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Hepatic Regeneration in Cirrhosis
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End-stage liver disease is characterized bymassive hepatocyte death resulting in clinical decompensation and or-
gan failures. Clinical consequences in cirrhosis are the results of the loss of functional hepatocytes and excessive
scarring. The only curative therapy in advanced cirrhosis is orthotropic liver transplantation, but the clinical de-
mand outweighs the availability of acceptable donor organs. Moreover, this also necessitates lifelong immuno-
suppression and carries associated risks. The liver has a huge capability for regeneration. Self-replication of
quiescent differentiated hepatocytes and cholangiocytes occurs in patients with acute liver injury. Due to limited
hepatocyte self-renewal capacity in advanced cirrhosis, great interest has therefore been shown in characterizing
the possible role of hepatic progenitor cells and bone marrow-derived stem cells to therapeutically aid this pro-
cess. Transplantation of cells from various sources that can be properly differentiated into functional liver cells
or use of growth factors for ex-vivo expansion of progenitor cells is needed at utmost priority. Multiple re-
searches over the last two decades have aided researchers in refining proliferation, differentiation, and storage
techniques and understand the functionality of these cells for use in clinical practice. However, these cell-based
therapies are still experimental and have to be used in trial settings. ( J CLIN EXP HEPATOL 2022;12:603–616)
H
ep

a
tic

R
eg

en
er

a
tio

n
in

C
ir
rh

o
si
s

Liver has remarkable regeneration capacity. Systemic
inflammation, hepatocyte death, and fibrosis with
decreased matrix remodeling are the hallmark of

liver cirrhosis. Progression of these changes is associated
with impaired liver regeneration and risk of dysfunction
and failure of organ systems. Effective and practical alter-
nate approaches to liver transplantation are needed. The
challenges to regeneration in patients with liver cirrhosis
are different from those with acute hepatic injury. In
cirrhosis, there is the massive deposition of extracellular
matrix (ECM) and tissue scarring, which results in cellular
or functional loss of regenerative niche, architectural dis-
tortions, vascular reorganization, depletion of paren-
chymal cells, and persistent inflammatory response, this
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would result in failure of engraftment and regeneration
of transplanted cells. The discovery of molecular pathways
in hepatic regeneration during the last two decades has
opened up new vistas in the treatment of liver cirrhosis
and given rise to new optimism. Cellular debris, to begin
with, should be cleared and inflammation subsided. Hepa-
tocyte progenitor cells (HPC) and bone marrow stem cells
(BMSC) play an important role (Figure 1). In this paper, we
review the mechanisms of liver regeneration and current
therapeutic approaches for enhancing liver regenerative ca-
pacities in patients with liver cirrhosis.
CELLULAR COMPOSITION OF LIVER

The understanding of the mechanisms of liver injury and
the cell types involved in hepatic regeneration requires a
thorough knowledge of normal liver cellular composition
and architecture. The liver lobule is the basic unit of the
liver. It contains cords of hepatocytes and supporting cells,
including liver sinusoidal endothelial cells (LSEC), Kupffer
cells (KC), cholangiocytes, hepatic stellate cells (HSC), and
many other immune cells.1 The unique arrangement of he-
patocytes and supporting cells in zones is essential for the
wide range of functions performed by the liver. In addition,
the liver also contains hepatic stems that are potentially
capable of self-renewal.2 Three main types of stem cells in
liver are (i) Sox9+ cells in the portal area that express
both hepatic and bile duct cells lineage markers and are
referred to as hybrid cells.3 These cells are primarily
involved in hepatocyte regeneration after chronic liver
injury. (ii) Portal area also contains hepatic progenitor
cells (HPCs contain oval-shaped nuclei and sparse cyto-
plasm) that are capable of differentiating in hepatocytes
vier B.V. All rights reserved.
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Figure 1 Three arms of hepatic regeneration in relation to chronic liver disease.
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or cholangiocytes whenever the capability of hepatocytes
to sufficiently self-renew is compromised in response to
injury.4 (iii) Axin2+ cells around the central vein
endothelium.5 Various study have shown the distinct cell
population in liver with hepatic stem cell-like properties,
but whether they are facultative or liver has liver stem cells
still remains controversial.6
NORMAL LIVER TISSUE TURNOVER

The average life span of adult hepatocytes varies from 6 to
9 months. For explaining hepatocyte turnover, two
competing hypotheses have been presented. As per the
“streaming liver” hypothesis, young hepatocytes or cholan-
giocytes originate from hepatic stem/progenitor cells pre-
sent in the portal zone.7 Young hepatocytes then
subsequently migrate and mature towards the central
vein.7 Based on some evidence against the streaming
liver hypothesis, the “self-replicating model” was
proposed.8 This model suggests that the majority of liver
tissue maintenance is accomplished through hepatocytes
and cholangiocyte cell division. Currently, there is debate
about the role of specialized HPC in proliferation and dif-
ferentiation into the hepatocytes in hepatic lobules, or
every hepatocyte has the capability of repopulating the
liver according to the local microenvironment.9 More
recently, the pericentral diploid hepatocytes produced by
endothelial cells are recognized, which have extensive pro-
liferative capacity yielding mature hepatocytes in response
to Wnt signals.5 However, a follow-up study has found
that Axin2+ hepatocytes contribute little to a normal
hepatocyte turnover and are limited to pericentral
604 © 2021 Indian National Associa
hepatocytes.10 Wnt-responsive hepatocytes expressing
Lgr4 or Lgr5 have shown limited cell division resulting in
limited hepatocyte turnover during homeostasis.11 Lin
et al have recognized the specific hepatocytes with high
Telomerase reverse transcriptase (Terthigh). These cells are
seen scattered throughout the liver lobule without zonal
dominance and are clonally capable of repopulating the
liver for around a year.12 This study poses a different
perspective that multiple populations of regenerating he-
patocytes could maintain liver homeostasis without any
distinct zonal dominance. However, there is still debate
whether there is a differential proliferation of hepatocytes
subsets during homeostasis. Some evidence suggests that
while Major Facilitator Superfamily Domain containing
2A [Mfsd2a]� expressing periportal hepatocytes are mark-
edly decrease in number during homeostasis,13 whereas
Lgr5+ expressing pericentral hepatocytes persist for long
term.11
REGENERATION IN NORMAL LIVER

Liver regeneration is primarily accomplished through the
self-replication of hepatocytes or cholangiocytes. The liver
can quickly regenerate back to its former size after partial
hepatic resection. The mechanism of hepatocyte regenera-
tion varies depending on the degree of liver resection. Hepa-
tocytes are hypertrophied when 30 percent of the liver is
resected, and fast division of hepatocytes occurs to replace
the hepatocyte mass when 50–70 percent of the liver is
resected.14 It is unclear what regulates the hepatocytes for
hypertrophy or rapid proliferation depending on different
degrees of liver injury. Other cell sources such as
tion for Study of the Liver. Published by Elsevier B.V. All rights reserved.
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Foxl1+,15MIC1-1C3+,16 or CK19+17 cells have been shown to
yield hepatocytes during a liver injury, but their exact role is
still debatable. Some studies have reported transdifferentia-
tion of CK19+ biliary epithelial cells into new hepatocytes
and vice-versa.15,17 Few studies have shown liver regenera-
tion to be primarily carried out by hepatocytes as opposed
to other cell types.18–20 Hepatocyte damage in one zone
causes a compensatory proliferative response in
noninjured hepatocytes in other zones that attribute to
the remarkable regenerating potential of hepatocytes in
response to injury. In support of this, Pu et al had shown
that when the pericentral hepatocytes are injured by CCl4,
Mfsd2a+ periportal hepatocytes develop and extend in the
liver.13 Periportal hepatocytes expressing Sox9 and/orHepa-
tocyte Nuclear Factor 4 Alpha [Hnf4a] may multiply and
replace hepatocytes when pericentral hepatocytes are chron-
ically damaged.13 Conversely, damage to periportal hepato-
cytes stimulates compensatory proliferation of pericentral
and mid-lobular hepatocytes.20

Kupffer cells are the primary hepatic macrophages in
the liver that detect damage. Hepatocytes remain in a
quiescent state (G0 phase) under physiological conditions,
and they respond to TGF generated by LSEC by inhibiting
their proliferation. KC gets activated in response to liver
injury, which causes HSC and LSEC to become activated
as well. Activated KC also produces IL-6 and TNF, which
drive G0 hepatocytes to undergo a G0/G1 transition, mak-
ing them more susceptible to future mutagenic
signals.21,22 Angiopoietin 2-mediated TGF synthesis by
LSEC decreases in the early stages, releasing the brake on
primed hepatocytes. Further, activated HSC generates stro-
mal derived factor 1 (SDF1), hepatocyte growth factor
(HGF), Hedgehog (Hh), and Notch ligands.23 Hh and
Notch ligands aid in the proliferation of cholangiocytes.
LSEC having SDF1 receptors CXCR4 and CXCR7 acti-
vated produce the hepatocyte mitogens HGF and Wnt2
through ID1. Primed hepatocytes begin to rapidly multiply
in response to HGF and Wnt2. Moreover, they also pro-
duce growth factors such as PDGF, VEGF, FGF1, FGF2,
and SCF that aid in the regeneration of nonparenchymal
cells.23 Hepatocytes proliferation is followed by KC and
cholangiocytes proliferation. LSEC regains Ang2 expres-
sion later in the process.
IMPAIRED HEPATOCYTE REGENERATION IN
CHRONIC LIVER INJURY AND CIRRHOSIS

Unlike after partial hepatectomy and acute liver injury
where liver architecture is intact, in cirrhosis, there are
marked changes in liver architecture with fibrosis. There
is an increase in the fraction of senescent hepatocytes
(with cell arrest at G1/S transition) and telomere
shortening.24 In the rodent model, chronic ethanol expo-
sure with partial hepatectomy significantly impair hepato-
cyte replication.25 Similarly, patients with alcoholic
Journal of Clinical and Experimental Hepatology | March–April 2022 | Vol. 1
hepatitis showed a marked decrease in Ki67+ hepatocytes
and an increase in HPC expansion,26 which also correlate
with treatment nonresponse.27 AH patients also showed
a significant reduction in cytokines and growth factors
associated with liver regeneration26 and had upregulation
of cell cycle inhibition. Even in NAFLD, triglycerides in he-
patocytes are linked to defects in liver volumetry, suggest-
ing regeneration impairment.28 Underlying cause of poor
hepatocyte proliferation or replicative senescence of hepa-
tocyte in cirrhosis is not clearly defined. Exacerbation of
cytokine production,29 deficiency in the EGFR pathway,30

and oxidative stress30–32 also contribute to poor hepatocyte
proliferation in NAFLD-related cirrhosis.

In normal hepatocytes, mitochondrial oxidative phos-
phorylation is the primary source of energy. With a progres-
sive decline inmitochondrial function in cirrhosis, there is a
transformation in the energy source in cirrhotic hepatocytes
from oxidative phosphorylation to glycolysis.33 In advanced
cirrhosis, downregulation of HNF4a (regulates the expres-
sion of glucokinase) leads to failure in maintaining glycol-
ysis.33
HEPATIC REGENERATION IN CHRONIC LIVER
DISEASE

Gut-derived endotoxins (Pathogen-associated molecular
patterns, PAMPs) and DAMPs (Damage-associated molec-
ular patterns) from direct hepatocyte injury activates KC to
release IL 6 and TNF. But due to enhanced HSC mediated
fibrosis that inhibits hepatocyte self-replication, the regen-
erative effects of TNF and IL-6 are disrupted in
cirrhosis.34 Unlike patients with acute liver injury, hepato-
cyte self-replication (increased hepatocyte Ki67 expression)
is limited. In mild Chronic Injury, hybrid periportal hepa-
tocytes (HybHP) proliferate to regenerate the liver. By
contrast, in advanced cirrhosis, both hepatocyte and
HybHP are senescent, and there is a ductular proliferation
in an attempt to restore liver mass.

A typical ductular reaction appears in the periportal re-
gion and is made up of HPCs, inflammatory cells, endothe-
lial cells, and mesenchymal cells.35 HPCs are diverse,
with cells having biliary or hepatoblast or stem cell
markers.36 In vitro, these cells differentiate into hepatocytes
and biliary cells and form hepatocyte buds.37 However, not
all studies have confirmed the role of HPCs in regeneration
in human liver cirrhosis.38,39 Type and extent of liver injury
decide the fate of HPCs. The differentiation into intermedi-
ate hepatocytes suggests that HPCs are committed to hepa-
tocyte lineage. This is mediated by Wnt, Notch, and
fibroblast growth factor pathways.40,41 During cell death,
activated macrophages promotes hepatocyte differentiation
through the Wnt pathway and by inhibiting the Notch
pathway.40 Hedgehog ligands also recruit macrophages
that modulate HPC differentiation into hepatocytes.41 The
tumor necrosis factor ligand superfamily member 12
2 | No. 2 | 603–616 605
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(TNFSF12 or TWEAK) and TNFRSF12A pathway stimu-
lated by T cells and KC is also involved in the commitment
of HPCs to hepatocyte lineage in cirrhosis42,43 (Figure 2).
Myofibroblasts mediated Notch ligand expression in
response to chronic biliary injury induces theHPCs to differ-
entiate into cholangiocytes. Hepatic nonparenchymal cells
such as activated HSC might also actively participate in re-
populating the liver.44 Activation of HPCs is also
linked with an excessive fibrogenic response in liver
cirrhosis.37,45,46 Studies inNASHpatients have shown a pos-
itive correlation between fibrosis stage and ductular reac-
tion.47

Spontaneous recruitment of BMSC in response to liver
injury in cirrhosis is limited. Exogenous G-CSF supple-
mentation promotes the recruitment of BMSC and
MSCs in the diseased liver and potentiates the regenerative
response. A repeated injury also perturbs the endothelial
regenerative angiocrine support. BMSC stimulates LSECs
for tube formation and angiogenesis.49,50 G-CSF also mo-
bilizes functional neutrophils to the liver. All these pro-
cesses augment regeneration. On the other hand, by
expressing monocyte chemoattractant protein 1 and
platelet-derived growth factor, HPCs attract activated
HSCs and promote fibrosis.

In alcohol-associated hepatitis, HPCs are not capable of
producingmature hepatocytes, and expansion of HPC posi-
tively correlated with liver disease severity and short-term
Figure 2 Cellular and molecular mechanisms of

606 © 2021 Indian National Associa
mortality.51,52 These findings support the notion that
HPCs have a lesser repopulating capability than hepato-
cytes. We have earlier demonstrated that despite very high
HPC expansion in ACLF patients, they do not contribute
to the patient’s outcome, and only hepatocyte replication
is associated with spontaneous recovery.53 Recently, Hyun
et al54 have shown that Inflammatory cytokines generated
by heavy ethanol ingestion inhibits epithelial splicing regu-
latory protein 2 (ESRP2) and thereby limit the transition of
adult hepatocyte to progenitor-like cells. This suggests that
increased HPC response in cirrhosis is not due to activation
and conversion of hepatic stem cells to hepatocytes; rather,
it is dedifferentiation of the remaining hepatocytes
toward the progenitor cells in response to a change in the
inflammatory environment of the liver that further aggra-
vates the inflammation and fibrosis.
BONE MARROW STEM CELL NICHE IN
ADVANCED CIRRHOSIS

Intact BM is critical for hepatic regeneration in cirrhosis.
HSCs increase in the early stages of cirrhosis and decrease
with the severity of cirrhosis, regardless of cause.55 The
periarteriolar niche made up of Nestin MSCs, sympathetic
nerves and related Schwann cells keeps HSCs in a state of
quiescence. But in cirrhosis, Nestin MSCs are lost due to
the degeneration of the niche.55 Moreover, the growth
hepatic regeneration in chronic liver disease.

tion for Study of the Liver. Published by Elsevier B.V. All rights reserved.
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factors required for HSCs differentiation in the niche are
also reduced. Bone marrow nerve injury is known to impair
hematopoietic regeneration.56 Alcohol-associated cirrhosis
may have reduced bone marrow hematopoiesis secondary
to bone marrow suppression secondary to prolonged and
excess alcohol use.57 Persistent accumulation of proinam-
matory cytokines (TNF-a, IFN-Y, and IL-1b) and oxidative
stress lead to a decline in BM-HSC pool55 (Figure 3).
THERAPY FOR HEPATIC REGENERATION IN
CIRRHOSIS

In cirrhosis, massive deposition of extracellular matrix and
tissue scarring and consequent cellular or functional loss
of regenerative niche, architectural distortions, vascular
reorganization, persistent inflammatory response, and
depletion of parenchymal cells results in failure of engraft-
ment and regeneration of transplanted cells. Multiple
researches over the last two decades have enabled re-
searchers to understand the functionality of different sour-
ces for use in clinical practice.
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METHODS OF REGENERATIVE THERAPY
(TABLE 1)

Hepatocyte Replacement
This can be achieved by two predominant methods, one to
completely transplant liver in the setting of decompen-
sated cirrhosis and second cell therapy with an aim to
replace senescent hepatocytes with healthy hepatocytes or
its progenitor as a definitive treatment or a bridge to liver
transplantation.
Figure 3 Bone marrow niche in relation to hepatic re
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Orthotropic Liver Transplantation (OLT)
Liver transplant is a well-established treatment modality in
advanced cirrhosis, and with improved surgical technique
and organ preservationmethods over time, the rate of graft
failure andmortality has substantially decreased. Themain
issues are the limited availability of suitable organs and the
high procedure cost. With respect to OLT, cell therapy is
still in the experimental stage.

Hepatocyte Cell Transplantation
Hepatocytes have unique proliferative and regenerative po-
tential. Hepatocyte cell transplantation has been studied in
UGT1 enzyme deficiency (Crigler-Najjar syndrome) and
low-density lipoprotein receptor deficiency (familial hyper-
cholesterolemia). However, studies in cirrhosis are limited
to small case series with variable results.58–62

The use of hepatocyte transplantation in practice has
limitations (1) lack of suitable hepatocytes due to organ
shortages, poor cell survival, and difficulties in isolation,
characterization, and failure of long-term cryopreserva-
tion of cells.63 The cell numbers decrease after thawing,
and the freezing process can cause loss of metabolic func-
tion and downregulation of adhesion proteins (integrin-
b1 and E-cadherin).64 Optimizing cryopreservation and
thawing techniques and the use of apoptosis inhibitors65

and N-acetylcysteine66,67 can improve cell quality and
viability. (2) Difficulties in delivery or transfusion of the iso-
lated hepatocytes into the liver sinusoids. The cells can be in-
jected either through the portal vein, peripheral vein,
intrasplenic or intraperitoneal route. Multiple risks are
involved in cirrhosis in view of coagulopathy, portal hy-
pertension mediated shear forces causing transplanted
generation and severity of chronic liver disease.

2 | No. 2 | 603–616 607



Table 1 Summary of Clinical Trials on Cell Therapy in Patients With Liver Cirrhosis.

Authors and journal N Type of study Indication Type of Cell therapy Dose and route Outcome

Hepatocyte cell transplantation

Mito M et al,
Cell Transplantation.126

1993

10 Observational,
Hepatocyte
transplantation in
man.

Liver cirrhosis Hepatocytes Intraportal Upto 11 month survival in
one patient

Skvorak et al.127 Mol Ther.
2009

Mice study Open level
experimental

Maple Syrup Urine Disease Hepatocytes Direct into liver

Kobayashi et al. Cell
Transplant. 2000

Mice study Experimental open
level

Chronic Liver Failure Hepatocytes Spleen

Trials of unsorted Bone Marrow–Derived Mononuclear Cell Transplant in Liver Disease

Saito et al, Stem Cell
Dev,128 2011

5:Treatment
5:Controls

RCT Alcoholic Cirrhosis BM-MNC Single dose,
peripheral vein

Improved CTP scores and
INR, higher serum albumin,
and total protein

Lyra et al, Eur Jou of Gastr
Hepatol,77 2010

15: Treatment
15: Controls

RCT Decompensated cirrhosis
on waiting list for LT

BM-MNC Single dose, hepatic
artery

Improved serum albumin
and CP score up to 90days

Spahr et al,129 PLoS One
2013

28: Treatment
30:Controls

RCT Decompensated cirrhosis,
mean MELD score-19

BM-MNC + GC-CSF Single dose, hepatic
artery

No significant differences
between study groups

Trials of Sorted Hematopoietic Stem Cell Transplant in Liver Disease

Gordan et al,81 Stem Cell
2006

5 Phase 1 open
Uncontrolled trial

Decompensated cirrhosis
(Ethanol-4, HCV-1)

CD34+ Single dose, portal
vein or hepatic artery

Serum albumin and T Bil
improved

Spahr L et al,130

Hepatology. 2008
11: control 13:
treated

RCT Alcoholic cirrhosis CD 34+ 10 mg/kg/day
Subcutaneous G-CSF
for 5 days.

Effective CD34+ cells
mobilization; increased
Hepatocyte Growth Factors

Levicar et al,82 Cell Prolif
2008

5 Uncontrolled trial Cirrhosis CD34+ Single dose, hepatic
artery

Improved T Bil and CP up to
12 months, no short- and
long-term side effects

Trials of G-CSF–Mobilized Hematopoietic Stem Cell Transplant in Patients with Liver Disease

Han Y et al. Cyto-therapy,131

2008
20: control 20:
treated

Phase 2 open RCT Decompensated cirrhosis PBMCs from G- CSF
mobilized PB

Single dose, hepatic
artery Vs. peripheral
vein for 4 days for
HSC mobilization

GC-SF plus PBMNC group
had better liver test results
up to 6 month follow up, no
major adverse effects

Shasthry SM et al,86

Hepatology. 2019
14:Treatment
14:Placebo

RCT Steroid Non responsive
Severe Alcoholic Hepatitis

G-CSF Multiple doses
Subcutaneous

Decrease in MELD, and
Maddrey’s discriminant
function, Infections and
decreased 90-day mortality
in the G-CSF arm

Kedarisetty CK et al.88

Gastro 2015
29:Treatment
26:Placebo

Double blinded RCT Decompensated cirrhosis G-CSF+ Darbopoietin
a

Multiple doses,
Subcutaneous
4 weeks

Improved CTP, MELD and
survival at 12 month.
Decreased sepsis
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Table 1 (Continued )

Authors and journal N Type of study Indication Type of Cell therapy Dose and route Outcome

Newsome PN et al.90 Lancet
Gastroenterol Hepatol.
2018

27: standard care
26: G-CSF
28: G-CSF plus
stem-cell infusion

Multicentre, open-
label, randomized,
controlled phase 2
trial

Compensated liver cirrhosis
and MELD scores of 11–
15$5

G-CSF alone or G-CSF
plus stem-cell
infusion

G-CSF (lenograstim)
at 15 mg/kg
bodyweight daily for 5
consecutive days.

No significant changes in
MELD score
More ascites and
encephalopathy in G-CSF
group.

Philips CA.91 J Clin Exp
Hepatol. 2019

56: GCSF, per-
protocol analysis
24:
Matched
historical
controls

Retrospective study Decompensated cirrhosis G-CSF (5 mg/kg daily
5 days and every 3rd
day thereafter until
day 26)

Multiple doses
Peripheral vein

Compared to a matched HC
group, patients receiving
GCSF had higher mortality
(75% vs 46%, P = 0.04) at
one year.

De A.89 Clin Gastroenterol
Hepatol. 2020

50: standard care
50: G-CSF

Open-label trial Decompensated cirrhosis 5 days of G-CSF every
3 months

Multiple doses
Peripheral vein

GCSF- Significantly more
CD34+ cells on day 6 than
on day 0 (P < 0.001)
Significant reductions in
Child-Turcotte-Pugh and
model for end-stage liver
disease scores, increased
ascites control, fewer
infections and
hospitalizations, lower liver
stiffness measurements,
and increased quality of life

Trials of G-CSF–Mobilized Hematopoietic Stem Cell Transplant in Patients with ACLF

Garg et al.118 Gastro 2012 23: Treatment
24:Placebo

Double blinded RCT ACLF (APASL) G-CSF Multiple doses
Peripheral vein

Improved MELD score,
better patient survival
Less sepsis, HRS and HE

Duan XZ87 et al. WJG 2013 27:Treatment
28:Placebo

RCT HBV related ACLF G-CSF Multiple doses
Peripheral vein

Increased CD34 (+) cell
mobilization, improved the
liver function and survival
rate.

Singh V119 et al Am Jour
Gastroenterol 2014

23:Treatment
23:Placebo

Open RCT Severe Alcoholic hepatitis G-CSF Multiple doses
Peripheral vein

Increased CD34 (+) cell
mobilization, CTP, MELD,
mDF score, and survival
rate.

Engelmann C et al.92 J
Hepatol 2021

88: Treatment
88: SMT

Open-label, Plase 2
RCT

ACLF defined by EASL-CLIF
criteria

G-CSF (5 mg/kg daily
5 days and every 3rd
day thereafter until
day 26)

Multiple doses
Peripheral vein

No improvement in overall
and transplant free 90 and
360 day survival.
No prevention of infection.

(Continued on next page )
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Table 1 (Continued )

Authors and journal N Type of study Indication Type of Cell therapy Dose and route Outcome

Trials of Mesenchymal Stem Cell Transplant in Liver Disease

Peng et al,97 Hepatology
2011

53: Treatment
105: Controls

Phase 2, open, RCT HBV Related Cirrhosis-
Decompensated

BM-MSC Single dose infusion,
hepatic artery

No mortality benefit.
Decreased Bilirubin,
improved INR and MELD
score. No complications

Amin MA et al, Clinical
Transplantation.120 2013

20 Open level,
Uncontrolled trial, for
safety

Post HCV child C liver
cirrhosis

bone marrow derived
mesenchymal stem
cells

Intrasplenic injection Decreased Bilirubin, AST,
ALT, PT; improved Albumin,
and INR

Mohamadnejad et al.96 Liv
Int 2013

15:Treatment
12: Placebo

RCT Decompensated cirrhosis
MELD >15

BM-MSC Single dose,
peripheral vein

No differences between the
groups

Liang J et al, International
Journal of Rheumatic
Diseases. 2017

26 Open level,
uncontrolled

Cirrhosis related to
Autoimmune liver diseases

Allogeneic MSCs Peripheral vein improved MELD and liver
function, without any side
effect

El-Ansary et al.121 Stem cell
rev 2012

15:Treatment,
and 10:Controls

Phase 2, open,
Uncontrolled trial

HCV-related cirrhosis and
MELD score >12

BM-MSC Single dose,
Peripheral vein

Decreased Bilirubin,
improved INR, albumin, and
MELD score

Trials of Mesenchymal Stem Cell Transplant in Patients with ACLF

Shi M et al. Stem Cells
Transl Med,122 2012

24:Treatment
19: Placebo

open-labeled and
controlled

HBV related ACLF UC-MSC three times at 4-
week intervals,
Peripheral vein

Increase 90 day survival,
reduced the MELD scores;
increased serum albumin,
and platelet counts

Li YH et al. Stem Cell Rev
Rep,123 2016

11:PE + MSC
34:Only PE

Prospective study,
open-labeled

HBV related ACLF UC-MSC Single doses,
Peripheral vein

Improves the hepatic
function and survival

Lin BL et al124 Hepatology
2017

56:Treatment
54:Placebo

open-label, RCT HBV related ACLF Allogeneic
BM-MSC

weekly for 4 weeks,
Peripheral vein

Improved survival and liver
function tests, Decrease
incidence of Sepsis and
multiorgan failure

Macrophage therapy

Thomas JA et al,104

Hepatology. 2011
Experiential mice
study

Mice study Liver Cirrhosis Macrophages Single dose
treatment

Macrophage therapy for
murine liver fibrosis recruits
host effector cells improving
fibrosis, regeneration, and
function.

Bird TG et al, Proc Natl
Acad Sci U S A.125 2013

Experimental
mice study

Mice study Liver cirrhosis Macrophage Single dose
treatment,
intravascular

Bone marrow injection
stimulates hepatic ductular
reactions in the absence of
injury via macrophage-
mediated TWEAK signaling.
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cell destruction, and inadvertent arterial injections into
the hepatic or splenic artery leading to embolic pro-
cess.68 (3) Poor engraftment of transplanted cells in the liver.

Hepatocyte Progenitor Cells (HPC)
HPCs have a high proliferative ability to differentiate
into mature hepatocytes and cholangiocytes. Lgr5 in
mice recognizes cells that have an HPC trait. These Lgr5+
cells may be developed into high-clonogenic-capacity
organoids.69 EpCAM+/NCAM+ progenitor cells in the
fetal liver can expand and differentiate into
hepatocytes.70 Study of human fetal HPC transplant
into patients with cirrhosis has shown clinical
improvement.71 In cirrhosis, intrasplenic injection of fetal
hepatocytes has shown to improve MELD score72. In the
future, well-designed and adequately powered studies to
demonstrate safety and efficacy while overcoming tech-
nical issues are needed.

Regenerative Niche Correction
Stem cells can be totipotent, pluripotent, multipotent, or
unipotent. Stem cells are ideal for liver regeneration in
cirrhosis due to their ability to divide, proliferate and
differentiate into other cell types. Stem cells also provide
a favorable milieu for hepatocytes cell growth. Main meth-
odologies for stem cell-based therapies include (1) direct
injection of cells, (2) in vitro differentiation to hepato-
cyte-like cells, and then transplantation, or (3) Ex vivo
mobilization of stem cells into the regenerative niche.

Bone Marrow Stem Cell Therapy
Bone marrow (BM) is a common source of three different
pluripotent cell types; hematopoietic stem cells (HSCs),
mesenchymal stromal cells (MSCs), and endothelial pro-
genitor cells (EPCs). In clinical trials, autologous BMSC
transplantation had shown improved quality of life
without complications.73 BMSC role in liver regeneration
has been studied in a number of studies in recent years.
In comparison to hepatocytes, HSCs and MSCs can be
collected from the BM of living donors, lowering the
chance of graft rejection.74 In recent years, the role of
BMSC in liver regeneration has been explored in various
trials. BM also contains macrophages that produce matrix
metalloprotease (MMP) that are antifibrotic.

Unsorted BM-derivedmononuclear cell (BM-MNC) trans-
plant: Several trials and small studies have shown that
autologous BM-MNCs transplantation is both safe and
effective.75,76 A pilot study by Lyra et al showed that infu-
sion of autologous BM-MNC through hepatic artery
causes liver function improvement in patients with
cirrhosis.77 A recent meta-analysis of 15 studies has shown
the effectiveness of autologous BMSC therapy for liver
improvement and coagulation in patients with liver
cirrhosis. The therapeutic effect was generated at 2–4 weeks
Journal of Clinical and Experimental Hepatology | March–April 2022 | Vol. 1
after transplantation. The effect lasted for 24 weeks but no
more than 48 weeks. The greatest benefit to patients was
observed with a 4 � 108 autologous BMSC transplant via
the hepatic artery.78

Sorted hemopoietic stem cell transplant: CD34 is a
cellular marker of HSCs. CD34+ HSC promotes repopula-
tion of cells by fusion with hepatocytes forming hybrid
cells, which helps in liver regeneration. In mouse models,
purified BMSC infusion has shown improved regeneration
in cirrhosis with a reduction in liver fibrosis.79 Small case
series have shown improvement in liver functions with
HSC therapy, whereas larger randomized controlled trials
showed mixed benefits.80 A study by Gordon et al has
shown improvement in serum bilirubin and albumin after
CD 34+ cells injection via a portal vein or hepatic artery and
with no complications.81 Levicar et al in a similar study
showed that the effect lasts for about 12 months.82

G-CSF mobilized HSC therapy: G-CSF stimulates the BM
to release neutrophils and CD34+ HSC into the circulation.
CD133+ cells are a subset of CD34+ cells that can differen-
tiate more easily.83 G-CSF acts as a chemoattractant and a
mitogen for oval cells in vitro. G-CSF therapy results in a sig-
nificant increase in oval cell reaction and liver repair.84 How-
ever, G-CSF may sometimes activate molecular pathways
that can be associated with fibrosis progression.83

G-CSF is mainly studied for treatment for severe alco-
holic hepatitis (SAH) and ACLF. A recent meta-analysis
by Marot et al showed that as compared to controls, G-
CSF treatment is related with a 70% reduction in mortality
after 3 months in SAH patients but shows a beneficial role
only in Asian studies.85 Shasthry et al used GCSF therapy
in steroid nonresponsive SAH patients (12 doses of 300
mcg GCSF over 28 days) vs. placebo. There was no mortal-
ity benefit at day 28, whereas at day 90, there was a signif-
icant reduction in MELD, infection rates, and lower
mortality with GCSF therapy.86 A randomized study in
hepatitis B-related ACLF patients have shown that G-
CSF therapy improved liver function and survival.87 In a
randomized trial by Kedarisetty CK and colleagues, combi-
nation of G-CSF and darbopoietina in decompensated
cirrhosis was associated with survival benefit with
decreased sepsis and reduction in liver severity scores as
compared to placebo.88 In another randomized trial by
Arke De et al, administration of multiple cycles of G-CSF
increases the numbers of hematopoietic stem cells and sur-
vival of patients with decompensated cirrhosis.89

Not all studies on G-CSF in cirrhosis have shown prom-
ising results. In a multicentre, open-label, randomized,
controlled trial by Newsome and colleagues in patients
with compensated liver cirrhosis and MELD scores of
11$0–15$591. Treatment with subcutaneous G-CSF (lenog-
rastim) 15 mg/kg for 5 days, or treatment with G-CSF for
5 days followed by leukapheresis and intravenous infusion
of three doses of CD133-positive hemopoietic stem cells
2 | No. 2 | 603–616 611
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(0$2 � 10⁶ cells per kg per infusion) did not improve liver
dysfunction or fibrosis and was associated with increased
frequency of adverse events such as ascites. In fact, survival
was shorter than what was expected in the natural history of
the disease after G-CSF use in patients with decompensated
cirrhosis.91 The study by Engelmann et al (GRAFT study)
failed to show a significant beneficial effect of G-CSF in
treating patients with acute-on-chronic liver failure.92 The
use of G-CSF neither improved 3- and 12-month trans-
plant-free survival nor lead to improvement in MELD score
or reduction in the incidence of new infections. This was in-
dependent of the nature of the precipitating event, the
severity of ACLF, or the type of organ failure.

Mesenchymal stem cell therapy: MSCs are multipotent
fibroblast-like cells that are mostly generated from the
bone marrow but can also be obtained from the umbilical
cord and adipose tissue. Phase I/II studies on MSCs based
therapies in liver cirrhosis had shown promising results.
MSCs reduce inflammation, fibrosis and increase liver
regeneration response better and rapidly than
HSCs.93,94 MSCs increase MMP expression and phagocy-
tosis, promoting the regenerative process.95

An RCT of peripheral administration of autologous
MSCs showed minimal benefit in cirrhosis.96 The subse-
quent RCT in cirrhotics patients using HSC given via por-
tal vein followed by peripheral BM-MSCs infusion 1 week
later showed improvement in liver functions.97 In another
study, MSCs given through the hepatic artery (two infu-
sions of 50 million BM-MSCs) in alcoholic cirrhosis
showed improvements in CTP score without any benefit
in MELD score.98 At present, large human studies on
MSC are hindered by ethical and safety concerns, lack of
molecular data, and immunological mismatch.

A recent pooled analysis, including 39 studies, have
concluded that MSC-based therapy is relatively safe and
improves liver function during the first 6 months after
administration.99 A single injection administration via
the hepatic artery and MSCs derived from bone marrow
are optimal in terms of improving liver function. However,
the long-term efficacy of MSC therapy remains unknown.

Endothelial progenitor cell (EPC) therapy: EPCs could
repair endothelial injury of hepatic sinusoids, reduce
fibrosis and stimulate liver regeneration.100 EPC also has
immunomodulatory effects for better homing and expan-
sion to injured organs. EPCs were shown to be antifibrotic
and capable of inducing liver regeneration in rat models of
liver fibrosis by Nakamura et al.101 Kaur and colleagues
showed increased levels of EPC in cirrhosis, and these cells
stimulated angiogenesis in vitro.50

Macrophage Therapy
Monocyte-derived macrophages have a dual role. They re-
cruit immune cells to the injury site and activate HSC,
which promotes liver fibrosis.102 They also initiate
612 © 2021 Indian National Associa
progenitor-mediated liver regeneration and hepatocytes
differentiation. Despite significant chemotactic and para-
crine actions, repeated injected macrophages are required
as they last in the liver for a brief time. In cirrhosis, macro-
phages trigger the ductular response via Tweak/FN14
signaling.103 In liver disease, BM-derived macrophages
are given via venous or intrasplenic injections. Thomas
et al showed reduced liver fibrosis after 4 weeks intraportal
infusion of BM-derived macrophage on murine model.104

Embryonal Stem Cell (ESC) Therapy
Differentiation of cultured ESC toward hepatocyte-like
cells involves the administration of several growth fac-
tors and cytokines in a sequential manner (fibroblast
growth factor 2/4, bone morphogenetic protein 2/4, and
activin A).105 As hepatocyte isolation is difficult, Asialogly-
coprotein receptor ASGPR1 (hepatocyte-specific cell surface
marker) expression-based sorting is used to yield hepato-
cytes.106 Despite the promising studies, there are ample
ethical issues for the use of human ESCs in practice.107

iPSC Therapy (Induced Pluripotent Stem Cells
(iPSCs))
iPSCs are induced pluripotent cells that are reprogrammed
from adult cells using pluripotency factors (Activin A and
Wnt3a) and maturation factors (hepatocyte growth factor
and oncostatin-M) to form hepatocyte-like cells.108 Unlike
ESC, they do not require embryonic material, and since
they are autologous, they need no immunosuppression.
Nowadays, for the production of functionally efficient
iPSCs, excisable viral transfection, microRNA transfection,
and mRNA transfection techniques are being used.109,110

Liver Support Devices and Their Role in
Improving Liver Regeneration
Extracorporeal liver support devices are primarily aimed at
detoxification of the liver and thereby promote the micro-
environment to facilitate regeneration.111 They can be clas-
sified as (1) artificial liver support systems e.g. molecular
adsorbent recirculating system (MARS), single-pass albu-
min dialysis (SPAD), and fractionated plasma separation
and adsorption system (FPSA, Prometheus). (2) bio-
artificial liver support system e.g. Extracorporeal liver assist
device (ELAS), Bioartificial liver assist system (BLSS), and
Radial flow bioreactor (RFB). (3) Hybrid system e.g. Hybrid
artificial liver assist system (TECA) andMolecular extracor-
poreal liver support system (MELS).111,112

Liver assist devices might be useful in a subgroup of pa-
tients with cirrhosis presenting with acute decompensa-
tion and ACLF, either as a bridge to transplant or
regeneration.113,114 Albumin dialysis helps by improve-
ment in the cardiovascular system (by increasing systemic
vascular resistance index and mean arterial pressure), cere-
bral function (by decreasing hepatic encephalopathy and
tion for Study of the Liver. Published by Elsevier B.V. All rights reserved.
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intracranial pressure), renal function (by increase in urine
output and decrease in creatinine), liver function (increase
in indocyanine green plasma disappearance rate, and im-
proves others parameter) and improves the quality of
life (by decreasing pruritus).115 Extremely high costs,
complexity, and shortage of suitable large prospective trials
have curtailed the routine use of such systems to date.
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LIMITATIONS OF CELL-BASED THERAPIES

It is unknown how a short course of therapy can have mor-
tality benefit at three months. The homing of CD34 cells,
particularly to the liver, after a peripheral mobilization, is
unexplained. Some studies have documented the adverse
effects related to treatment, such as new-onset ascites
and portal vein thrombosis after hepatic artery
infusion.116 None of the proposed regenerative therapies
have long-term effects. The effect wanes over time.117 It is
difficult to identify leucocytosis due to immune paresis
in ACLF when G-CSF is used.

FUTURE PERSPECTIVE

Regenerating capacity of the normal liver is well known
and this had revolutionized the concept of living donor
liver transplant, where donor liver and recipient liver
both get regenerated, but the same requires expertise, moti-
vation of the donor, and other legalities. In the presence of
organ shortage, high cost, and the need for life-long immu-
nosuppression after liver transplant, various newer ap-
proaches of regenerative medicine can be helpful in the
regeneration of the native liver. In patients with cirrhosis,
the variations in intracellular matrix composition, para-
crine effects from nonparenchymal mesenchymal cells, cy-
tokines, and growth factors produced by inflammatory
cells and bone marrow-derived stem and progenitor cells
are the key elements involved in the supporting role in
regeneration. Several studies conducted and still ongoing
efforts are in place, which can provide mechanisms and
processes to reverse the fibrosis or cirrhosis process, but
all in experimental phases. G-CSF therapy seems to be
the more efficient in certain group of patients with liver
diseases, particularly those without organ failure and bac-
terial infection, but it is still a double-edged sword and
intact BM is critical for hepatic regeneration in cirrhosis.
Hope in positivity is the key, with constant efforts going
in place despite the conflicting results.
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