Skip to main content
. 2018 Jan 30;8(10):5286–5297. doi: 10.1039/c7ra12259d

Performance of the 9 Bayesian models for the training set and test set using different combinations of molecular descriptors.

Model Descriptors Number of descriptors Training set Test set
SE SP Q MCC SE SP Q MCC
NB-a DS_2D_MP 16 0.872 0.866 0.868 0.686 0.853 0.826 0.833 0.619
NB-b MP + ECFP_4 17 0.985 0.992 0.991 0.975 0.982 0.984 0.983 0.956
NB-c MP + ECFP_6 17 0.988 0.997 0.995 0.985 0.982 0.989 0.987 0.966
NB-d MP + EPFP_4 17 0.937 0.932 0.933 0.833 0.937 0.904 0.912 0.789
NB-e MP + EPFP_6 17 0.962 0.956 0.957 0.891 0.960 0.918 0.928 0.828
NB-f MP + FCFP_4 17 0.979 0.978 0.978 0.944 0.961 0.962 0.961 0.901
NB-g MP + FCFP_6 17 0.987 0.990 0.990 0.973 0.971 0.987 0.983 0.955
NB-h MP + FPFP-4 17 0.952 0.948 0.949 0.870 0.938 0.920 0.924 0.815
NB-i MP + FPFP-6 17 0.955 0.973 0.968 0.917 0.958 0.931 0.938 0.847