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Many biological studies show that the mutation and abnormal
expression of microRNAs (miRNAs) could cause a variety of
diseases. As an important biomarker for disease diagnosis,
miRNA is helpful to understand pathogenesis, and could pro-
mote the identification, diagnosis and treatment of diseases.
However, the pathogenic mechanism how miRNAs affect these
diseases has not been fully understood. Therefore, predicting
the potential miRNA-disease associations is of great impor-
tance for the development of clinical medicine and drug
research. In this study, we proposed a novel deep learning
model based on hierarchical graph attention network for pre-
dicting miRNA-disease associations (HGANMDA). Firstly,
we constructed amiRNA-disease-lncRNA heterogeneous graph
based on known miRNA-disease associations, miRNA-lncRNA
associations and disease-lncRNA associations. Secondly, the
node-layer attention was applied to learn the importance of
neighbor nodes based on different meta-paths. Thirdly, the se-
mantic-layer attention was applied to learn the importance of
different meta-paths. Finally, a bilinear decoder was employed
to reconstruct the connections between miRNAs and diseases.
The extensive experimental results indicated that our model
achieved good performance and satisfactory results in predict-
ing miRNA-disease associations.

INTRODUCTION
RNA (ribonucleic acid) is one of the important molecules commonly
found in plants, animals, microorganisms and viruses.1,2 It has a va-
riety of important biological functions.3 MicroRNAs (miRNAs) are a
class of small, non-coding RNA molecules encoded by endogenous
genes that are about 22 nucleotides in length.4,5 Since lin-4 were
discovered from Caenorhabditis elegans in 1993, more and more
researchers turned their attention to the function of miRNAs.6 Espe-
cially in recent years, many studies found that the abnormal expres-
sion of miRNAs is related to the generation and evolution of human
complex diseases.7 For example, miR-155 has been confirmed to be a
key regulator of ErbB2-induced mammary epithelial cell transforma-
tion and mediates the therapeutic response of ErbB2-positive breast
cancer to trastuzumab.8 Therefore, it is very important to help disease
researchers find the potential miRNA-disease associations.

Early researchers mainly used some biological techniques to identify
the potential miRNA-disease associations, such as reverse transcrip-
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tion polymerase chain reaction (PCR),9 northern blotting,10 and mi-
croarray profiling.11 However, the implementation of traditional bio-
logical technology often requires a lot of money and time, and the
efficiency is relatively low.12 With the development of biological tech-
nology and the summary of past experimental results, researchers
constructed many reliable bioinformatics databases on miRNA-dis-
ease associations, such as the human miRNA-disease database
(HMDD),13 the database of differentially expressed miRNAs in hu-
man cancers (dbDEMC),14 and the database for miRNA deregulation
in human disease (miR2Disease).15 Meanwhile, the computational
method and performance of computers have been greatly improved.
Therefore, some researchers began to consider a computational
method to realize miRNA-disease association prediction.16

Many novel and efficient computational methods have been proposed
to study miRNA-disease associations over the last several years. These
methods can be roughly divided into two categories: similarity-based
methods and machine-learning-based methods. The similarity-based
prediction methods come from a hypothesis that, if miRNAs have
similar functions, they are more likely to be related to phenotypically
similar diseases. Many researchers have used similarity-based
methods to predict miRNA-disease associations. For example, Jiang
et al. pioneered the approach of constructing a functionally relevant
miRNA network and a human phenotypic miRNA network to inves-
tigate whether functionally relevant miRNAs are associated with
phenotypically similar diseases.17 Due to insufficient data, they did
not consider the indirect neighbor nodes, which led to the final pre-
diction effect being not very good. Chen et al. proposed the model of
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combining within and between scores for predicting miRNA-disease
associations, which can be used for diseases without known associated
miRNAs.8 Besides, considering that most methods fail to predict
miRNA-disease associations when their association information is
unknown, Zhang et al. proposed the FLNSNLI model, which
employed a weighted average strategy to predict the unknown associ-
ations between miRNAs and diseases.18 The FLNSNLI model still
requires partially confirmed miRNA-disease associations to predict
potential miRNA-disease associations. Then, Zhao et al. proposed
the DCSMDAmodel, which combines proven miRNA-lncRNA asso-
ciations and disease-lncRNA associations to construct a miRNA-dis-
ease-lncRNA network to predict the associations between miRNAs
and diseases without using any provenmiRNA-disease associations.19

Different from the similarity-based prediction methods, the machine-
learning-based methods focus on classification algorithms and feature
extraction methods to predict the associations between miRNAs and
diseases. For example, Chen et al. used the restricted Boltzmann ma-
chine (RBMMMDA) as a classifier to predict multiple miRNA-disease
associations.20 Liu et al. constructed an miRNA-disease association
network to connect disease similarity subnetworks andmiRNAsimilar-
ity subnetworks, and then used random walk to calculate association
scores.21 Different from the method of Liu et al., Zheng et al. developed
a newmethod calledMLMDA, which applied deep autoencoder neural
network for feature extraction, and then employed a random forest clas-
sifier for classification.22 Furthermore, Liu et al. proposed the SMALF
model, which employed the stacked autoencoder to learn latent features
and utilized XGBoost to predict unknown miRNA-disease associa-
tions.23 Besides, Li et al. designed a diffusion-based machine learning
method (DF-MDA) to extract node features in heterogeneous networks
and employed a random forest classifier to judge the associations.24

With the popularity of graph neural networks, researchers found that
the graph structuremethodusing graphneural networks is very suitable
for predicting the miRNA-disease relationships. For example, Tang
et al. presented anMMGCNmodel, which applied a graph convolution
network and a multi-channel attention mechanism to enhance the
features of miRNAs and diseases.25 Wang et al. employed a graph
convolution encoder to learn the potential representation of nodes
and a neural multirelational decoder to obtain miRNA-disease associ-
ation scores.26 Ji et al. proposed theHGATMDAmodel, which extracts
the features of miRNAs and diseases by weighted DeepWalk and a
graph attention network.27Although thepreviousmethods have shown
satisfactory prediction performance, most researchers have not paid
attention to the rich semantic information contained in anmiRNA-dis-
ease heterogeneous graph. Meta-path is a path connecting different
types of nodes, which can be employed to mine complex structure in-
formation and rich semantic information in heterogeneous net-
works.28,29 Therefore, we considered combining graph neural networks
with meta-path to aggregate node feature information and meta-path
semantic information in heterogeneous graph networks.

In this article, we propose a novel hierarchical graph attention network
model named HGANMDA for predicting miRNA-disease associa-
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tions. Specifically, we firstly integrated multiple data to construct an
miRNA-disease-lncRNA heterogeneous graph. Secondly, miRNA
and disease nodes were projected into the same vector space. Thirdly,
node-layer attention was applied to aggregate the features of neighbor
nodes based on different meta-paths. Semantic-layer attention was
applied to obtain the semantic information by learning the importance
of different meta-paths. The final node embedding was obtained by
fusing the node aggregation feature information and semantic infor-
mation in semantic-layer attention. Fourthly, a bilinear decoder was
employed to decode the final embedding of miRNA and disease nodes
to reconstruct the connections between miRNAs and diseases. Finally,
the entire model was trained end-to-end by cross-entropy loss and
back-propagation algorithm. In the experiment, we evaluated the per-
formance of the HGANMDAmodel under 5-fold cross-validation and
obtained the average area under the curve (AUC) of 93.74% and area
under the precision-recall (AUPR) of 93.43%. In addition, we imple-
mented the case studies of esophageal neoplasms, lymphoma, and
prostate neoplasms. The results showed that 48, 46, and 46 of the
top 50 miRNAs related to these diseases were verified by dbDEMC
and miR2Disease databases, respectively. All experimental results
demonstrated that the HGANMDA model can be an effective tool to
help researchers study miRNA-disease associations.
RESULTS
Evaluation metrics

To evaluate the performance of our proposed model from more as-
pects, we selected Accuracy (Acc.), Precision (Prec.), Recall, and F1
score as the evaluation metrics of HGANMDA model. These evalua-
tion metrics are calculated as follows:

Accuracy =
TP +TN

TP +TN + FP + FN
; (Equation 1)

Precision =
TP

TP + FP
; (Equation 2)

Recall =
TP

TP + FN
; (Equation 3)

F1� score=
2TP

2TP + FP + FN
; (Equation 4)

where TP, TN, FP, and FN represent true positive, true negative, false
positive, and false negative, respectively.

Besides, considering that the previous evaluation metrics cannot intu-
itively represent the research performance of our model, we plotted
the receiver operating characteristic (ROC) curve and precision-recall
(P-R) curve. Normally, if the area under the ROC curve is larger, the
prediction performance of the model will be better.
Implementation details and performance evaluation

The HGANMDA model was implemented based on the Deep Graph
Library of PyTorch. In the training phase of the experiment, we



Table 1. Five-fold cross-validation results performed by HGANMDA based

on HMDD v.2.0

Testing set Acc. (%) Prec. (%) Recall (%) F1 score (%)

1 86.10 84.70 87.85 86.25

2 86.88 85.86 88.01 86.92

3 87.02 88.01 85.74 86.86

4 86.00 85.28 87.74 86.49

5 85.41 85.55 85.00 85.28

Average 86.28 ± 0.60 85.88 ± 1.13 86.87 ± 1.25 86.36 ± 0.59

Table 2. The comparison results of HGANMDA model with other latest

models according to 5-fold cross-validation on HMDD v.2.0 dataset

Models AUC (%)

IMIPMF 89.10

NMCMDA 89.42

NCFM 91.20

DBMDA 91.29

CEMDA 92.03

NIMCGCN 92.91

M2GMDA 93.23

HGANMDA 93.74
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randomly initialized parameters and optimized our proposed model
with Adam. Also, we set the training epochs to 1,000, the learning
rate to 0.001, the weight decay to 5 � 10�3, the number of multi-
head attention heads to 8, and the dimension of the semantic-layer
attention vector q to 128 for the HGANMDA model. To reduce the
occurrence of overfitting, we set dropout from 0.1 to 0.9 to train
the model. Finally, we found that if dropout was set to 0.6, the model
had the best prediction performance. All the experimental data and
codes can be downloaded from https://github.com/ZTangBo/
HGANMDA.

In this experiment, we applied 5-fold cross-validation to evaluate the
performance of the HGANMDA model. For implementing 5-fold
cross-validation, we randomly divided the selected miRNA-disease
sample set into five subsets, where four of them were chosen as the
training set and the remaining one was chosen as the test set. Next,
we applied the training set to train the model and the test set to get
the prediction results. Finally, according to the experimental results,
we drew graphs and tables to show the effect of the model. In Table
1, we can see that HGANMDA achieves average Acc. of 86.28%,
Prec. of 85.88%, Recall of 86.87%, and F1 score of 86.36% with
standard deviations of 0.60%, 1.13%, 1.25%, and 0.59%, respectively.
Besides, we also achieved average AUC of 93.74%, which is the
average of 93.48%, 93.86%, 94.37%, 93.86%, and 93.16%, and average
AUPR of 93.43%, which is the average of 92.81%, 93.25%, 94.11%,
94.06%, and 92.92%. The ROC curves of the HGANMDA model
are shown in Figure 2 and the P-R curves are shown in Figure 3.
Compare with other latest methods

To further confirm the performance of our model in predicting the
associations between miRNAs and diseases, we compared the perfor-
mance of the HGANMDA model with that of another seven of the
latest models, including IMIPMF,30 NMCMDA,26 NCFM,31

DBMDA,32 CEMDA,33 NIMCGCN,34 and M2GMDA.35 To make
the results convincing and fair, the models we selected were all
from the past 2 years, and their evaluation metrics were obtained
by applying the 5-fold cross-validation method on the HMDD v.2.0
dataset. Since these models chose the AUC value as an important
metric to evaluate their performance, we compared the AUC value
of our proposed model with those of these models. The comparison
results are shown in Table 2. We can see that, compared with other
models, our model has the highest AUC value and 0.51% higher
than the second highest M2GMDA model. The possible reason is
that our model combines node-layer attention with semantic-layer
attention, which not only considers the feature information of
neighbor nodes, but also considers the semantic information of
neighbor nodes, whichmade the final node embedding more compre-
hensive and the prediction results better.

Influence of feature aggregation

In this experiment, we applied a combination of node-layer attention
and semantic-layer attention to achieve the embedding of miRNA
and disease nodes. For proving the feasibility of our method and
convincing experimental results, we compared the prediction perfor-
mance of HGANMDA with that of the method without node-layer
attention and the method without semantic-layer attention. Since
node-layer attention was applied to aggregate the features of neighbor
nodes based on meta-paths, the same importance was assigned to
each neighbor node when node-layer attention was not considered,
denoted as Nond. In contrast, since semantic-layer attention was
applied to obtain the importance of meta-paths, the same importance
was assigned to each meta-path when semantic-layer attention was
not considered, denoted asNosem. The comparison results are shown
in Figure 4. It can be seen that HGANMDA has the highest Accuracy,
Recall, F1 score, and AUC among the three methods. Although the
Precision of Nond is slightly higher than that of HGANMDA, Nond
is significantly lower than HGANMDA in the other four evaluation
metrics, which means that the semantic-layer attention is a supple-
ment to the node-layer attention. The semantic-layer attention inte-
grated the specific semantic information of node-layer attention to
obtain more comprehensive node aggregation features. Therefore,
the effect of the HGANMDA model is better than the other two
methods.

Influence of dimension of semantic-layer attention vector q

Since the dimension of semantic-layer attention vector q is a key fac-
tor affecting the performance of the semantic-layer attention, we
compared the AUC value of HGANMDA under different dimensions
according to 5-fold cross-validation. The comparison results are
shown in Figure 5. It can be seen that the AUC value of HGANMDA
initially increases with the dimension of the semantic-layer attention
vector q. When the dimension of the semantic-layer attention vector q
Molecular Therapy Vol. 30 No 4 April 2022 1777
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Table 3. Top 50 miRNAs related to esophageal neoplasms predicted by

HGANMDA

miRNA(1–25) Evidence miRNA(26–50) Evidence

hsa-mir-18a dbDEMC hsa-mir-218 dbDEMC

hsa-mir-19b dbDEMC hsa-mir-195 dbDEMC

hsa-let-7i dbDEMC hsa-mir-133b dbDEMC

hsa-let-7e dbDEMC hsa-mir-138 dbDEMC

hsa-mir-17 dbDEMC hsa-mir-106b dbDEMC

hsa-mir-200b dbDEMC hsa-mir-24 dbDEMC

hsa-mir-221 dbDEMC hsa-mir-96 dbDEMC

hsa-mir-29a dbDEMC hsa-mir-378a dbDEMC

hsa-let-7d dbDEMC hsa-mir-497 dbDEMC

hsa-let-7g dbDEMC hsa-mir-142 dbDEMC

hsa-let-7f Unconfirmed hsa-mir-181a dbDEMC

hsa-mir-107 dbDEMC, miR2Disease hsa-mir-181b dbDEMC

hsa-mir-222 dbDEMC hsa-mir-106a dbDEMC

hsa-mir-9 dbDEMC hsa-mir-206 dbDEMC

hsa-mir-93 dbDEMC hsa-mir-127 dbDEMC

hsa-mir-429 dbDEMC hsa-mir-302b dbDEMC

hsa-mir-18b dbDEMC hsa-mir-182 dbDEMC

hsa-mir-125b dbDEMC hsa-mir-7 dbDEMC

hsa-mir-10b dbDEMC hsa-mir-320a dbDEMC

hsa-mir-29b dbDEMC hsa-mir-151a Unconfirmed

hsa-mir-20b dbDEMC hsa-mir-122 dbDEMC

hsa-mir-125a dbDEMC hsa-mir-302c dbDEMC

hsa-mir-1 dbDEMC hsa-mir-132 dbDEMC

hsa-mir-16 dbDEMC hsa-mir-191 dbDEMC

hsa-mir-146b dbDEMC hsa-mir-92b dbDEMC
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was set to 128, the AUC was the largest, and the model had the best
prediction effect at that time. However, when the dimension of q was
set beyond 128, the AUC started to decrease. We also found that the
AUC of our model decreased significantly when the dimension is 512
compared with a value of 128, whichmay be due to overfitting. There-
fore, we set the dimension of the semantic-layer attention vector q to
128 as our default dimension.
Case studies

To further reflect the performance of the HGANMDA model in pre-
dicting the potential associations between miRNAs and specific
diseases, we completed case studies of esophageal neoplasms, lym-
phoma, and prostate neoplasms. Specifically, we firstly filtered out
the edges containing miRNA nodes and disease-specific nodes from
the miRNA-disease-lncRNA heterogeneous graph. Then, the remain-
ing edges containing miRNA nodes and diseases nodes were trained
as training sets, and the filtered edges were tested as test sets. Finally,
we ranked the results of the test set and used the dbDEMC and miR2-
Disease datasets to judge whether the associations between the pre-
dicted miRNAs and specific diseases were confirmed.
1778 Molecular Therapy Vol. 30 No 4 April 2022
Esophageal neoplasms are one of the most common digestive tract
neoplasms. They rank fourth among the top 10 malignant neoplasms
in the world. Numerous studies show that the expression of miRNAs
is significantly different between normal tissues and esophageal
neoplasm tissues, and that miRNAs are involved in the occurrence,
development, and prognosis of esophageal tumor. Therefore, esoph-
ageal neoplasms were selected as the first case study to test the predic-
tion performance of the model. From Table 3, we can find that the
dbDEMC and miR2Disease datasets confirmed 48 of the top 50 miR-
NAs related to esophageal neoplasms.

Lymphoma is a malignant tumor of the lymphatic hematopoietic sys-
tem. miRNAs have an important role in the pathogenesis of lym-
phoma and are involved in the differentiation, proliferation, and
apoptosis of lymphoma cells. For example, high expression of miR-
155 can block the inhibitory effect of the RhoA signaling pathway
on lymphoma, which promotes the occurrence of lymphoma.36

Therefore, lymphoma was selected as the second case study. From Ta-
ble 4, we show that 46 of the top 50 miRNAs associated with lym-
phoma were confirmed by the dbDEMC and miR2Disease datasets.

To make the experimental results more adequate, we conducted the
third case study on prostate neoplasms. Prostate neoplasms include
epithelial and mesenchymal neoplasms of the prostate, most of which
are malignant. The reason why we chose prostate neoplasms is that
their occurrence is also closely related to miRNAs. Table 5 shows
that 46 of the top 50 miRNAs associated with prostate neoplasms
can be confirmed by the dbDEMC and miR2Disease datasets. In
conclusion, the HGANMDA model achieved satisfactory results in
case studies predicting the associations between miRNAs and specific
diseases.

DISCUSSION
MiRNAs have been proved to play a key role in the generation and
development of human diseases. Mining some pathogenic miRNAs
by computational methods cannot only solve the high cost and
long cycle of biological experimental methods, but also guide re-
searchers to conduct targeted studies on miRNAs related to specific
diseases. In this paper, we propose a hierarchical graph attention
network, including node-layer attention and semantic-layer atten-
tion, to predict the associations between miRNAs and diseases, which
we called the HGANMDA model. The model applies node-layer
attention to learn the importance of the neighbor nodes based on
different meta-paths and applied semantic-layer attention to learn
the importance of different meta-paths. Through the network, the
HGANMDAmodel can make full use of the node information, struc-
tural information, and semantic information in an miRNA-disease-
lncRNA heterogeneous graph. Overall, these evaluation metrics and
case studies demonstrated the excellent prediction performance of
the HGANMDA model in predicting miRNA-disease associations.
Our proposed model should prove to be a valuable method to help
researchers improve research on the miRNA-disease associations.
However, in the HGANMDA model, we did not employ longer
meta-paths. The reason is that when the length of meta-paths was



Table 4. Top 50 miRNAs related to lymphoma predicted by HGANMDA

miRNA(1–
25) Evidence

miRNA(26–
50) Evidence

hsa-mir-125b dbDEMC hsa-mir-214 DbDEMC

hsa-mir-221
dbDEMC,
miR2Disease

hsa-mir-34b dbDEMC

hsa-mir-34a dbDEMC hsa-let-7c dbDEMC

hsa-mir-133a dbDEMC hsa-mir-192 dbDEMC

hsa-mir-31 dbDEMC hsa-let-7e
dbDEMC,
miR2Disease

hsa-mir-1 dbDEMC hsa-mir-183 dbDEMC

hsa-mir-222 dbDEMC hsa-mir-137 dbDEMC

hsa-mir-29a dbDEMC hsa-mir-142 Unconfirmed

hsa-mir-145
dbDEMC,
miR2Disease

hsa-mir-195 dbDEMC

hsa-mir-106b dbDEMC hsa-let-7f dbDEMC

hsa-let-7d dbDEMC hsa-mir-146b Unconfirmed

hsa-let-7b dbDEMC hsa-mir-27a dbDEMC

hsa-mir-9 dbDEMC hsa-mir-7 dbDEMC

hsa-mir-29b dbDEMC hsa-mir-106a
dbDEMC,
miR2Disease

hsa-mir-141 dbDEMC hsa-let-7g dbDEMC

hsa-let-7a dbDEMC hsa-mir-182 dbDEMC

hsa-mir-199a dbDEMC hsa-mir-429 Unconfirmed

hsa-mir-148a dbDEMC hsa-mir-96 dbDEMC

hsa-mir-34c Unconfirmed hsa-mir-206 dbDEMC

hsa-mir-223 dbDEMC hsa-mir-196a dbDEMC

hsa-mir-181b dbDEMC hsa-mir-10b dbDEMC

hsa-mir-143
dbDEMC,
miR2Disease

hsa-mir-100 dbDEMC

hsa-let-7i dbDEMC hsa-mir-335 dbDEMC

hsa-mir-15b dbDEMC hsa-mir-205 dbDEMC

hsa-mir-93 dbDEMC hsa-mir-451a dbDEMC
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greater than or equal to 2, the association matrix based on meta-paths
becomes dense. Therefore, for further improving the prediction per-
formance of our model, we plan to employ longer meta-paths by
limiting the number of neighbor nodes in the future.

MATERIALS AND METHODS
Human miRNA-disease associations database

In this study, we implement the model by using the benchmark data-
set HMDD v.2.0. It can be downloaded from https://www.cuilab.cn/
hmdd.13 The dataset contains 383 diseases, 495 miRNAs, and 5,430
experimentally verified miRNA-disease associations. In the
experiment, we created an adjacency matrix DM(i,j) to store
miRNA-disease associations. In the matrix, 383 rows represent the
number of diseases, 495 columns represent the number of miRNAs.
If disease d(i) is associated with miRNA m(j), the corresponding po-
sition of the matrix is recorded as 1, otherwise 0.
miRNA functional similarity

Based on the assumption that miRNAs with similar functions are usu-
ally associated in similar diseases and vice versa, Wang et al. proposed
a model to calculate miRNAs functional similarity.37 Benefiting from
their previous work, we can directly obtain miRNA functional simi-
larity data from https://www.cuilab.cn/files/images/cuilab/misim.
zip. Then, we constructed a matrix MFSM with 495 rows and col-
umns, where MFSMðmðiÞ;mðjÞÞ represents the functional similarity
score between miRNA m(i) and m(j).
Disease semantic similarity

According to previous research,38 we can obtain the relationships be-
tween different diseases from the medical subject headings (MeSH)
database (https://www.ncbi.nlm.nih.gov/) and calculate disease se-
mantic similarity. In the MeSH database, every disease can be repre-
sented by a directed acyclic graph (DAG). DAGðdðiÞÞ = ðdðiÞ;
TðdðiÞÞ;EðdðiÞÞÞ, represents a directed acyclic graph of disease d(i),
which includes disease d(i), its ancestor nodes TðdðiÞÞ, and the set
EðdðiÞÞ of directly connected edges from the ancestor nodes to
node d(i). Then, the semantic contribution value of disease d(k) to
d(i) is calculated as follows:

D1dðiÞðdðkÞÞ=
(
1 dðkÞ= dðiÞ
max

�
D � D1dðiÞðdðkÞ0Þ

�
dðkÞsdðiÞ ;

(Equation 5)

where dðkÞ0 denotes the children node of d(k), D denotes the
contribution factors of semantic decay and we set it to 0.5 based
on the research of Xuan et al.38 The contribution factor of disease
d(i) to itself is set to 1. If the distance from disease d(k) to disease
d(i) increases, the semantic contribution factor will decrease.
Therefore, we can calculate the semantic value of disease d(i) as
follows:

DS1ðdðiÞÞ =
X

dðkÞ˛TðdðiÞÞ
D1dðiÞðdðkÞÞ: (Equation 6)

According to the assumption that two diseases are more similar if the
DAGs of two diseases share more parts, we can calculate the disease
semantic similarityDSSM1ðdðiÞ; dðjÞÞ between disease d(i) and d(j) as
follows:

DSSM1ðdðiÞ; dðjÞÞ =
P

dðkÞ˛TðdðiÞÞXTðdðjÞÞ
�
D1dðiÞðdðkÞÞ+D1dðjÞðdðkÞÞ

�
DS1ðdðiÞÞ+DS1ðdðjÞÞ :

(Equation 7)

However, the above method is not so comprehensive that the appear-
ance times of diseases in the same layer of DAG may be different in
DAGs of all diseases. We integrated the research of Pasquier and
Gardès and employed another method to calculate disease semantic
similarity.39 The semantic contribution value of disease d(k) to d(i)
is calculated as follows:
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Table 5. Top 50 miRNAs related to prostate neoplasms predicted by

HGANMDA

miRNA(1–
25) Evidence

miRNA(26–
50) Evidence

hsa-mir-21
dbDEMC,
miR2Disease

hsa-mir-199a
dbDEMC,
miR2Disease

hsa-mir-155 dbDEMC hsa-mir-142 Unconfirmed

hsa-mir-146a miR2Disease hsa-mir-26a
dbDEMC,
miR2Disease

hsa-mir-20a miR2Disease hsa-let-7a
dbDEMC,
miR2Disease

hsa-mir-150 dbDEMC hsa-mir-133b dbDEMC

hsa-mir-17 miR2Disease hsa-let-7b
dbDEMC,
miR2Disease

hsa-mir-19b
dbDEMC,
miR2Disease

hsa-mir-29c dbDEMC

hsa-mir-221
dbDEMC,
miR2Disease

hsa-mir-148a miR2Disease

hsa-mir-19a dbDEMC hsa-mir-141 miR2Disease

hsa-mir-16
dbDEMC,
miR2Disease

hsa-mir-195
dbDEMC,
miR2Disease

hsa-mir-126
dbDEMC,
miR2Disease

hsa-mir-200a dbDEMC

hsa-mir-1 dbDEMC hsa-mir-15b dbDEMC

hsa-mir-34a
dbDEMC,
miR2Disease

hsa-mir-200b Unconfirmed

hsa-mir-29a
dbDEMC,
miR2Disease

hsa-mir-210 miR2Disease

hsa-mir-18a dbDEMC hsa-mir-24
dbDEMC,
miR2Disease

hsa-mir-122 Unconfirmed hsa-let-7e dbDEMC

hsa-mir-133a dbDEMC hsa-let-7c
dbDEMC,
miR2Disease

hsa-mir-222
dbDEMC,
miR2Disease

hsa-mir-206 dbDEMC

hsa-mir-15a
dbDEMC,
miR2Disease

hsa-mir-181b
dbDEMC,
miR2Disease

hsa-mir-92a Unconfirmed hsa-mir-200c dbDEMC

hsa-mir-143
dbDEMC,
miR2Disease

hsa-mir-196a dbDEMC

hsa-mir-31
dbDEMC,
miR2Disease

hsa-mir-214
dbDEMC,
miR2Disease

hsa-mir-223
dbDEMC,
miR2Disease

hsa-mir-9 dbDEMC

hsa-mir-29b
dbDEMC,
miR2Disease

hsa-mir-124 dbDEMC

hsa-mir-181a
dbDEMC,
miR2Disease

hsa-mir-192 dbDEMC
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D2dðiÞðdðkÞÞ = � log

�
numðDAGsðdðkÞÞÞ
numðdiseasesÞ

�
: (Equation 8)
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In this way, the semantic value of disease d(i) is calculated as Equa-
tion (9) and the disease semantic similarity DSSM2ðdðiÞ; dðjÞÞ be-
tween disease d(i) and d(j) is calculated as Equation (10).

DS2ðdðiÞÞ=
X

dðkÞ˛TðdðiÞÞ
D2dðiÞðdðkÞÞ (Equation 9)

DSSM2ðdðiÞ; dðjÞÞ =
P

dðkÞ˛TðdðiÞÞXTðdðjÞÞ
�
D2dðiÞðdðkÞÞ+D2dðjÞðdðkÞÞ

�
DS2ðdðiÞÞ+DS2ðdðjÞÞ :

(Equation 10)

Therefore, to obtain more reasonable and accurate disease semantic
similarity, we averaged two-disease semantic similarity as the final
disease semantic similarity. Finally, the disease semantic similarity
DSSMðdðiÞ; dðjÞÞ between d(i) and d(j) is calculated as follows:

DSSMðdðiÞ; dðjÞÞ = DSSM1ðdðiÞ; dðjÞÞ+DSSM2ðdðiÞ; dðjÞÞ
2

:

(Equation 11)

Gaussian interaction profile kernel similarity for miRNAs and

diseases

Based on the topology structure of verified miRNA-disease associa-
tion network, we can calculate the Gaussian interaction profile kernel
similarity for miRNAs and diseases.8 Firstly, according to a hypothe-
sis that similar miRNAs are more likely to be associated with similar
diseases, we created a binary vector IPðmðiÞÞ, which is the ith column
of matrix DM, representing the associations between miRNA m(i)
and all other diseases. Then, we can calculate the Gaussian interaction
profile kernel similarity for miRNAs MGSMðmðiÞ;mðjÞÞ between
miRNA m(i) and m(j) as follows:

MGSMðmðiÞ;mðjÞÞ = exp
�� rmkIPðmðiÞÞ � IPðmðjÞÞk2�;

(Equation 12)

where parameter rm is used to control the bandwidth of the kernel. It
can be calculated as follows:

rm = r0m

��
1
nm

Xnm

i= 1
kIPðmðiÞÞk2

�
; (Equation 13)

where r0m is set to 1 referring to previous studies8 and nm is set to 495,
which is equal to the number of all miRNAs. Similarly, we can calcu-
late the Gaussian interaction profile of diseases DGSMðdðiÞ; dðjÞÞ be-
tween diseases dðiÞ and dðjÞ as follows:

DGSMðdðiÞ; dðjÞÞ = exp
�� rdkIPðdðiÞÞ � IPðdðjÞÞk2�;

(Equation 14)

rd = r0d

��
1
nd

Xnd

i= 1
kdðiÞk2

�
; (Equation 15)
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where a binary vector IPðdðiÞÞ, which is the ith row of matrix DM,
represents the associations between disease d(i) and all other miR-
NAs. r0d is set to 1 and nd is set to 383, which is equal to the number
of all diseases.
Integrated similarity for miRNAs and diseases

Based on the above results, we can calculate the integrated similarity
for miRNAs IMðmðiÞ;mðjÞÞ between miRNA m(i) and m(j) as Equa-
tion (16), and the integrated similarity for diseases IDðdðiÞ; dðjÞÞ be-
tween disease d(i) and d(j) as Equation (17).
IMðmðiÞ;mðjÞÞ =
	
MFSMðmðiÞ;mðjÞÞ mðiÞ and mðjÞ have functional similarity
MGSMðmðiÞ;mðjÞÞ otherwise

; (Equation 16)

IDðdðiÞ; dðjÞÞ =
	
DSSMðdðiÞ; dðjÞÞ dðiÞ and dðjÞ have semantic similarity
DGSMðdðiÞ; dðjÞÞ otherwise

: (Equation 17)
Matrix representation of lncRNA sequences

In the experiment, the data we employed include experimentally
confirmed miRNA-lncRNA associations and lncRNA-disease associa-
tions. To obtain the associated data, we introduced the lncRNASNP240

and LncRNADisease v.2.041 datasets. The LncRNASNP2 dataset re-
cords 45,329 confirmed associations between 3,521 lncRNAs and 276
miRNAs, which can be download from http://bioinfo.life.hust.edu.cn/
lncRNASNP.42,43 The LncRNADisease v.2.0 dataset records 10,564
confirmedassociationsbetween 6,086 lncRNAsand451diseases, which
can be download from http://www.rnanut.net/lncrnadisease.44 Based
on these data, wemanually matched the associations betweenmiRNAs
and lncRNAs, and the associations between diseases and lncRNAs in
the lncRNASNP2 dataset, the LncRNADisease v.2.0 dataset, and
HMDD v.2.0 dataset. For the convenience of the experiment, we
selected 467 lncRNAsassociatedwithmiRNAs anddiseases. As a result,
we obtained 4,352 confirmed associations between 495 miRNAs and
467 lncRNAs, and 1,486 confirmed associations between 383 diseases
and 467 lncRNAs.

For getting the feature information of lncRNAs, we downloaded the
sequence information of lncRNAs from NONCODE (http://www.
noncode.org/) to represent the attributes of nodes.45 Then, we con-
verted lncRNA sequences to vectors using the k-mers method.46,47

The k-mers could divide the lncRNA sequences into a series of subse-
quences with bases. Generally, a sequence of length m can be divided
into m� k+ 1 k-mers. In the experiment, we extracted the conjoint
triads (3-mers) of lncRNAs from the sequences of lncRNAs. Four ba-
ses of lncRNA are A, C, G, and U. Therefore, 3-mers could split the
sequence of lncRNA into AAA, AAC,., UUU. Specifically, we firstly
applied a sliding window to divide the sequence of lncRNA into many
conjoint triads. Then, we calculated the frequency of each subse-
quence and normalized these data. Finally, we obtained a 64-dimen-
sion vector to represent the feature information of lncRNA. Because
the number of lncRNAs is 467, we created a matrix IL with 467 rows
and 64 columns to store the vectors of these lncRNAs, where ILðkÞ
represents the feature of lncRNA l(k).

HGANMDA

In this paper, we propose a hierarchical graph attention networkmodel
which combines node-layer attention, semantic-layer attention, and a
bilinear decoder for miRNA-disease association prediction (HGAN
MDA). The flowchart of the proposed model is shown in Figure 1.
HGANMDA can be described as six steps: (1) construct an miRNA-
disease-lncRNA heterogeneous graph; (2) project miRNA and disease
nodes into the same feature space; (3) apply node-layer attention to
aggregate features of neighbor nodes based on different meta-paths;
(4) employ semantic-layer attention to learn the importance of
different meta-paths and fuse the node aggregation feature informa-
tion and semantic information; (5) use a bilinear decoder to recon-
struct the connections between miRNAs and diseases; and (6) use
cross-entropy loss function to train the whole model in an end-to-
end way. Next, we introduce the specific implementation process of
each step.
Construction of the miRNA-disease-lncRNA heterogeneous

graph

To implement this model, we need to construct a heterogeneous
graph containing 495 miRNA nodes, 383 disease nodes, 467 lncRNA
nodes, and verified associations between all nodes. In HMDD v.2.0,
there are 5,430 experimentally verified miRNA-disease associations.
We applied these 5,430 associations as positive samples between
miRNA nodes and disease nodes, which were labeled as 1. However,
the number of unknown miRNA-disease associations is far greater
than the number of confirmed miRNA-disease associations. The
imbalance of positive and negative samples will make the prediction
results tend to the classification with more samples, which will reduce
the generalization ability of the model. To solve this problem, we
randomly selected 5,430 associations from all the unknown
miRNA-disease associations as negative samples, which were labeled
as 0 and added to the heterogeneous graph. In addition, we regarded
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Figure 1. Flowchart of HGANMDA model for predicting miRNA-disease associations
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the integrated similarity of miRNAs and diseases as miRNA and dis-
ease node features, respectively. Therefore, miRNA m(i) can be re-
corded as a 495-dimensions vector FmðiÞ as follows:

FmðiÞ = ðx1; x2; x3;.; x494; x495Þ ; (Equation 18)

where FmðiÞ represents the ith column of matrix IM and xj represents
the integrated similarity value between miRNA m(i) and m(j). Simi-
larity, disease d(i) can be recorded as a 383-dimensions vector FdðiÞ
as follows:

FdðiÞ =
�
y1; y2; y3;.; y382; y383

�
; (19)

where FdðiÞ represents the ith column of matrix ID and yj represents
the integrated similarity value between disease d(i) and d(j).
Node-layer attention

Since the neighbor nodes based on different meta-paths show
different importance in the specific task of learning node embed-
ding, we applied the node-layer attention to learn the importance
1782 Molecular Therapy Vol. 30 No 4 April 2022
of neighbor nodes based on different meta-paths in the heteroge-
neous graph and aggregate the feature information of these mean-
ingful neighbor nodes to form a node embedding. Firstly, due to
the heterogeneity of nodes in miRNA-disease-lncRNA heteroge-
neous graph, different nodes may be in different feature spaces.
Therefore, for each type of node, we designed the type-specific
transformation matrix W to project different types of nodes into
the same feature space. This projection process is shown as
follows:

HmðiÞ = WmðiÞ,FmðiÞ; (Equation 20)

HdðiÞ = WdðiÞ,FdðiÞ; (Equation 21)

where Hm(i) and Hd(i) are projection features of miRNA node m(i)
and disease node d(i), respectively. By this projection operation,
miRNA nodes and disease nodes can be projected into the 64-dimen-
sional space. Besides, since the features of lncRNA nodes have been
located in the 64-dimensional space, the feature of lncRNA l(i) is
shown as follows:



Figure 3. P-R curves performed by HGANMDAmodel based on HMDD v.2.0Figure 2. ROC curves performed byHGANMDAmodel based onHMDDv.2.0
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HlðiÞ = ðILðiÞÞT ; (Equation 22)

where IL(i) represents the ith row of matrix IL. ð$ÞT represents matrix
transposition.

Secondly, we applied attention mechanism48 to learn the weights
among miRNA nodes, disease nodes, and lncRNA nodes. Given
that the center node u (u is a miRNA or disease node) connects
the neighbor node v based on the meta-path B, the importance
of node v to node u based on meta-path B can be calculated as
follows:

eBuv = LeakyReLU
��ðHuÞT$Hv

�
B

�
; (Equation 23)

where LeakyReLUð $Þ is a nonlinear activation function (the slope of
negative value is set to 0.2). After obtaining the importance between
center node and neighbor nodes based on different meta-paths, we
applied softmax function to normalize them to obtain the attention
coefficients. The specific calculation process is shown as follows:

aBuv = softmax
�
eBuv
�
=

exp
�
eBuv
�P

k˛NB
u
exp
�
eBuk
�; (Equation 24)

where NB
u represents the first-order neighbor node set of node u

based on meta-path B.

Then, the embedding of node u based on meta-pathB can be aggre-
gated by the features of neighbor nodes and the attention coefficients
as follows:

zBu = s

 X
v˛NB

u

aBuv$Hv

!
; (Equation 25)
where sð ,Þ represents the ELU activation function. Since the atten-
tion coefficients aBuv was generated by meta-path B, zBu was a seman-
tic-specific node embedding and contained a kind of semantic
information.

Heterogeneous graph has scale-free property, which leads to high
variance of graph data. To reduce the variance and make the result
more stable, we introduced the multi-head-attention mechanism to
expand the node-layer attention. Concretely, we calculated node-
layer attention K times and connected each node embedding as the
semantic-specific embedding of node u. The specific calculation pro-
cess is shown as follows:

zBu =

K

k
k= 1

s

 X
v˛NB

u

aBuv$Hv

!
: (Equation 26)

In our experiment, the meta-path set includes the meta-path Bmd

connecting miRNA and disease node, the meta-pathBml connecting
miRNA and lncRNA node, the meta-path Bdm connecting disease
and miRNA node, and the meta-path Bdl connecting disease and
lncRNA node. After calculating the node-layer attention, we can
obtain four groups of semantic-specific node embedding, which are
zBmd , zBml , zBdm , and zBdl .
Semantic-layer attention

In the miRNA-disease-lncRNA heterogeneous graph, miRNA nodes
and disease nodes contain a variety of semantic information. Howev-
er, semantic-specific node embedding can only reflect semantic
information of nodes from one aspect. To get a more comprehensive
and sufficient node embedding, we proposed a novel semantic-layer
attention to learn the importance of different meta-paths and inte-
grated them into the central node. Firstly, we transformed the
Molecular Therapy Vol. 30 No 4 April 2022 1783
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Figure 4. The average Acc., Prec., Recall, F1 score,

and AUC values of HGANMDA under different

feature aggregation methods according to 5-fold

cross-validation

Figure 5. Dimension of the semantic-layer attention vector q
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semantic-specific node embedding by a nonlinear transformation to
obtain the importance of each meta-path. Then, we measured the
importance of the semantic-specific node embedding as the similarity
of transformed node embedding with a semantic-level attention vec-
tor q. Finally, we averaged the importance of semantic-specific node
embedding as the importance of each meta-path. Therefore, the
importance of meta-path Bi can be calculated as follows:

wBi
u =

1
jV j
X
u˛V

qT $ tanh
�
WBi $ zBi

u + b
�
; (Equation 27)

whereWBi denotes a weight matrix, b denotes a bias vector, tanhð $Þ
denotes the activation function, and q denotes the semantic-layer
attention vector and its dimension is set to 128.V denotes the number
of nodes, which are of the same type as node u. Then, we normalized
the importance of each meta-path by softmax function. Therefore, we
can obtain the weight of meta-path Bi, which is denoted as bBi

u . The
calculation process is shown as follows:

bBi
u =

exp
�
wBi

u

�PP
j= 1expðwBj

u Þ
; (Equation 28)

where P represents the number of meta-path types associated with
node u, and bBi

u represents the contribution of meta-path Bi to the
central node u. We can know that if bBi

u is larger, the meta-path Bi

is more important. Finally, we took the weights of the meta-paths
as coefficients to calculate the final node embedding by aggregating
the semantic-specific embedding. The calculation process is shown
as follows:

Zu =
XP
i= 1

bBi
u $ zBi

u : (Equation 29)

By the semantic-layer attention, we obtained the final embedding Zm
of miRNAs and the final embedding Zd of diseases. Their dimensions
are 64 � 495 and 64 � 383, respectively.
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Bilinear decoder

For obtaining the prediction probability of the associations between
miRNAs and diseases, we reconstructed the connections between
miRNA nodes and disease nodes by adopting a bilinear decoder.
Therefore, the prediction probability byij that a miRNA node mðiÞ
will be associated with a disease node dðjÞ can be calculated as
follows:

byij = sigmoid

�

ZmðiÞ
�
TQZdðjÞ

�
; (Equation 30)

where Q denotes a trainable parameter matrix, the dimension of
which is 64 � 64.

Finally, we used cross-entropy loss function to calculate the difference
between the predicted value of our proposed model and the training
samples. The calculation process of cross-entropy loss function LOSS
is shown as follows:
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LOSS = �ðylogby + ð1� yÞlogð1� byÞÞ; (Equation 31)

where y represents the true association labels between miRNAs and
diseases. Since the smaller the cross-entropy loss, the better the pre-
diction performance of the model. Therefore, we employed the
back-propagation algorithm to train the model end-to-end to reduce
the loss of the model and get the best results.
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