Skip to main content
. 2018 Jan 11;8(5):2521–2540. doi: 10.1039/c7ra12299c

Substrates of magnetite-based adsorbents for the removal of radionuclides.

Adsorbent Method Substrates Functional group Target Temp pH Q max (mg g−1) Solution condition Time Mechanism References
CB[6]/GO/Fe3O4 Co-precipitation GO CB[6] U(vi) 298 5 122.5 DI 2.5 h Complexation with functional groups of CB[6]/GO/Fe3O4 82
Fe3O4/GO Co-precipitation GO U(vi) 293 5.5 69.5 0.01 M KNO3 >4 h At high pH: precipitation and inner sphere surface complexation 79
AOMGO Co-precipitation GO Amidoxime U(vi) 298 5 284.9 0.01 M NaClO4 2 h Inner sphere surface complexation 123
MnO2–Fe3O4–rGO Hydrothermal rGO MnO2 U(vi) 328 6 108.7 n.a 6 h Surface complexation, cation exchange and electrostatic interaction 124
AMGO Hydrothermal GO Amino U(vi) 298 5.9 141.2 DI 100 min Interaction with nitrogen- and oxygen containing functional groups 125
Fe3O4/GO Hydrothermal GO U(vi) 298 5.9 283.2 0.01 M NaNO3 5 h 126
Fe3O4/GO Co-precipitation GO Cs(i) Sr(ii) 293 5 15.8 38.4 0.01 M NaCl 24 h H+/Na+ exchange 127
MGO Co-precipitation GO Eu(iii) NaClO4 and N2 5 h Inner-sphere surface complexation 128
Magnetic GOs Co-precipitation GO Eu(iii) 293 4.5 70.2 0.01 M NaClO4 24 h Inner-sphere surface complexation 129
M/GO Co-precipitation GO Sr(ii) 303 8.5 9.8 0.01 M NaClO4 2 h Inner-sphere surface complexation 130
Magnetic graphene oxides Co-precipitation GO Sr(ii) Cs(i) 293 4 14.7 9.3 0.01 M NaClO4 24 h Cation exchange and inner-sphere surface complexation 131
PB/Fe3O4/GO Co-precipitation GO PB Cs(i) 298 7 55.6 DI 24 h H+ exchange and/or ion trapping 80
PFGM Co-precipitation GO/calcium alginate PB Cs(i) 298 7 43.5 DI 24 h K+/H+ exchange and or ion trapping 132
Fe3O4@C@Ni–Al LDH Co-precipitation Carbon Ni–Al LDH U(vi) 298 6 174 n.a 3 h Surface adsorption and intercalation 133
MMWCNTs Co-precipitation CNTs Th(iv) 298 4.1 0.232 n.a 40 h Surface complexation 134
Fe3O4/AC Co-precipitation AC Sr(ii) 303 5 42.3 0.01 M NaCl 4 h 135
PAF magnetic adsorbent Co-precipitation AC Polyethylenimine U(vi) 293 5 115.3 n.a 1 h 136
CD/HNT/iron oxide Co-precipitation HNT CD U(vi) 298 5.5 107.6 0.01 M NaNO3 4 h At high pH: inner-sphere surface complexation, at low pH electrostatic or outer sphere complexation 85
HNTs–Fe3O4 Co-precipitation Halloysite nanotubes U(vi) 5.5 88.3 0.01 M NaCl 12 h Ion exchange and surface complexation 137
MZC Co-precipitation Zeolite Sr(ii) Cs(i) 298 8 83.7207.4 n.a >2 h Ion exchange 138
MZNC Co-precipitation Zeolite Sr(ii) Cs(i) 298 8 89, 229 n.a >30 min Ion exchange 139
Magnetic 4A zeolite Hydrothermal Zeolite Cs(i) 298 106.6 n.a 48 h 140
Attapulgite-iron oxide Co-precipitation Attapulgite Eu(iii) 293 5 117 0.01 M NaClO4 24 h At low pH: outer sphere surface complex, ion exchange, at high pH: inner sphere surface complex, surface precipitation 86
Magnetic citrate Mg–Al LDH Co-precipitation Mg–Al LDH Citrate U(vi) 298 6 180 n.a 4 h Formation of chelate complex 88
CMLH Co-precipitation LDH/hydroxyapatite U(vi) 298 6 208 n.a 1 h Surface adsorption or complexation 141
CS-g-MB Solvothermal Bentonite Chitosan Cs(i) 7.61 149 Seawater 24 h Ion exchange with chitosan functional groups such as OH groups 89
Silicate-based multifunctional nanostructured materials with magnetite and prussian blue Co-precipitation Sepiolite PB Cs(i) 295 102 n.a 3 h 87
MMT/Fe3O4 Co-precipitation Ammonium-pillared montmorillonite Cs(i) 298 6.7 27.5 n.a 1 h NH4+ ion exchange and surface hydroxyl group coordination 142