0.78)). For longitudinal
analysis, we counted any new ADL difficulties reported at the HRS
2018 assessment (VBS sample: mean = 0.19 (SD, 0.65); VBS DNAm
sample: mean = 0.20 (SD, 0.67)).

Chronic conditions 8,196 3,597 Chronic disease diagnoses were ascertained from participants’ reports
about whether a physician had ever diagnosed them with
hypertension, type 2 diabetes, cancer (excluding minor skin cancer),
chronic lung disease, heart problems (heart attack, coronary heart
disease, angina, congestive heart failure), and/or stroke. Counts of
chronic disease diagnoses were winsorized at a value of 3 (VBS
sample: mean = 1.45 (SD, 1.04); VBS DNAm sample: mean = 1.48 (SD,
1.04)). For longitudinal analysis, we counted any new diagnoses
reported at the 2018 HRS assessment (VBS sample: mean = 0.14 (SD,
0.39); VBS DNAm sample: mean = 0.15 (SD, 0.39)).

Self-rated health 8,191 3,595 Participants were asked to rate their own health on a scale of 1 to 5
(1 = excellent, 5 = poor; VBS sample: mean = 2.88 (SD, 1.03); DNAm
sample: mean = 2.89 (SD, 1.03)). For longitudinal analysis, we
calculated the difference in self-rated health between waves by
subtracting the HRS 2016-wave rating from the 2018-wave rating
(possible range, −4 to 4; VBS sample: mean = 0.04 (SD, 0.82); VBS
DNAm sample: mean = 0.04 (SD, 0.81)).

Mortality 8,198 3,598 Mortality follow-up was conducted through 2019. During follow-up, 237
deaths were recorded in the full VBS sample, of which 123 were
recorded for participants in the VBS DNAm sample.

Abbreviations: ADLs, activities of daily living; DNAm, DNA methylation; HRS, Health and Retirement Study; SD, standard deviation; VBS,
Venous Blood Study.

to young, healthy adults (log Mahalanobis distance: mean =
3.94 SD units (SD, 0.92)). Participants’ DunedinPoAm
values indicated that they were aging 7% faster than
the rate expected for adults in early midlife (i.e., 1 year
of biological change per chronological year; mean =
1.07 (SD, 0.09)). For further analysis, PhenoAge, KDM
biological age, and the DNAm clocks were converted to age
residuals.

Biological-aging measures were varied in their corre-
lations with one another. Correlations among different
blood-chemistry measures of aging were strong (r > 0.7).

Correlations among different DNAm measures of aging
were weak to moderate (r < 0.7). Correlations between
DNAm measures and blood-chemistry measures were
varied. Horvath clock age residuals were not correlated with
blood-chemistry measures of aging (r < 0.1); Hannum clock
age residuals were weakly correlated with blood-chemistry
measures (r = 0.1–0.2); and correlations were somewhat
stronger for PhenoAge clock residuals (r = 0.2–0.3),
GrimAge clock residuals (r = 0.3–0.4), and DunedinPoAm
(r = 0.2–0.3). Correlations and scatterplots are shown in
Web Figures 2 and 3.
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Associations of biological-aging measures with
healthspan-related characteristics and mortality

Participants with more advanced/faster biological aging
had poorer outcomes for all healthspan-related character-
istics and increased risk of mortality. In blood-chemistry
analysis, participants with more advanced PhenoAge and
KDM biological age and greater homeostatic dysregulation
showed increased risk of prevalent functional impairments,
prevalent and incident ADL limitations, and prevalent and
incident chronic conditions; poorer self-rated health and
more negative change in self-rated health; and increased
hazard of mortality. PhenoAge advancement effect sizes per
SD were as follows: for functional impairments and preva-
lent and incident ADL limitations and chronic conditions,
IRR = 1.19–1.54; for self-rated health, r = 0.34 for level and
r = 0.09 for change; and for mortality, HR = 1.85 (95% CI:
1.66, 2.06). Effect sizes were similar for KDM biological
age and homeostatic dysregulation measures.

In DNAm analysis, effect sizes were largest for the
GrimAge clock (for functional impairments and prevalent
and incident ADL limitations and chronic conditions,
IRR = 1.20–1.39 per SD; for self-rated health, r = 0.32
for 2016 level and r = 0.08 for change; for mortality,
HR = 2.32 per SD (95% CI: 1.82, 2.96)). Effect sizes
were somewhat smaller for the PhenoAge and Hannum
clocks. For the Horvath clock, effect sizes were smaller
and often not statistically different from 0 at the α = 0.05
level. For DunedinPoAm pace of aging, which measures
how rapidly a person is aging at the time of measurement,
effect sizes were smaller than those for the GrimAge clock
and somewhat larger than those for the other clocks (for
functional impairments and prevalent and incident ADL
limitations and chronic conditions, IRR = 1.14–1.27 per
SD; for self-rated health, r = 0.22 for level and r = 0.06
for change; for mortality, HR = 1.71 per SD (95% CI: 1.36,
2.14)). Effect sizes are shown in Figure 2 and Web Tables 3
and 4.

Racial disparities in healthspan-related characteristics
and mortality

Black older adults showed deficits in healthspan-related
characteristics and increased risk of mortality as compared
with White older adults.

In the HRS VBS sample, Black participants more often
demonstrated functional impairments than White partici-
pants (IRR = 1.25, 95% CI: 1.15, 1.35) and reported more
ADL limitations (IRR = 1.91, 95% CI: 1.75, 2.10) and
chronic conditions (IRR = 1.26, 95% CI: 1.20, 1.32) and
poorer self-rated health (Cohen’s d = 0.33, 95% CI: 0.28,
0.39). Over follow-up, Black participants were more likely
to report incident ADL limitations (IRR = 1.49, 95% CI:
1.31, 1.69) and declines in self-rated health (d = 0.11, 95%
CI: 0.06, 0.15). Black-White differences in mortality risk
were in the expected direction but not statistically different
from 0 at the α = 0.05 threshold (HR = 1.36, 95% CI:
0.97, 1.91). Black-White differences were in the opposite
direction for incident chronic conditions (IRR = 0.93, 95%
CI: 0.79, 1.11). Effect sizes were similar in the VBS DNAm

subsample. Results of both comparisons are reported in Web
Table 5.

Black-White disparities in biological aging

Black older adults showed more advanced biological
aging than White older adults.

In blood-chemistry analysis, Black participants showed
more advanced biological aging than White participants
across all 3 measures (Cohen’s d range = 0.35–0.50). In
DNAm analysis, the GrimAge clock and the DunedinPoAm
pace-of-aging measure indicated more advanced/faster bio-
logical aging in Black participants than in White partic-
ipants (GrimAge clock: d = 0.36 (95% CI: 0.25, 0.48);
DunedinPoAm: d = 0.38 (95% CI: 0.24, 0.51)). In contrast,
the first-generation Horvath and Hannum clocks and the
PhenoAge clock did not (Horvath clock: d = −0.02 (95% CI:
−0.10, 0.07); Hannum clock: d = −0.37 (95% CI: −0.49, –
0.26); PhenoAge clock: d = 0.08 (95% CI: −0.04, 0.20)).
Distributions of biological-aging measures for Black and
White participants are shown in Figure 3.

Mediation analysis

Black-White differences in healthspan-related character-
istics and mortality risk were partly mediated by biological-
aging measures.

In blood-chemistry analysis, more advanced PhenoAge
and KDM biological age and elevated homeostatic dys-
regulation in Black as compared with White partici-
pants mediated 18%–45% of Black-White differences in
healthspan-related characteristics and 60%–95% of the
Black-White difference in mortality risk. In DNAm analysis,
more advanced GrimAge clock and faster DunedinPoAm
pace of aging in Black as compared with White partic-
ipants mediated 9%–92% of Black-White differences in
healthspan-related characteristics and 52%–80% of the
Black-White difference in mortality risk. The Horvath, Han-
num, and PhenoAge clocks did not indicate more advanced
aging in Black as compared with White participants and
were not included in mediation analysis. Incident chronic
conditions were more common in White as compared with
Black older adults and were therefore not included in media-
tion analysis. For all other healthspan-related characteristics,
mediation was stronger in analysis of longitudinal change
as compared with cross-sectional differences. Mediation
model results for the blood-chemistry PhenoAge and DNAm
GrimAge clocks and DunedinPoAm pace of aging are
reported in Table 3. Effect-size estimates for Black-White
differences in healthspan-related characteristics before and
after adjustment for biological-aging measures are reported
in Web Table 5. Complete mediation analysis results are
reported in Web Tables 6 and 7.

Sensitivity analysis

Standard mediation analysis assumes that the association
between the mediator and the outcome is consistent across
levels of exposure. We conducted sensitivity analysis to eval-
uate this assumption and to test the robustness of mediation
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Figure 2. Effect sizes for associations of 8 biological-aging measures with healthspan-related characteristics, Health and Retirement Study,
1992–2018. The graph shows effect sizes for associations of biological-aging measures with healthspan characteristics measured cross-
sectionally at the 2016 wave of the Health and Retirement Study (left column: functional impairments (A), limitations in activities of daily living
(ADLs) (C), chronic disease diagnoses (E), and self-rated health (G)) and with healthspan-related characteristics and mortality measured
longitudinally through the end of the 2018 wave (right column: mortality (B), incident ADL limitations (D), incident chronic disease diagnoses
(F), and change in self-rated health (H)). For functional impairment, prevalent and incident chronic conditions, and prevalent and incident ADL
limitations, effect sizes are incidence rate ratios (IRRs) for 1–standard-deviation (SD) increases in biological-aging measures estimated from
Poisson regression. For cross-sectional self-rated health and change in self-rated health, effect sizes are Pearson r’s for 1-SD increases in
biological-aging measures estimated from linear regression. For mortality, effect sizes are hazard ratios (HRs) for 1-SD increases in biological-
aging measures estimated from Poisson regression. Cross-sectional measures are shown in the left-hand column; longitudinal measures are
shown in the right-hand column. Error bars show 95% confidence intervals. For cross-sectional measures, sample sizes (n’s) for the Venous
Blood Study (VBS) and VBS DNA methylation (DNAm) samples were 3,721 and 1,676, respectively, for functional impairment; 8,484 and 3,785,
respectively, for ADL limitations; 8,482 and 3,784, respectively, for chronic disease diagnoses; and 8,476 and 3,782, respectively, for self-rated
health. For longitudinal measures, sample sizes for the VBS and VBS DNAm samples were 8,484 and 3,785, respectively, for mortality; 7,491
and 3,327, respectively, for ADL limitations; 7,497 and 3,329, respectively, for chronic conditions; and 7,488 and 3,326, respectively, for self-rated
health.
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Figure 3. Distributions of 8 biological-aging measures in Black and White participants, Health and Retirement Study, 1992–2018. The
graph shows the probability density functions of biological-age advancement for PhenoAge (A), Klemera-Doubal method biological age
(B), homeostatic dysregulation (C), Horvath clock advancement (D), Hannum clock advancement (E), PhenoAge clock advancement
(F), GrimAge clock advancement (G), and DunedinPoAm pace of aging (H).The distribution of biological-age advancement measures is shown in
blue for White participants and in red for Black participants. For blood-chemistry PhenoAge, Klemera-Doubal method (KDM) biological age, and
the DNA-methylation clocks, values are biological-age advancements (i.e., the difference between measured biological age and chronological
age). For homeostatic dysregulation, values capture blood-chemistry deviation from the norm in a healthy sample. For DunedinPoAm, values
are pace of aging (i.e., years of physiological decline experienced per 1 year of calendar time over the recent past). To allow comparison across
measures, biological-aging values were standardized to mean = 0 and standard deviation = 1 in the full Venous Blood Study sample. Densities
were adjusted for sampling weights. Sampling-weight–adjusted Cohen’s d values are reported in Web Table 9.

results when this assumption was relaxed (Web Appendix
3). Overall, association magnitudes tended to be smaller
for analysis of Black participants than for White partici-
pants, although tests of exposure-mediator interactions were
mostly not statistically significant at the α = 0.05 level (Web
Tables 3, 4, and 8). When we relaxed the mediation-analysis
assumption that association magnitudes were the same for
Black and White subsamples, mediation proportions were
reduced. The magnitude of this reduction varied from near-
0 to as much as 50% (see “exposure-mediator interaction”
columns of Web Tables 6 and 7).

DISCUSSION

We investigated biological aging as a mediator of Black-
White disparities in healthspan-related characteristics in the
HRS. In the HRS VBS and VBS DNAm samples, Black
participants experienced more functional impairments,
more difficulties with ADLs, and higher incidence of ADL
limitations over the course of follow-up; more chronic
disease diagnoses, poorer self-rated health, and greater
declines in self-rated health over follow-up; and increased
risk of mortality as compared with White participants. Black
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Table 3. Results of a Mediation Analysis of Black-White Disparities in Healthspan-Related Characteristics, Health and Retirement Study,
1992–2018a

Measure of Biological Aging

Outcome PhenoAge GrimAge Clock DunedinPoAm

Estimate 95% CI Estimate 95% CI Estimate 95% CI

Cross-Sectional Measuresb

Functional impairments

Indirect effect 0.04 0.03, 0.05 0.08 0.06, 0.10 0.06 0.04, 0.08

Total effect 0.22 0.15, 0.29 0.18 0.09, 0.31 0.17 0.06, 0.29

Proportion mediated 0.19 0.43 0.34

No. of ADL limitations

Indirect effect 0.12 0.09, 0.14 0.10 0.07, 0.14 0.08 0.05, 0.11

Total effect 0.63 0.52, 0.74 0.59 0.37, 0.80 0.59 0.41, 0.75

Proportion mediated 0.18 0.16 0.13

No. of chronic conditions

Indirect effect 0.07 0.05, 0.08 0.06 0.04, 0.07 0.04 0.03, 0.06

Total effect 0.23 0.19, 0.25 0.22 0.16, 0.27 0.22 0.16, 0.28

Proportion mediated 0.29 0.26 0.19

Self-rated health

Indirect effect 0.10 0.08, 0.12 0.10 0.08, 0.13 0.07 0.05, 0.09

Total effect 0.33 0.27, 0.40 0.28 0.20, 0.37 0.28 0.20, 0.37

Proportion mediated 0.29 0.37 0.24

Longitudinal Measuresc

Mortality

Indirect effect 0.16 0.12, 0.21 0.26 0.18, 0.35 0.16 0.09, 0.25

Total effect 0.27 −0.22, 0.57 0.32 −0.25, 0.81 0.31 −0.27, 0.85

Proportion mediated 0.60 0.80 0.52

Change in no. of ADL limitations

Indirect effect 0.07 0.04, 0.09 0.10 0.05, 0.15 0.08 0.04, 0.14

Total effect 0.39 0.18, 0.56 0.10 −0.23, 0.45 0.11 −0.25, 0.35

Proportion mediated 0.17 0.92 0.75

Change in no. of chronic conditions

Total effect −0.07 −0.27, 0.07 −0.19 −0.44, 0.12 −0.18 −0.46, 0.11

Table continues

participants also showed more advanced/faster biological
aging based on the 3 blood-chemistry measures we analyzed,
the DNAm GrimAge clock, and the DunedinPoAm pace-
of-aging measure. In mediation analysis, these measures
of more advanced/faster biological aging accounted for
up to 95% of Black-White differences in healthspan-
related characteristics and mortality. These findings are
consistent with the weathering hypothesis that racially
patterned determinants of health accelerate biological
aging, contributing to Black-White disparities in healthspan
(19, 20), and provide limited proof of concept for use
of quantifications of biological aging in health disparities
research.

Measures of biological aging have been suggested as
surrogate endpoints for trials testing therapies to prolong
healthy life span based on evidence that they predict aging-
related changes in health, functioning, and mortality risk
(42–44). No measures of biological aging have yet been
tested in randomized clinical trials that include measure-
ments of primary endpoints related to healthy life span. As
a result, all fall short of the Food and Drug Administration’s
criterion that validated surrogate endpoints be reliable pre-
dictors of clinical benefit (45).

Our findings offer mixed support for the measures we
studied as candidate surrogate endpoints (i.e., proposed sur-
rogates for which prediction of clinical benefit is not yet
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Table 3. Continued

Measure of Biological Aging

Outcome PhenoAge GrimAge Clock DunedinPoAm

Estimate 95% CI Estimate 95% CI Estimate 95% CI

Change in self-rated health

Indirect effect 0.02 0.01, 0.03 0.02 0.01, 0.03 0.02 0.01, 0.03

Total effect 0.10 0.06, 0.15 0.10 0.03, 0.16 0.10 0.03, 0.17

Proportion mediated 0.18 0.22 0.22

Abbreviations: ADLs activities of daily living; CI, confidence interval; DNAm, DNA methylation; HRS, Health and Retirement Study; VBS,
Venous Blood Study.

a The table shows parameter estimates and proportion-mediation calculations from mediation analysis. Results are presented for analysis of
different healthspan-related characteristics and mortality in the table rows. For each outcome, there are 3 sections of results corresponding to
the PhenoAge blood-chemistry measure (left), the GrimAge DNA methylation clock (center), and the DunedinPoAm pace of aging (right).
For each outcome-aging measure pair, the analysis estimated results from the mediation model under the assumption that associations
between biological-aging measures and healthspan-related characteristics/mortality were the same in the Black and White subsamples (i.e.,
no exposure-mediator interaction). Indirect effect estimates represent the portion of the Black-White disparity mediated through the biological-
aging measure. Total effect estimates represent the Black-White healthspan disparity. The proportion mediated was computed as a ratio of the
indirect effect to the total effect. Total effect estimates varied between the first section of results (for blood-chemistry PhenoAge) and the second
2 sections (GrimAge DNA methylation clock and DunedinPoAm) because of the difference in sample size. Differences in total effect estimates
between the final 2 sections are due to rounding within the CMAverse R package (39).

b Mediation analysis of cross-sectional data collected in the 2016 wave of the HRS. Sample sizes (n) for the HRS VBS and VBS DNAm
samples were 3,621 and 1,596, respectively, for functional impairment; 8,197 and 3,598, respectively, for ADL limitations; 8,195 and 3,597,
respectively, for chronic conditions; and 8,190 and 3,595, respectively, for self-rated health.

c Mediation analysis of longitudinal data in which measures of biological aging were collected in the 2016 wave of the HRS and mortality,
incident ADL limitations and chronic conditions, and changes in self-rated health were measured from baseline (2016) through follow-up in the
2018 data collection wave. Sample sizes (n) for the HRS VBS and VBS DNAm samples were 8,197 and 3,598, respectively, for mortality; 8197
and 3598, respectively, for ADL limitations; 7,229 and 3,164, respectively, for chronic conditions; and 7,228 and 3,163, respectively, for self-rated
health.

established) (45). Specifically, a criterion for a candidate
surrogate endpoint is the robustness of associations between
the candidate surrogate and primary outcomes across pop-
ulation subgroups. This robustness is not yet established
for measures of biological aging, especially in the case of
DNAm-based measures, for which algorithms were devel-
oped using data from mostly White European samples (e.g.,
see Levine (46)). Our analysis found mixed support for
a hypothesis of consistent associations across Black and
White older adults. Effect sizes tended to be smaller for anal-
yses of Black as compared with White participants. How-
ever, the same Black-White differences in effect sizes were
also observed for analysis of chronological age, indicating
that differential precision of aging measures between Black
and White participants was likely not the cause. Instead,
our data may reflect that Black Americans are dispropor-
tionately subject to non–aging-related causes of disease and
disability, such as injury or accidents, which would not be
captured in measures of biological aging. Therefore, while
our findings do not yet establish validity of biological-aging
measures as candidate surrogate endpoints, they do support
cautious interpretation of group differences in these mea-
sures of biological aging as evidence of disparities in healthy
aging.

Our findings suggest guidance for future studies. The
conceptual model guiding our study proposes that Black-

White disparities in healthspan arise from faster/more
advanced biological aging among Black Americans than
among White Americans. In our analysis, biological-aging
measurements from the Horvath, Hannum, and PhenoAge
clocks did not fit this model; they showed no Black-White
differences or showed differences in the opposite direction.
These clocks may not be well-suited to characterizing Black-
White disparities in healthy aging. The HRS result that
PhenoAge clock values did not differ between Black and
White participants contrasts with a report from the Women’s
Health Initiative showing more advanced biological aging
in Black women than in White women using this measure
(23). Follow-up in additional cohorts is needed. Results also
contribute evidence that first-generation DNAm clocks—
developed to predict chronological age—are both less pre-
dictive of healthspan-related characteristics and less sensi-
tive to exposures that shorten healthy life span, as compared
with blood-chemistry–derived measures, newer DNAm
clocks developed to predict mortality, and DunedinPoAm
DNAm pace of aging (26, 28, 37, 47, 48). Future studies
using DNAm to investigate biological aging as a mediator
between risk exposures and healthy-aging phenotypes,
especially in the context of health disparities, may be best
served by a focus on second-generation DNAm clocks,
especially the GrimAge clock, and DunedinPoAm pace-
of-aging measures.
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We acknowledge that this study had limitations. There is
no gold standard measure of the construct of biological aging
(49). Our conclusions regarding biological aging as a candi-
date mediator of health disparities could be specific to the
measures we analyzed. However, consistent evidence across
different biological substrates and measurement methods
builds confidence that results do reflect aging processes.
DNAm measures of aging may reflect variation in the white
blood cell composition of samples from which DNA is
extracted (50). The sensitivity of our results to this variation
could not be tested because the HRS has not yet released
whole-genome DNAm data or estimates of white blood cell
proportions. Mortality selection may bias results toward the
null. Many individuals born in the same years as the HRS
participants whose data we analyzed will not have survived
to the time of HRS data collection, especially Black Ameri-
cans, who face shorter life expectancies than White Ameri-
cans (51). If survivors aged more slowly than those who died
at younger ages, our analysis could have underestimated
Black-White differences in biological aging and healthspan.
Therefore, our estimates of disparities are likely to have
been conservative. Indirect-effect estimates in our mediation
models are conditional on the assumption that there are no
common causes of biological aging and healthspan-related
characteristics omitted from the model. To the extent that
these causes exist, our estimates of the proportion mediated
may have been biased upwards. Finally, there is the possi-
bility of detection and reporting bias. For example, racial
disparities in chronic disease might be underestimated if
White participants were more likely to be diagnosed due to
greater access to health care (52, 53).

Within the bounds of these limitations, our findings have
implications for future research and public health surveil-
lance. More advanced/faster biological aging in Black HRS
participants than in White participants and the potential role
of these differences in mediating Black-White health dispar-
ities highlight the need for studies of when and how Black-
White differences in biological aging arise. Life-course
longitudinal studies are needed to establish when aging
trajectories begin to diverge for Black and White Americans.
Studies are also needed to identify life-course phenomena
through which racism and socioeconomic resource differen-
tials drive faster aging in Black Americans compared with
White Americans. Deficits in maternal and perinatal health,
social exclusion and victimization in young adulthood,
occupational exposures during young adulthood and midlife,
and lack of access to health care later in life all represent
potential drivers of Black-White disparities in aging.

Our results suggest promise for the application of
biological-aging measures for evaluating and monitoring
Black-White disparities in healthy aging, particularly the
GrimAge clock and DunedinPoAm pace of aging, with the
caveat that these measures do not provide a complete sum-
mary of processes driving Black-White health disparities.
These same measures can, in parallel, provide new outcome
measures for evaluations of social policy experiments. A
primary application of biological-aging measures within
the emerging field of geroscience is to provide surrogate
endpoints for extension of healthy life span (43, 54). Results
from this study suggest they may also have utility in trials

of interventions that aim to eliminate health disparities by
repairing inequalities in social determinants of health.
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